Skip to main content
Top

2017 | OriginalPaper | Chapter

Biochar from Biomass: A Strategy for Carbon Dioxide Sequestration, Soil Amendment, Power Generation, and CO2 Utilization

Authors : Vanisree Mulabagal, David A. Baah, Nosa O. Egiebor, Wei-Yin Chen

Published in: Handbook of Climate Change Mitigation and Adaptation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biochar is a stable form of carbon produced via the pyrolysis of biomass for use in sustainable environmental and agricultural practices. The concept of biochar was originally triggered from the ancient practice in which humans deliberately mixed carbonized biomass into soils to enrich the soil quality and fertility. According to the International Biochar Initiative (IBI), biochar can be defined as “A solid material obtained from the thermo-chemical conversion of biomass in an oxygen-limited environment.” Biomass-derived biochar production has been demonstrated as a potentially viable strategy for developing negative carbon emission technologies for climate change mitigation and also as a material for effective amendment of relatively poor agricultural soils. Most interestingly, ongoing biochar research work has expanded broadly, stretching from its traditional core in the environmental and agricultural science to include studies in the use of biochar for energy generation and as adsorbents for pollution treatment applications. However, the use of biochar for carbon sequestration and soil amendment has attracted more interests by research scientists globally. The use of biochar as a material for soil amendment is closely linked with its potential for climate change mitigation by carbon sequestration. Specifically, the properties of biochar include resistance to microbial degradation and chemical transformations, high surface areas, high water retention capacity, cation-exchange capacity, and its effectiveness as support and substrate for soil microbes. These characteristics endow biochar with a greater potential to become a highly useful source of materials for improving agricultural productivity through soil quality enhancement while simultaneously sequestering CO2 from the atmosphere to mitigate climate change. On a separate front, a recent study of acoustic and photochemical interactions of CO2 with carbonaceous materials seems to warrant feasibility research in the future for exploring novel routes of CO2 utilization and CO2 capture. Moreover, biochar’s ability to absorb electromagnetic radiation and emit far-infrared wavelength radiation has promoted research, development, and commercialization of biochar’s applications in medical and health therapies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdel-Fattah TM, Mahmoud ME, Ahmed SB, Huff MD, Lee JW, Kumar S (2014) Biochar from woody biomass for removing metal contaminants and carbon sequestration. J Ind Eng Chem doi:10.1016/j.jiec.2014.06.030 Abdel-Fattah TM, Mahmoud ME, Ahmed SB, Huff MD, Lee JW, Kumar S (2014) Biochar from woody biomass for removing metal contaminants and carbon sequestration. J Ind Eng Chem doi:10.1016/j.jiec.2014.06.030
go back to reference Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D . . . Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. doi:10.1016/j.chemosphere.2013.10.071 Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D . . . Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. doi:10.1016/j.chemosphere.2013.10.071
go back to reference Angın D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. doi:10.1016/j.biortech.2012.10.150CrossRef Angın D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. doi:10.1016/j.biortech.2012.10.150CrossRef
go back to reference Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production†. Ind Eng Chem Res 42(8):1619–1640. doi:10.1021/ie0207919CrossRef Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production†. Ind Eng Chem Res 42(8):1619–1640. doi:10.1021/ie0207919CrossRef
go back to reference Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil 337(1–2):1–18CrossRef Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil 337(1–2):1–18CrossRef
go back to reference Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311(5762):812–815. doi:10.1126/science.1118446CrossRef Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311(5762):812–815. doi:10.1126/science.1118446CrossRef
