Skip to main content
Top

2011 | OriginalPaper | Chapter

Bio-synthetic Encapsulation Systems for Organ Engineering: Focus on Diabetes

Authors : Rylie A. Green, Penny J. Martens, Robert Nordon, Laura A. Poole-Warren

Published in: Stem Cell Engineering

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development of a safe and effective bio-synthetic encapsulation system will potentially improve the treatment of diseases known to benefit from cell implantation therapies. This is of particular importance in the progression towards a permanent treatment for type 1 diabetes. Cell-based therapies for insulin-dependent diabetics ultimately aim to eliminate the need for exogenous insulin through the implantation of donor islet cells or, alternately, stem cells differentiated into glucose-sensitive islet-like cells. Encapsulation devices are required to protect implanted cells from destructive host immune factors. A successful design will be bio-synthetic, having well-defined permeability and providing appropriate biomolecules for physiological functionality and survival of the encapsulated cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Thanos CG, Emerich DF. On the use of hydrogels in cell encapsulation and tissue engineering systems. Recent Pat Drug Deliv Formul. 2008; 2(1):19–24.CrossRef Thanos CG, Emerich DF. On the use of hydrogels in cell encapsulation and tissue engineering systems. Recent Pat Drug Deliv Formul. 2008; 2(1):19–24.CrossRef
2.
go back to reference Rother KI. Diabetes treatment – bridging the divide. N Engl J Med. 2007; 356(15):1499–1501.CrossRef Rother KI. Diabetes treatment – bridging the divide. N Engl J Med. 2007; 356(15):1499–1501.CrossRef
3.
go back to reference Kabelitz D, et al. Toward cell-based therapy of type I diabetes. Trends Immunol. 2008; 29(2):68–74.CrossRef Kabelitz D, et al. Toward cell-based therapy of type I diabetes. Trends Immunol. 2008; 29(2):68–74.CrossRef
4.
go back to reference Alberti KGMM, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Geneva: Department of Noncommunicable Disease Surveillance, World Health Organisation; 1999. Alberti KGMM, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Geneva: Department of Noncommunicable Disease Surveillance, World Health Organisation; 1999.
5.
go back to reference Anonymous. National diabetes statistics, 2007. Bethesda: U.S. Department of Health and Human Services. National Institute of Health; 2007, p. 23. Anonymous. National diabetes statistics, 2007. Bethesda: U.S. Department of Health and Human Services. National Institute of Health; 2007, p. 23.
6.
go back to reference American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008; 31(3):596–615.CrossRef American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008; 31(3):596–615.CrossRef
7.
go back to reference Pringle M, Houghton P. National service framework for diabetes: standards. London: Department of Health; 2001, p. 48. Pringle M, Houghton P. National service framework for diabetes: standards. London: Department of Health; 2001, p. 48.
8.
go back to reference Pavlakis M, Khwaja K. Pancreas and islet cell transplantation in diabetes. Curr Opin Endocrinol Diabetes Obes. 2007; 14(2):146–150.CrossRef Pavlakis M, Khwaja K. Pancreas and islet cell transplantation in diabetes. Curr Opin Endocrinol Diabetes Obes. 2007; 14(2):146–150.CrossRef
9.
go back to reference Pavlakis M, Khwaja K. Transplantation for type 1 diabetes: whole organ pancreas and islet cells. Curr Diabetes Rep. 2007; 6(6):473–478.CrossRef Pavlakis M, Khwaja K. Transplantation for type 1 diabetes: whole organ pancreas and islet cells. Curr Diabetes Rep. 2007; 6(6):473–478.CrossRef
10.
go back to reference Naftanel MA. Pancreatic islet transplantation. PLoS Med. 2004; 1(3):198–201.CrossRef Naftanel MA. Pancreatic islet transplantation. PLoS Med. 2004; 1(3):198–201.CrossRef
11.
go back to reference Yoon J-W, Jun H-S. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol Med. 2002; 8(2):62–68.CrossRef Yoon J-W, Jun H-S. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol Med. 2002; 8(2):62–68.CrossRef
12.
go back to reference Laub O, Rutter WJ. Expression of the human insulin gene and cDNA in a heterologous mammalian system. J Biol Chem. 1983; 258:6043–6050. Laub O, Rutter WJ. Expression of the human insulin gene and cDNA in a heterologous mammalian system. J Biol Chem. 1983; 258:6043–6050.
