Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

Bio-inspired Attentive Segmentation of Retinal OCT Imaging

Authors : Georgios Lazaridis, Moucheng Xu, Saman Sadeghi Afgeh, Giovanni Montesano, David Garway-Heath

Published in: Ophthalmic Medical Image Analysis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Albeit optical coherence imaging (OCT) is widely used to assess ophthalmic pathologies, localization of intra-retinal boundaries suffers from erroneous segmentations due to image artifacts or topological abnormalities. Although deep learning-based methods have been effectively applied in OCT imaging, accurate automated layer segmentation remains a challenging task, with the flexibility and precision of most methods being highly constrained. In this paper, we propose a novel method to segment all retinal layers, tailored to the bio-topological OCT geometry. In addition to traditional learning of shift-invariant features, our method learns in selected pixels horizontally and vertically, exploiting the orientation of the extracted features. In this way, the most discriminative retinal features are generated in a robust manner, while long-range pixel dependencies across spatial locations are efficiently captured. To validate the effectiveness and generalisation of our method, we implement three sets of networks based on different backbone models. Results on three independent studies show that our methodology consistently produces more accurate segmentations than state-of-the-art networks, and shows better precision and agreement with ground truth. Thus, our method not only improves segmentation, but also enhances the statistical power of clinical trials with layer thickness change outcomes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Garway-Heath, D.F., Quartilho, A., Prah, P., Crabb, D.P., Cheng, Q., Zhu, H.: Evaluation of visual field and imaging outcomes for glaucoma clinical trials (an American Ophthalomological Society thesis). Trans. Am. Ophthalmol. Soc. 115, T4 (2017) Garway-Heath, D.F., Quartilho, A., Prah, P., Crabb, D.P., Cheng, Q., Zhu, H.: Evaluation of visual field and imaging outcomes for glaucoma clinical trials (an American Ophthalomological Society thesis). Trans. Am. Ophthalmol. Soc. 115, T4 (2017)
2.
go back to reference London, A., Benhar, I., Schwartz, M.: The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 9(1), 44–53 (2013)CrossRef London, A., Benhar, I., Schwartz, M.: The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 9(1), 44–53 (2013)CrossRef
3.
go back to reference Chiu, S.J., Li, X.T., et al.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Exp. 18(18), 19413–19428 (2010)CrossRef Chiu, S.J., Li, X.T., et al.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Exp. 18(18), 19413–19428 (2010)CrossRef
4.
go back to reference Keller, B., Cunefare, D., et al.: Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images. J. Biomed. Opt. 21(7), 1–9 (2016)CrossRef Keller, B., Cunefare, D., et al.: Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images. J. Biomed. Opt. 21(7), 1–9 (2016)CrossRef
5.
go back to reference Carass, A., Lang, A., et al.: Multiple-object geometric deformable model for segmentation of macular OCT. Biomed. Opt. Exp. 5(4), 1062–1074 (2014)CrossRef Carass, A., Lang, A., et al.: Multiple-object geometric deformable model for segmentation of macular OCT. Biomed. Opt. Exp. 5(4), 1062–1074 (2014)CrossRef
6.
go back to reference Garvin, M.K., Abramoff, M.D., et al.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009)CrossRef Garvin, M.K., Abramoff, M.D., et al.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009)CrossRef
7.
go back to reference Lang, A., Carass, A., et al.: Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Opt. Exp. 4(7), 1133–1152 (2013)CrossRef Lang, A., Carass, A., et al.: Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Opt. Exp. 4(7), 1133–1152 (2013)CrossRef
9.
go back to reference Ben-Cohen, A., Mark, D., et al.: Retinal layers segmentation using fully convolutional network in OCT images (2017) Ben-Cohen, A., Mark, D., et al.: Retinal layers segmentation using fully convolutional network in OCT images (2017)
10.