go back to reference Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287. doi:10.1016/j.envpol.2010.02.003CrossRef Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287. doi:10.1016/j.envpol.2010.02.003CrossRef
go back to reference Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282. doi:10.1016/j.envpol.2011.07.023CrossRef Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282. doi:10.1016/j.envpol.2011.07.023CrossRef
go back to reference Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJC (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202. doi:10.1016/j.envpol.2013.11.026CrossRef Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJC (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202. doi:10.1016/j.envpol.2013.11.026CrossRef
go back to reference Bonneau-Gubelmann I, Michel M, Besson B, Ratton S, Desmurs J (1996) Carboxylation of hydroxylation of hydroxy aromatic compounds. Indus Chem Libr 8:116–128CrossRef Bonneau-Gubelmann I, Michel M, Besson B, Ratton S, Desmurs J (1996) Carboxylation of hydroxylation of hydroxy aromatic compounds. Indus Chem Libr 8:116–128CrossRef
go back to reference Bourke J, Manley-Harris M, Fushimi C, Dowaki K, Nunoura T, Antal MJ (2007) Do All carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal†. Ind Eng Chem Res 46(18):5954–5967. doi:10.1021/ie070415uCrossRef Bourke J, Manley-Harris M, Fushimi C, Dowaki K, Nunoura T, Antal MJ (2007) Do All carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal†. Ind Eng Chem Res 46(18):5954–5967. doi:10.1021/ie070415uCrossRef
go back to reference Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B. . . Davies CA (2014) New approaches to measuring biochar density and porosity. Biomass Bioenergy 66:176–185. doi:10.1016/j.biombioe.2014.03.059 Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B. . . Davies CA (2014) New approaches to measuring biochar density and porosity. Biomass Bioenergy 66:176–185. doi:10.1016/j.biombioe.2014.03.059
go back to reference Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4(1):1–73. doi:10.1016/S1364-0321(99)00007-6CrossRef Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4(1):1–73. doi:10.1016/S1364-0321(99)00007-6CrossRef
go back to reference Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30(12):1479–1493. doi:10.1016/S0146-6380(99)00120-5CrossRef Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30(12):1479–1493. doi:10.1016/S0146-6380(99)00120-5CrossRef
go back to reference Bridgwater AV, Carson P, Coulson M (2007) A comparison of fast and slow pyrolysis liquids from mallee. Int J Glob Energy Issues 27(2):204–216CrossRef Bridgwater AV, Carson P, Coulson M (2007) A comparison of fast and slow pyrolysis liquids from mallee. Int J Glob Energy Issues 27(2):204–216CrossRef
go back to reference Brunelli NA, Didas SA, Venkatasubbaiah K, Jones CW (2012). Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO2 capture. J Am Chem Soc 134:13950–13953CrossRef Brunelli NA, Didas SA, Venkatasubbaiah K, Jones CW (2012). Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO2 capture. J Am Chem Soc 134:13950–13953CrossRef
go back to reference Carrier M, Hardie AG, Uras U, Gorgens J, Knoetze J (2012) Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J Anal Appl Pyrolysis 96:24–32CrossRef Carrier M, Hardie AG, Uras U, Gorgens J, Knoetze J (2012) Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J Anal Appl Pyrolysis 96:24–32CrossRef
go back to reference Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. Biochar Environ Manag Sci Technol 51:67–84 Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. Biochar Environ Manag Sci Technol 51:67–84
go back to reference Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45(8):629–634. doi:10.1071/SR07109CrossRef Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45(8):629–634. doi:10.1071/SR07109CrossRef
go back to reference Chateauneuf JE, Zhang J, Foote J, Brink J, Perkovic MW (2002) Photochemical fixation of supercritical carbon dioxide: the production of a carboxylic acid from a polyaromatic hydrocarbon. Adv Environ Res 6:487–493CrossRef Chateauneuf JE, Zhang J, Foote J, Brink J, Perkovic MW (2002) Photochemical fixation of supercritical carbon dioxide: the production of a carboxylic acid from a polyaromatic hydrocarbon. Adv Environ Res 6:487–493CrossRef