13.
go back to reference Iwata H, et al. Preparation of insulin-releasing Chinese Hamster ovary cell transfection of human insulin gene: its implantation into diabetic mice. In: Shalaby SW, et al., ed. Polymers of biological and biomedical significance. Washington: American Chemical Society; 1994. Iwata H, et al. Preparation of insulin-releasing Chinese Hamster ovary cell transfection of human insulin gene: its implantation into diabetic mice. In: Shalaby SW, et al., ed. Polymers of biological and biomedical significance. Washington: American Chemical Society; 1994.
14.
go back to reference Falqui L, et al. Production of mature human insulin by retrovirally engineered fibroblasts and primary rat hepatocytes. Exp Clin Endocrinol Diabetes 1996; 104:A37. Falqui L, et al. Production of mature human insulin by retrovirally engineered fibroblasts and primary rat hepatocytes. Exp Clin Endocrinol Diabetes 1996; 104:A37.
15.
go back to reference Bailey CJ, et al. Prospects for insulin delivery by ex-vivo somatic cell gene therapy. J Mol Med. 1999; 77:244–249.CrossRef Bailey CJ, et al. Prospects for insulin delivery by ex-vivo somatic cell gene therapy. J Mol Med. 1999; 77:244–249.CrossRef
16.
go back to reference Kofman AV, et al. Gene- and cell-based therapy of diabetes: between bench and bedside. Tsitologiia 2002; 44(12):1157–1177.MathSciNet Kofman AV, et al. Gene- and cell-based therapy of diabetes: between bench and bedside. Tsitologiia 2002; 44(12):1157–1177.MathSciNet
17.
go back to reference Henquin J. Pancreatic b-cell mass or b-cell function? That is the question! Diabetes Obes Metab. 2008; 10(suppl 4):1–4. Henquin J. Pancreatic b-cell mass or b-cell function? That is the question! Diabetes Obes Metab. 2008; 10(suppl 4):1–4.
18.
go back to reference Shapiro AM, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006; 355(13):1318–1330.CrossRef Shapiro AM, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006; 355(13):1318–1330.CrossRef
19.
go back to reference Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol. 2004; 4:259–268.CrossRef Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol. 2004; 4:259–268.CrossRef
20.
go back to reference Matsumoto S, et al. Efficacy of human islet isolation from the tail section of the pancreas for the possibility of living donor islet transplantation. Transplantation 2004; 78(6):839–843.CrossRef Matsumoto S, et al. Efficacy of human islet isolation from the tail section of the pancreas for the possibility of living donor islet transplantation. Transplantation 2004; 78(6):839–843.CrossRef
21.
go back to reference Ricordi C, et al. Detection of intrahepatic human islets following combined liver-islet allotransplantation. Pancreas 1992; 7(4):507–509.CrossRef Ricordi C, et al. Detection of intrahepatic human islets following combined liver-islet allotransplantation. Pancreas 1992; 7(4):507–509.CrossRef
22.
go back to reference Levy MM, et al. Intrathymic islet transplantation in the canine: I. Histological and functional evidence of autologous intrathymic islet engraftment and survival in pancreatectomized recipients. Transplantation 2002; 73(6):842–852.CrossRef Levy MM, et al. Intrathymic islet transplantation in the canine: I. Histological and functional evidence of autologous intrathymic islet engraftment and survival in pancreatectomized recipients. Transplantation 2002; 73(6):842–852.CrossRef
23.
go back to reference Jaeger C, et al. Effect of transplantation site and culture pretreatment on islet xenograft survival (rat to mouse) in experimental diabetes without immunosuppression of the host. Acta Diabetol. 1994; 31(4):193–197.CrossRef Jaeger C, et al. Effect of transplantation site and culture pretreatment on islet xenograft survival (rat to mouse) in experimental diabetes without immunosuppression of the host. Acta Diabetol. 1994; 31(4):193–197.CrossRef
24.