go back to reference Liefers, B., González-Gonzalo, et al.: Dense segmentation in selected dimensions: application to retinal optical coherence tomography. In: MIDL, pp. 337–346 (2019) Liefers, B., González-Gonzalo, et al.: Dense segmentation in selected dimensions: application to retinal optical coherence tomography. In: MIDL, pp. 337–346 (2019)
11.
go back to reference Roy, A.G., Conjeti, S., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Exp. 8(8), 3627–3642 (2017)CrossRef Roy, A.G., Conjeti, S., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Exp. 8(8), 3627–3642 (2017)CrossRef
12.
go back to reference Qu, G., Zhang, W., et al.: StripNet: towards topology consistent strip structure segmentation. In: ACM MM, pp. 283–291 (2018) Qu, G., Zhang, W., et al.: StripNet: towards topology consistent strip structure segmentation. In: ACM MM, pp. 283–291 (2018)
13.
go back to reference Devalla, S.K., Renukanand, P.K., Sreedhar, B.K., Subramanian, G., Zhang, L., et al.: DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images. Biomed. Opt. Exp. 9(7), 3244–3265 (2018)CrossRef Devalla, S.K., Renukanand, P.K., Sreedhar, B.K., Subramanian, G., Zhang, L., et al.: DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images. Biomed. Opt. Exp. 9(7), 3244–3265 (2018)CrossRef
15.
go back to reference Montesano, G., Bryan, S.R., et al.: A comparison between the compass fundus perimeter and the Humphrey Field Analyzer. Ophthalmology 126(2), 242–251 (2019)CrossRef Montesano, G., Bryan, S.R., et al.: A comparison between the compass fundus perimeter and the Humphrey Field Analyzer. Ophthalmology 126(2), 242–251 (2019)CrossRef
16.
go back to reference Chiu, S.J., Allingham, M.J., et al.: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed. Opt. Exp. 6(4), 1172–1194 (2015)CrossRef Chiu, S.J., Allingham, M.J., et al.: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed. Opt. Exp. 6(4), 1172–1194 (2015)CrossRef
17.
go back to reference Romero, A., Drozdzal, M., Erraqabi, A., Jégou, S., Bengio, Y.: Image Segmentation by Iterative Inference from Conditional Score Estimation. CoRR abs/1705.07450 (2017) Romero, A., Drozdzal, M., Erraqabi, A., Jégou, S., Bengio, Y.: Image Segmentation by Iterative Inference from Conditional Score Estimation. CoRR abs/1705.07450 (2017)
18.
go back to reference Wang, X., Girshick, R., et al.: Non-local neural networks. In: Computer Vision and Pattern Recognition (CVPR) (2017) Wang, X., Girshick, R., et al.: Non-local neural networks. In: Computer Vision and Pattern Recognition (CVPR) (2017)
19.
go back to reference Kim, J., On, K.W., et al.: Hadamard product for low-rank bilinear pooling. In: International Conference on Learning Representations (ICLR) (2017) Kim, J., On, K.W., et al.: Hadamard product for low-rank bilinear pooling. In: International Conference on Learning Representations (ICLR) (2017)
20.
go back to reference Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML 5(4), 1062–1074 (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML 5(4), 1062–1074 (2015)
21.
go back to reference Alexe, K., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS, vol. 5, no. 4, pp. 1062–1074 (2012) Alexe, K., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS, vol. 5, no. 4, pp. 1062–1074 (2012)
22.
go back to reference Badrinarayanan, V., Kendall, A., et al.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Recogn. Mach. Intell. (TPAMI) 39, 2481–2495 (2015)CrossRef Badrinarayanan, V., Kendall, A., et al.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Recogn. Mach. Intell. (TPAMI) 39, 2481–2495 (2015)CrossRef
23.
go back to reference Oktay, O., Schlemper, J., et al.: Attention U-Net: learning where to look for the pancreas. In: Medical Imaging with Deep Learning (MIDL) (2018) Oktay, O., Schlemper, J., et al.: Attention U-Net: learning where to look for the pancreas. In: Medical Imaging with Deep Learning (MIDL) (2018)
24.
go back to reference Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)
Metadata
Title
Bio-inspired Attentive Segmentation of Retinal OCT Imaging
Authors
Georgios Lazaridis
Moucheng Xu
Saman Sadeghi Afgeh
Giovanni Montesano
David Garway-Heath
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-63419-3_1

Premium Partner