go back to reference Chen WY, Mattern DL, Okinado E, Senter JC, Mattei AA, Redwine CW (2014) Photochemical and acoustic interactions of biochar with CO2 and H2O: applications in power generation and CO2 capture. AIChE J 60:1054–1065CrossRef Chen WY, Mattern DL, Okinado E, Senter JC, Mattei AA, Redwine CW (2014) Photochemical and acoustic interactions of biochar with CO2 and H2O: applications in power generation and CO2 capture. AIChE J 60:1054–1065CrossRef
go back to reference Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37(11):1477–1488. doi:10.1016/j.orggeochem.2006.06.022CrossRef Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37(11):1477–1488. doi:10.1016/j.orggeochem.2006.06.022CrossRef
go back to reference Cheng C-H, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610. doi:10.1016/j.gca.2008.01.010CrossRef Cheng C-H, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610. doi:10.1016/j.gca.2008.01.010CrossRef
go back to reference Chia CH, Singh BP, Joseph S, Graber ER, Munroe P (2014) Characterization of an enriched biochar. J Anal Appl Pyrolysis 108:26–34. doi:10.1016/j.jaap.2014.05.021CrossRef Chia CH, Singh BP, Joseph S, Graber ER, Munroe P (2014) Characterization of an enriched biochar. J Anal Appl Pyrolysis 108:26–34. doi:10.1016/j.jaap.2014.05.021CrossRef
go back to reference Chintala R, Clay DE, Schumacher TE, Malo DD, Julson JL (2012) Optimization of oxygen parameters for determination of carbon and nitrogen in biochar materials. Anal Lett 46(3):532–538. doi:10.1080/00032719.2012.721103CrossRef Chintala R, Clay DE, Schumacher TE, Malo DD, Julson JL (2012) Optimization of oxygen parameters for determination of carbon and nitrogen in biochar materials. Anal Lett 46(3):532–538. doi:10.1080/00032719.2012.721103CrossRef
go back to reference Clemente R, Hartley W, Riby P, Dickinson NM, Lepp NW (2010) Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch. Environ Pollut 158(5):1644–1651. doi:10.1016/j.envpol.2009.12.006CrossRef Clemente R, Hartley W, Riby P, Dickinson NM, Lepp NW (2010) Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch. Environ Pollut 158(5):1644–1651. doi:10.1016/j.envpol.2009.12.006CrossRef
go back to reference Clough TJ, Bertram JE, Ray JL, Condron LM, O’Callaghan M, Sherlock R R, Wells N S (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Soil Sci Soc Am J 74(3):852–860. doi: 10.2136/sssaj2009.0185 Clough TJ, Bertram JE, Ray JL, Condron LM, O’Callaghan M, Sherlock R R, Wells N S (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Soil Sci Soc Am J 74(3):852–860. doi: 10.2136/sssaj2009.0185
go back to reference Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5(2):122–131. doi:10.1111/gcbb.12030CrossRef Crombie K, Mašek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5(2):122–131. doi:10.1111/gcbb.12030CrossRef
go back to reference Day D, Evans RJ, Lee JW, Reicosky D (2005) Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30(14):2558–2579. doi:10.1016/j.energy.2004.07.016CrossRef Day D, Evans RJ, Lee JW, Reicosky D (2005) Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30(14):2558–2579. doi:10.1016/j.energy.2004.07.016CrossRef
go back to reference Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Soil Sci Soc Am J 74(4):1259–1270. doi: 10.2136/sssaj2009.0115 Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Soil Sci Soc Am J 74(4):1259–1270. doi: 10.2136/sssaj2009.0115
go back to reference Demiral İ, Ayan EA (2011) Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresour Technol 102(4):3946–3951. doi:10.1016/j.biortech.2010.11.077CrossRef Demiral İ, Ayan EA (2011) Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresour Technol 102(4):3946–3951. doi:10.1016/j.biortech.2010.11.077CrossRef
go back to reference Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248. doi:10.1016/j.jaap.2004.07.003CrossRef Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248. doi:10.1016/j.jaap.2004.07.003CrossRef
go back to reference Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24(5):471–482. doi:10.1080/00908310252889979CrossRef Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24(5):471–482. doi:10.1080/00908310252889979CrossRef
go back to reference Dewar MJS, Dieter KM (1988) Mechanism of the chain extension step in the biosynthesis of fatty acids. Biochemistry 27:3302–3308CrossRef Dewar MJS, Dieter KM (1988) Mechanism of the chain extension step in the biosynthesis of fatty acids. Biochemistry 27:3302–3308CrossRef