go back to reference Jaeger C, et al. Pancreatic islet xenografts at two different transplantation sites (renal subcapsular versus intraportal): comparison of graft survival and morphology. Exp Clin Endocrinol Diabetes 1995; 103(2):123–128.CrossRef Jaeger C, et al. Pancreatic islet xenografts at two different transplantation sites (renal subcapsular versus intraportal): comparison of graft survival and morphology. Exp Clin Endocrinol Diabetes 1995; 103(2):123–128.CrossRef
25.
go back to reference Desai TA, et al. Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev. 2004; 56(11):1661–1673.CrossRef Desai TA, et al. Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev. 2004; 56(11):1661–1673.CrossRef
26.
go back to reference Wilson JT, Chaikof EL. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev. 2008; 60(2):124–145.CrossRef Wilson JT, Chaikof EL. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev. 2008; 60(2):124–145.CrossRef
27.
go back to reference Ricordi C, Edlund H. Toward a renewable source of pancreatic beta-cells. Nat Biotechnol. 2008; 26(4):397–398.CrossRef Ricordi C, Edlund H. Toward a renewable source of pancreatic beta-cells. Nat Biotechnol. 2008; 26(4):397–398.CrossRef
28.
go back to reference Williams PW. Notes on diabetes treated with extract and grafts of sheep’s pancreas. BMJ 1894; 2:1303–1304. Williams PW. Notes on diabetes treated with extract and grafts of sheep’s pancreas. BMJ 1894; 2:1303–1304.
29.
go back to reference Kobayashi T, et al. Indefinite islet protection from autoimmune destruction in nonobese diabetic mice by agarose microencapsulation without immunosuppression. Transplantation 2003; 75(5):619–625.CrossRef Kobayashi T, et al. Indefinite islet protection from autoimmune destruction in nonobese diabetic mice by agarose microencapsulation without immunosuppression. Transplantation 2003; 75(5):619–625.CrossRef
30.
go back to reference Schneider S, et al. Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice. Diabetes 2005; 54(3):687–693.CrossRef Schneider S, et al. Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice. Diabetes 2005; 54(3):687–693.CrossRef
31.
go back to reference Yang H, et al. Long-term function of fish islet xenografts in mice by alginate encapsulation. Transplantation 1997; 64(1):28–32.CrossRef Yang H, et al. Long-term function of fish islet xenografts in mice by alginate encapsulation. Transplantation 1997; 64(1):28–32.CrossRef
32.
go back to reference Sun Y, et al. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest. 1996; 98(6):1417–1422.CrossRef Sun Y, et al. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest. 1996; 98(6):1417–1422.CrossRef
33.
go back to reference Elliott RB, et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc. 2005; 37(8): 3505–3508.CrossRef Elliott RB, et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc. 2005; 37(8): 3505–3508.CrossRef
34.
go back to reference Serup P, et al. Science, medicine, and the future: islet and stem cell transplantation for treating diabetes. BMJ 2001; 322(7277):29–32.CrossRef Serup P, et al. Science, medicine, and the future: islet and stem cell transplantation for treating diabetes. BMJ 2001; 322(7277):29–32.CrossRef
35.
go back to reference Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery 1972; 72:175–186. Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery 1972; 72:175–186.
36.
go back to reference Ryan EA, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54(7):2060–2070.CrossRef Ryan EA, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54(7):2060–2070.CrossRef
37.
go back to reference Calafiore R, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 2006; 29(1):137–138.MathSciNetCrossRef Calafiore R, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 2006; 29(1):137–138.MathSciNetCrossRef
38.
go back to reference Duvivier-Kali VF, et al. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 2001; 50(8):1698–1705.CrossRef Duvivier-Kali VF, et al. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 2001; 50(8):1698–1705.CrossRef
39.
go back to reference Omer A, et al. Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 2005; 79(1):52–58.CrossRef Omer A, et al. Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 2005; 79(1):52–58.CrossRef
40.
go back to reference de Vos P, et al. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials 2003; 24(2):305–312.MathSciNetCrossRef de Vos P, et al. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials 2003; 24(2):305–312.MathSciNetCrossRef
41.
go back to reference Tashiro H, et al. Characterization and transplantation of agarose encapsulated canine islets of Langerhans. Ann Transplant 1997; 2:33–39. Tashiro H, et al. Characterization and transplantation of agarose encapsulated canine islets of Langerhans. Ann Transplant 1997; 2:33–39.