go back to reference Downie A, Crosky A, Monroe P (2009) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32 Downie A, Crosky A, Monroe P (2009) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32
go back to reference Duku MH, Gu S, Hagan EB (2011) Biochar production potential in Ghana – a review. Renew Sustain Energy Rev 15(8):3539–3551CrossRef Duku MH, Gu S, Hagan EB (2011) Biochar production potential in Ghana – a review. Renew Sustain Energy Rev 15(8):3539–3551CrossRef
go back to reference Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653. doi:10.1016/j.biortech.2012.03.022CrossRef Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653. doi:10.1016/j.biortech.2012.03.022CrossRef
go back to reference Fang Q, Chen B, Lin Y, Guan Y (2013) Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48(1):279–288CrossRef Fang Q, Chen B, Lin Y, Guan Y (2013) Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48(1):279–288CrossRef
go back to reference Fernandes MB, Brooks P (2003) Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds. Chemosphere 53(5):447–458. doi:10.1016/s0045-6535(03)00452-1CrossRef Fernandes MB, Brooks P (2003) Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds. Chemosphere 53(5):447–458. doi:10.1016/s0045-6535(03)00452-1CrossRef
go back to reference Franklin R (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Math Phys Sci 1097:196–218CrossRef Franklin R (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Math Phys Sci 1097:196–218CrossRef
go back to reference Galinato SP, Yoder JK, Granatstein D (2011) The economic value of biochar in crop production and carbon sequestration. Energy Policy 39(10):6344–6350CrossRef Galinato SP, Yoder JK, Granatstein D (2011) The economic value of biochar in crop production and carbon sequestration. Energy Policy 39(10):6344–6350CrossRef
go back to reference Galipo RC, Egan WJ, Aust JF, Myrick ML, Morgan SL (1998) Pyrolysis gas chromatography/mass spectrometry investigation of a thermally cured polymer. J Anal Appl Pyrolysis 45(1):23–40. doi:10.1016/S0165-2370(98)00059-XCrossRef Galipo RC, Egan WJ, Aust JF, Myrick ML, Morgan SL (1998) Pyrolysis gas chromatography/mass spectrometry investigation of a thermally cured polymer. J Anal Appl Pyrolysis 45(1):23–40. doi:10.1016/S0165-2370(98)00059-XCrossRef
go back to reference Garcia R, Pizarro C, Lavin AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1–4. doi:10.1016/j.biortech.2013.03.197CrossRef Garcia R, Pizarro C, Lavin AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1–4. doi:10.1016/j.biortech.2013.03.197CrossRef
go back to reference Gathitu BB, Chen WY, McClure MC (2009) Effects of coal interaction with supercritical CO2: physical structure. Ind Eng Chem Res 48:5024–5034CrossRef Gathitu BB, Chen WY, McClure MC (2009) Effects of coal interaction with supercritical CO2: physical structure. Ind Eng Chem Res 48:5024–5034CrossRef
go back to reference Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fertil Soils 35(4):219–230. doi:10.1007/s00374-002-0466-4CrossRef Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fertil Soils 35(4):219–230. doi:10.1007/s00374-002-0466-4CrossRef
go back to reference Grossman J, O’Neill B, Tsai S, Liang B, Neves E, Lehmann J, Thies J (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60(1):192–205. doi:10.1007/s00248-010-9689-3CrossRef Grossman J, O’Neill B, Tsai S, Liang B, Neves E, Lehmann J, Thies J (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60(1):192–205. doi:10.1007/s00248-010-9689-3CrossRef
go back to reference Gu X, Wang Y, Lai C, Qiu J, Li S, Hou Y, Martens W, Mahmood N, Zhang S (2015) Microporous bamboo biochar for lithium−sulfur batteries. Nano Res 8(1):129–139. Doi:10.1007/s12274-014-0601-1CrossRef Gu X, Wang Y, Lai C, Qiu J, Li S, Hou Y, Martens W, Mahmood N, Zhang S (2015) Microporous bamboo biochar for lithium−sulfur batteries. Nano Res 8(1):129–139. Doi:10.1007/s12274-014-0601-1CrossRef
go back to reference Guo G, Zhou Q, Ma L (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116(1–3):513–528. doi:10.1007/s10661-006-7668-4CrossRef Guo G, Zhou Q, Ma L (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116(1–3):513–528. doi:10.1007/s10661-006-7668-4CrossRef
go back to reference Hamada Y, Teraoka F, Matsumoto T, Madachi A, Toki F, Uda E, Hase R, Takahashi J, Matsuura N (2003) Effects of far infrared ray on Hela cells and WI-38 cells. Int Congr Ser 1255:339–341CrossRef Hamada Y, Teraoka F, Matsumoto T, Madachi A, Toki F, Uda E, Hase R, Takahashi J, Matsuura N (2003) Effects of far infrared ray on Hela cells and WI-38 cells. Int Congr Ser 1255:339–341CrossRef
go back to reference Hammes K, Schmidt MWI (2009) Changes of biochar in soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London Hammes K, Schmidt MWI (2009) Changes of biochar in soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London
go back to reference Hmid A, Mondelli D, Fiore S, Fanizzi FP, Al Chami Z, Dumontet S (2014) Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis. Biomass Bioenergy. doi:10.1016/j.biombioe.2014.09.024 Hmid A, Mondelli D, Fiore S, Fanizzi FP, Al Chami Z, Dumontet S (2014) Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis. Biomass Bioenergy. doi:10.1016/j.biombioe.2014.09.024
go back to reference Honda K, Inoue S (1988) Sleep-enhancing effects of far-infrared radiation in rats. Int J Biometeorol 32(2):92–94CrossRef Honda K, Inoue S (1988) Sleep-enhancing effects of far-infrared radiation in rats. Int J Biometeorol 32(2):92–94CrossRef
go back to reference Hornung A (2013) Intermediate pyrolysis of biomass, Chap 8. In: Rosendahl L (ed) Biomass combustion science. Technology and engineering. Woodhead, Cambridge, pp 172–186CrossRef Hornung A (2013) Intermediate pyrolysis of biomass, Chap 8. In: Rosendahl L (ed) Biomass combustion science. Technology and engineering. Woodhead, Cambridge, pp 172–186CrossRef
go back to reference Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage 92(1):223–228. doi:10.1016/j.jenvman.2010.09.008CrossRef Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage 92(1):223–228. doi:10.1016/j.jenvman.2010.09.008CrossRef
go back to reference Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457. doi:10.1016/j.chemosphere.2013.03.055CrossRef Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457. doi:10.1016/j.chemosphere.2013.03.055CrossRef
go back to reference Ibrahim HM, Al-Wabel MI, Usman ARA, Al-Omran A (2013) Effect of conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci 178(4):165–173. doi: 10.1097/SS.0b013e3182979eacCrossRef Ibrahim HM, Al-Wabel MI, Usman ARA, Al-Omran A (2013) Effect of conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci 178(4):165–173. doi: 10.1097/SS.0b013e3182979eacCrossRef
go back to reference Ince NH, Tezcanli G, Belen RK, Apikyan IG (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl Catal B Environ 29:167–176CrossRef Ince NH, Tezcanli G, Belen RK, Apikyan IG (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl Catal B Environ 29:167–176CrossRef
go back to reference Inoue S, Kabaya M (1989) Biological activities caused by far-infrared radiation. Int J Biometeorol 33(3):145–50CrossRef Inoue S, Kabaya M (1989) Biological activities caused by far-infrared radiation. Int J Biometeorol 33(3):145–50CrossRef
go back to reference International Biochar Initiative (IBI) (2012) Standard product definition and product testing guidelines for biochar that is used in soil. http://www.biochar-international.org/newsletter International Biochar Initiative (IBI) (2012) Standard product definition and product testing guidelines for biochar that is used in soil. http://​www.​biochar-international.​org/​newsletter
go back to reference IPCC (2005) Special report on carbon dioxide capture and storage, prepared by working group III of the Intergovernmental Panel on Climate Change. In: Sohi et al (eds) Cambridge University Press, Cambridge IPCC (2005) Special report on carbon dioxide capture and storage, prepared by working group III of the Intergovernmental Panel on Climate Change. In: Sohi et al (eds) Cambridge University Press, Cambridge
go back to reference Ishibashi J, Yamashita K, Ishikawa T, Hosokawa H, Sumida K, Nagayama M, Kitamura S (2008) The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A. Med Oncol 25:229–237CrossRef Ishibashi J, Yamashita K, Ishikawa T, Hosokawa H, Sumida K, Nagayama M, Kitamura S (2008) The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A. Med Oncol 25:229–237CrossRef