42.
go back to reference Matsumoto S, et al. Insulin independence after living-donor distal pancreatectomy and islet allotransplantation. Lancet 2005; 365(9471):1642–1644. Matsumoto S, et al. Insulin independence after living-donor distal pancreatectomy and islet allotransplantation. Lancet 2005; 365(9471):1642–1644.
43.
go back to reference Soria B, et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2001; 49:157–162.CrossRef Soria B, et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2001; 49:157–162.CrossRef
44.
go back to reference Kroon E, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008; 26(4): 443–452.CrossRef Kroon E, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008; 26(4): 443–452.CrossRef
45.
go back to reference Suen PM, Leung PS. Pancreatic stem cells: a glimmer of hope for diabetes? J Pancreas. 2005; 6(5):422–424. Suen PM, Leung PS. Pancreatic stem cells: a glimmer of hope for diabetes? J Pancreas. 2005; 6(5):422–424.
46.
go back to reference Ramiya VK, et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med. 2000; 6(3):278–282.CrossRef Ramiya VK, et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med. 2000; 6(3):278–282.CrossRef
47.
go back to reference Seaberg RM, et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 2004; 22:1115–1124.CrossRef Seaberg RM, et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 2004; 22:1115–1124.CrossRef
48.
go back to reference Hori Y, et al. Enrichment of putative pancreatic progenitor cells from mice by sorting for prominin1 (CD133) and PDGFR{beta}. Stem Cells 2008; 26(11)2912–2920.CrossRef Hori Y, et al. Enrichment of putative pancreatic progenitor cells from mice by sorting for prominin1 (CD133) and PDGFR{beta}. Stem Cells 2008; 26(11)2912–2920.CrossRef
49.
go back to reference Lacy PE, et al. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 1991; 254(5039):1782–1784.CrossRef Lacy PE, et al. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 1991; 254(5039):1782–1784.CrossRef
50.
go back to reference Maria-Engler SS, et al. Microencapsulation and tissue engineering as an alternative treatment of diabetes. Braz J Med Biol Res. 2001; 34(6):691–697.CrossRef Maria-Engler SS, et al. Microencapsulation and tissue engineering as an alternative treatment of diabetes. Braz J Med Biol Res. 2001; 34(6):691–697.CrossRef
51.
go back to reference Kizilel S, et al. The bioartificial pancreas: progress and challenges. Diabetes Technol Ther. 2005; 7(6):968–985.CrossRef Kizilel S, et al. The bioartificial pancreas: progress and challenges. Diabetes Technol Ther. 2005; 7(6):968–985.CrossRef
52.
go back to reference Williams DF. The Williams dictionary of biomaterials. Liverpool University Press, 1999, ISBN 0-85323-921-5. Williams DF. The Williams dictionary of biomaterials. Liverpool University Press, 1999, ISBN 0-85323-921-5.
53.
go back to reference Silva AI, et al. An overview on the development of a bio-artificial pancreas as a treatment of insulin-dependent diabetes mellitus. Med Res Rev. 2006; 26(2):181–222.CrossRef Silva AI, et al. An overview on the development of a bio-artificial pancreas as a treatment of insulin-dependent diabetes mellitus. Med Res Rev. 2006; 26(2):181–222.CrossRef
54.
go back to reference Yang KC, et al. Chitosan/gelatin hydrogel as immunoisolative matrix for injectable bioartificial pancreas. Xenotransplantation 2008; 15(6):407–416.MATHCrossRef Yang KC, et al. Chitosan/gelatin hydrogel as immunoisolative matrix for injectable bioartificial pancreas. Xenotransplantation 2008; 15(6):407–416.MATHCrossRef
55.
go back to reference Lacik I. Polymer chemistry in diabetes treatment by encapsulated islets of Langerhans: review to 2006. Aust J Chem. 2006; 59(8):508–524.CrossRef Lacik I. Polymer chemistry in diabetes treatment by encapsulated islets of Langerhans: review to 2006. Aust J Chem. 2006; 59(8):508–524.CrossRef
56.
go back to reference Kulseng B, et al. Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 1999; 67(7): 978–984.CrossRef Kulseng B, et al. Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 1999; 67(7): 978–984.CrossRef
57.