go back to reference Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordin Chem Rev 257:171–186CrossRef Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordin Chem Rev 257:171–186CrossRef
go back to reference Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr Ecosyst Environ 144(1):175–187CrossRef Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr Ecosyst Environ 144(1):175–187CrossRef
go back to reference Jindo K, Suto K, Matsumoto K, García C, Sonoki T, Sanchez-Monedero MA (2012) Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour Technol 110:396–404. doi:10.1016/j.biortech.2012.01.120CrossRef Jindo K, Suto K, Matsumoto K, García C, Sonoki T, Sanchez-Monedero MA (2012) Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour Technol 110:396–404. doi:10.1016/j.biortech.2012.01.120CrossRef
go back to reference Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. doi:10.1021/es9031419CrossRef Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. doi:10.1021/es9031419CrossRef
go back to reference Kim SS, Agblevor FA (2007) Pyrolysis characteristics and kinetics of chicken litter. Waste Manag 27(1):135–140. doi:10.1016/j.wasman.2006.01.012CrossRef Kim SS, Agblevor FA (2007) Pyrolysis characteristics and kinetics of chicken litter. Waste Manag 27(1):135–140. doi:10.1016/j.wasman.2006.01.012CrossRef
go back to reference Kim S-J, Jung S-H, Kim J-S (2010) Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour Technol 101(23):9294–9300. doi:10.1016/j.biortech.2010.06.110CrossRef Kim S-J, Jung S-H, Kim J-S (2010) Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour Technol 101(23):9294–9300. doi:10.1016/j.biortech.2010.06.110CrossRef
go back to reference Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. doi:10.1007/s00253-004-1642-2CrossRef Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. doi:10.1007/s00253-004-1642-2CrossRef
go back to reference Kolbe H (1860) Ueber Synthese der Salicylsäure. Annalen der Chemie and Pharmacie 113:125–127CrossRef Kolbe H (1860) Ueber Synthese der Salicylsäure. Annalen der Chemie and Pharmacie 113:125–127CrossRef
go back to reference Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3):515–521. doi:10.1016/j.cbpa.2013.05.004CrossRef Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3):515–521. doi:10.1016/j.cbpa.2013.05.004CrossRef
go back to reference Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–69CrossRef Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–69CrossRef
go back to reference Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41(2):210–219. doi:10.1016/j.soilbio.2008.10.016CrossRef Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41(2):210–219. doi:10.1016/j.soilbio.2008.10.016CrossRef
go back to reference Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Agron J 100(1):178–181. doi: 10.2134/agrojnl2007.0161 Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Agron J 100(1):178–181. doi: 10.2134/agrojnl2007.0161
go back to reference Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627. doi:10.1126/science.1097396CrossRef Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627. doi:10.1126/science.1097396CrossRef
go back to reference Larsen JW, Gurevich I (1996) A method for counting the hydrogen-bond cross-links in coal. Energy Fuels 10:1269–1272CrossRef Larsen JW, Gurevich I (1996) A method for counting the hydrogen-bond cross-links in coal. Energy Fuels 10:1269–1272CrossRef
go back to reference Lee JW, Kidder M, Evans BR, Paik S, Buchanan AC 3rd, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20):7970–7974. doi:10.1021/es101337xCrossRef Lee JW, Kidder M, Evans BR, Paik S, Buchanan AC 3rd, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20):7970–7974. doi:10.1021/es101337xCrossRef
go back to reference Lee JW, Buchanan AC, Evans BR, Kidder MK (2011) PCT/US2011/020306 Lee JW, Buchanan AC, Evans BR, Kidder MK (2011) PCT/US2011/020306
go back to reference Lee JW, Lee J, Buchanan AC III, Evans B, Kidder M (2013) Oxygenation of biochar for enhanced cation exchange capacity. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 35–45 Lee JW, Lee J, Buchanan AC III, Evans B, Kidder M (2013) Oxygenation of biochar for enhanced cation exchange capacity. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 35–45
go back to reference Lehmann J (2003) Amazonian dark earths: origin, properties, management. Kluwer, Dordrecht Lehmann J (2003) Amazonian dark earths: origin, properties, management. Kluwer, Dordrecht
go back to reference Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387CrossRef Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387CrossRef
go back to reference Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. In: Lehmann J, Joseph S (eds), Earth Scan, London & Sterling, VA, 416 p Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. In: Lehmann J, Joseph S (eds), Earth Scan, London & Sterling, VA, 416 p
go back to reference Lehmann J, Rondon M (2006) Bio-char soil management on highly weathered soils in the humid tropics. Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 517–530CrossRef Lehmann J, Rondon M (2006) Bio-char soil management on highly weathered soils in the humid tropics. Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 517–530CrossRef
go back to reference Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strat Glob Chang 11(2):395–419CrossRef Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strat Glob Chang 11(2):395–419CrossRef
go back to reference Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in soil. Biochar Environ Manag Sci Technol. In: Lehmann et al. (eds), Earth Scan, London & Sterling, VA, pp 183–205 Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in soil. Biochar Environ Manag Sci Technol. In: Lehmann et al. (eds), Earth Scan, London & Sterling, VA, pp 183–205
go back to reference Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43(9):1812–1836CrossRef Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43(9):1812–1836CrossRef
go back to reference Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730. doi:10.2136/sssaj2005.0383CrossRef Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730. doi:10.2136/sssaj2005.0383CrossRef
go back to reference Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO . . . Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochimica et Cosmochimica Acta 72(24):6069–6078. doi:10.1016/j.gca.2008.09.028 Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO . . . Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochimica et Cosmochimica Acta 72(24):6069–6078. doi:10.1016/j.gca.2008.09.028
go back to reference Lindsey AS, Jeskey H (1957) The Kolbe-Schmitt reaction. Chemistry 57:583–620 Lindsey AS, Jeskey H (1957) The Kolbe-Schmitt reaction. Chemistry 57:583–620
go back to reference Liu X, Li Z, Zhang Y, Feng R, Mahmood IB (2014) Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process. Waste Manag 34(9):1619–1626. doi:10.1016/j.wasman.2014.05.027CrossRef Liu X, Li Z, Zhang Y, Feng R, Mahmood IB (2014) Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process. Waste Manag 34(9):1619–1626. doi:10.1016/j.wasman.2014.05.027CrossRef
go back to reference Loganathan VA, Feng Y, Sheng GD, Clement TP (2009) Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Soil Sci Soc Am J 73(3):967–974. doi: 10.2136/sssaj2008.0208 Loganathan VA, Feng Y, Sheng GD, Clement TP (2009) Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Soil Sci Soc Am J 73(3):967–974. doi: 10.2136/sssaj2008.0208
go back to reference Lou CW, Lin CW, Lei CH, Su KH, Hsu CH, Liu ZH, Lin JH (2007) PET/PP blend with bamboo activated charcoal to produce functional composites. J Mater Process Technol 192:428–433CrossRef Lou CW, Lin CW, Lei CH, Su KH, Hsu CH, Liu ZH, Lin JH (2007) PET/PP blend with bamboo activated charcoal to produce functional composites. J Mater Process Technol 192:428–433CrossRef
go back to reference Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003CrossRef Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003CrossRef
go back to reference Manya JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46(15):7939–7954. doi:10.1021/es301029gCrossRef Manya JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46(15):7939–7954. doi:10.1021/es301029gCrossRef
go back to reference Mašek O, Budarin V, Gronnow M, Crombie K, Brownsort P, Fitzpatrick E, Hurst P (2013) Microwave and slow pyrolysis biochar: comparison of physical and functional properties. J Anal Appl Pyrolysis 100:41–48. doi:10.1016/j.jaap.2012.11.015CrossRef Mašek O, Budarin V, Gronnow M, Crombie K, Brownsort P, Fitzpatrick E, Hurst P (2013) Microwave and slow pyrolysis biochar: comparison of physical and functional properties. J Anal Appl Pyrolysis 100:41–48. doi:10.1016/j.jaap.2012.11.015CrossRef