go back to reference King A, et al. The effect of capsule composition in the reversal of hyperglycemi in diabetic mice transplanted with microencapsulated allogeneic islets. Diabetes Technol Ther. 2003; 5:653–663.CrossRef King A, et al. The effect of capsule composition in the reversal of hyperglycemi in diabetic mice transplanted with microencapsulated allogeneic islets. Diabetes Technol Ther. 2003; 5:653–663.CrossRef
58.
go back to reference Xu B-Y, et al. Rapid destruction of encapsulated islet xenografts by NOD Mice is CD4-dependent and facilitated by b-cells: innate immunity and autoimmunity do not play significant roles. Transplantation 2005; 80(3):402–409.CrossRef Xu B-Y, et al. Rapid destruction of encapsulated islet xenografts by NOD Mice is CD4-dependent and facilitated by b-cells: innate immunity and autoimmunity do not play significant roles. Transplantation 2005; 80(3):402–409.CrossRef
59.
go back to reference Dembczynski R, Jankowski T. Determination of pore diameter and molecular weight cut-off of hydrogel-membrane liquid-core capsules for immunoisolation. J Biomater Sci Polym Ed. 2001; 12(9):1051–1058.CrossRef Dembczynski R, Jankowski T. Determination of pore diameter and molecular weight cut-off of hydrogel-membrane liquid-core capsules for immunoisolation. J Biomater Sci Polym Ed. 2001; 12(9):1051–1058.CrossRef
60.
go back to reference Stewart WW, Swaisgood HE. Characterization of calcium alginate pore diameter by size-exclusion chromatography using protein standards. Enzyme Microb Technol. 1993; 15(11):922–927.CrossRef Stewart WW, Swaisgood HE. Characterization of calcium alginate pore diameter by size-exclusion chromatography using protein standards. Enzyme Microb Technol. 1993; 15(11):922–927.CrossRef
61.
go back to reference Partap S, et al. Preparation and characterisation of controlled porosity alginate hydrogels made via a simultaneous micelle templating and internal gelation process. J Mater Sci. 2007; 42(10):3502–3507.CrossRef Partap S, et al. Preparation and characterisation of controlled porosity alginate hydrogels made via a simultaneous micelle templating and internal gelation process. J Mater Sci. 2007; 42(10):3502–3507.CrossRef
62.
go back to reference Chan AW, et al. Kinetic controlled synthesis of pH-responsive network alginate. Biomacromolecules 2008; 9(9):2536–2545.CrossRef Chan AW, et al. Kinetic controlled synthesis of pH-responsive network alginate. Biomacromolecules 2008; 9(9):2536–2545.CrossRef
63.
go back to reference Brissová M, et al. Evaluation of microcapsule permeability via inverse size exclusion chromatography. Anal Biochem. 1996; 242(1):104–111.CrossRef Brissová M, et al. Evaluation of microcapsule permeability via inverse size exclusion chromatography. Anal Biochem. 1996; 242(1):104–111.CrossRef
64.
go back to reference Bosco D, et al. Importance of cell-matrix interactions in rat islet beta-cell secretion in vitro: role of alpha6beta1 integrin. Diabetes 2000; 49(2):233–243.CrossRef Bosco D, et al. Importance of cell-matrix interactions in rat islet beta-cell secretion in vitro: role of alpha6beta1 integrin. Diabetes 2000; 49(2):233–243.CrossRef
65.
go back to reference Kaido T, et al. Impact of defined matrix interactions on insulin production by cultured human {beta}-cells: effect on insulin content, secretion, and gene transcription. Diabetes 2006; 55(10):2723–2729.CrossRef Kaido T, et al. Impact of defined matrix interactions on insulin production by cultured human {beta}-cells: effect on insulin content, secretion, and gene transcription. Diabetes 2006; 55(10):2723–2729.CrossRef
66.
go back to reference Nikolova G, et al. The vascular basement membrane: a niche for insulin gene expression and [beta] cell proliferation. Dev Cell 2006; 10(3):397–405.CrossRef Nikolova G, et al. The vascular basement membrane: a niche for insulin gene expression and [beta] cell proliferation. Dev Cell 2006; 10(3):397–405.CrossRef
67.
go back to reference Weber LM, et al. The effects of cell-matrix interactions on encapsulated [beta]-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 2007; 28(19):3004–3011.CrossRef Weber LM, et al. The effects of cell-matrix interactions on encapsulated [beta]-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 2007; 28(19):3004–3011.CrossRef
68.
go back to reference Beck J, et al. Islet encapsulation: strategies to enhance islet cell functions. Tissue Eng. 2007; 13(3):589–599.CrossRef Beck J, et al. Islet encapsulation: strategies to enhance islet cell functions. Tissue Eng. 2007; 13(3):589–599.CrossRef
69.
go back to reference D’Amour KA, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005; 23(12):1534–1541.CrossRef D’Amour KA, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005; 23(12):1534–1541.CrossRef
70.
go back to reference Taylor CJ, et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 2005; 366(9502):2019–2025.CrossRef Taylor CJ, et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 2005; 366(9502):2019–2025.CrossRef
71.
go back to reference Robertson NJ, et al. Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci USA. 2007; 104(52):20920–20925.CrossRef Robertson NJ, et al. Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci USA. 2007; 104(52):20920–20925.CrossRef
72.
go back to reference Gershengorn MC, et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 2004; 306(5705):2261–2264.CrossRef Gershengorn MC, et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 2004; 306(5705):2261–2264.CrossRef
73.
go back to reference Takeda Y, et al. Protection of islet allografts transplanted together with Fas ligand expressing testicular allografts. Diabetologia 1998; 41(3):315–321.CrossRef Takeda Y, et al. Protection of islet allografts transplanted together with Fas ligand expressing testicular allografts. Diabetologia 1998; 41(3):315–321.CrossRef
74.
go back to reference Sanlioglu AD, et al. Molecular mechanisms of death ligand-mediated immune modulation: a gene therapy model to prolong islet survival in type 1 diabetes. J Cell Biochem. 2008; 104(3):710–720.CrossRef Sanlioglu AD, et al. Molecular mechanisms of death ligand-mediated immune modulation: a gene therapy model to prolong islet survival in type 1 diabetes. J Cell Biochem. 2008; 104(3):710–720.CrossRef
75.
go back to reference Jin Y, et al. Simultaneous stimulation of Fas-mediated apoptosis and blockade of costimulation prevent autoimmune diabetes in mice induced by multiple low-dose streptozotocin. Gene Ther. 2004; 11(12):982–991.CrossRef Jin Y, et al. Simultaneous stimulation of Fas-mediated apoptosis and blockade of costimulation prevent autoimmune diabetes in mice induced by multiple low-dose streptozotocin. Gene Ther. 2004; 11(12):982–991.CrossRef
76.
go back to reference Petrovsky N, et al. The role of Fas ligand in beta cell destruction in autoimmune diabetes of NOD mice. Ann NY Acad Sci. 2002; 958:204–208.CrossRef Petrovsky N, et al. The role of Fas ligand in beta cell destruction in autoimmune diabetes of NOD mice. Ann NY Acad Sci. 2002; 958:204–208.CrossRef
77.
go back to reference Meyer T, et al. Extracellular matrix proteins in the porcine pancreas: a structural analysis for directed pancreatic islet isolation. Transplant Proc. 1998; 30(2):354–354.CrossRef Meyer T, et al. Extracellular matrix proteins in the porcine pancreas: a structural analysis for directed pancreatic islet isolation. Transplant Proc. 1998; 30(2):354–354.CrossRef
78.
go back to reference Parnaud G, et al. Blockade of β1 integrin-laminin-5 interaction affects spreading and insulin secretion of rat β-cells attached on extracellular matrix. Diabetes 2006; 55(5):1413–1420.CrossRef Parnaud G, et al. Blockade of β1 integrin-laminin-5 interaction affects spreading and insulin secretion of rat β-cells attached on extracellular matrix. Diabetes 2006; 55(5):1413–1420.CrossRef
79.
go back to reference Knox S, et al. Not all perlecans are created equal: interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J Biol Chem. 2002; 277(17):14657–14665. Knox S, et al. Not all perlecans are created equal: interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J Biol Chem. 2002; 277(17):14657–14665.
Metadata
Title
Bio-synthetic Encapsulation Systems for Organ Engineering: Focus on Diabetes
Authors
Rylie A. Green
Penny J. Martens
Robert Nordon
Laura A. Poole-Warren
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-11865-4_16