go back to reference Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92(1–4):201–213. doi:10.1016/j.marchem.2004.06.043CrossRef Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92(1–4):201–213. doi:10.1016/j.marchem.2004.06.043CrossRef
go back to reference Mason TJ (1990) Chemistry with ultrasound. In: Mason TJ (ed) Critical reports on applied chemistry 28, Society for Chemical Industry. Elsevier, London Mason TJ (1990) Chemistry with ultrasound. In: Mason TJ (ed) Critical reports on applied chemistry 28, Society for Chemical Industry. Elsevier, London
go back to reference Méndez A, Tarquis AM, Saa-Requejo A, Guerrero F, Gascó G (2013) Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Chemosphere 93(4):668–676. doi:10.1016/j.chemosphere.2013.06.004CrossRef Méndez A, Tarquis AM, Saa-Requejo A, Guerrero F, Gascó G (2013) Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Chemosphere 93(4):668–676. doi:10.1016/j.chemosphere.2013.06.004CrossRef
go back to reference Mimmo T, Panzacchi P, Baratieri M, Davies CA, Tonon G (2014) Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 62:149–157. doi:10.1016/j.biombioe.2014.01.004CrossRef Mimmo T, Panzacchi P, Baratieri M, Davies CA, Tonon G (2014) Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 62:149–157. doi:10.1016/j.biombioe.2014.01.004CrossRef
go back to reference Mirzaeian M, Hall PJ (2006) The interactions of coal with CO2 and its effects on coal structure. Energy Fuels 20:2022–2027CrossRef Mirzaeian M, Hall PJ (2006) The interactions of coal with CO2 and its effects on coal structure. Energy Fuels 20:2022–2027CrossRef
go back to reference Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol 95:255–257CrossRef Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol 95:255–257CrossRef
go back to reference Moon DH, Park JW, Chang YY, Ok YS, Lee SS, Ahmad M, Baek K (2013) Immobilization of lead in contaminated firing range soil using biochar. Environ Sci Pollut Res Int 20(12):8464–8471. doi:10.1007/s11356-013-1964-7CrossRef Moon DH, Park JW, Chang YY, Ok YS, Lee SS, Ahmad M, Baek K (2013) Immobilization of lead in contaminated firing range soil using biochar. Environ Sci Pollut Res Int 20(12):8464–8471. doi:10.1007/s11356-013-1964-7CrossRef
go back to reference Mukome FND, Zhang X, Silva LCR, Six J, Parikh SJ (2013) Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J Agric Food Chem 61(9):2196–2204CrossRef Mukome FND, Zhang X, Silva LCR, Six J, Parikh SJ (2013) Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J Agric Food Chem 61(9):2196–2204CrossRef
go back to reference Nagasawa Y, Udagawa Y, Kiyokawa S (1999) Evidence that irradiation of far-infrared rays inhibits mammary tumour growth in SHN mice. Anticancer Res 19(3A):1797–800 Nagasawa Y, Udagawa Y, Kiyokawa S (1999) Evidence that irradiation of far-infrared rays inhibits mammary tumour growth in SHN mice. Anticancer Res 19(3A):1797–800
go back to reference Nguyen, HN, Pignatello JJ (2013) Laboratory tests of biochars as absorbents for use in recovery or containment of marine crude oil spills. Environ Eng Sci 30(7):374–380CrossRef Nguyen, HN, Pignatello JJ (2013) Laboratory tests of biochars as absorbents for use in recovery or containment of marine crude oil spills. Environ Eng Sci 30(7):374–380CrossRef
go back to reference Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174(2):105–112. doi:10.1097/SS.1090b1013e3181981d3181989aCrossRef Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174(2):105–112. doi:10.1097/SS.1090b1013e3181981d3181989aCrossRef
go back to reference Okimori Y, Ogawa M, Takahashi F (2003) Potential of Co2 emission reductions by carbonizing biomass waste from industrial tree plantation in South Sumatra, Indonesia. Mitig Adapt Strat Glob Chang 8(3):261–280. doi:10.1023/B:MITI.0000005643.79908.5aCrossRef Okimori Y, Ogawa M, Takahashi F (2003) Potential of Co2 emission reductions by carbonizing biomass waste from industrial tree plantation in South Sumatra, Indonesia. Mitig Adapt Strat Glob Chang 8(3):261–280. doi:10.1023/B:MITI.0000005643.79908.5aCrossRef
go back to reference O’Neill B, Grossman J, Tsai MT, Gomes JE, Lehmann J, Peterson J, Thies JE (2009) Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58(1):23–35. doi:10.1007/s00248-009-9515-yCrossRef O’Neill B, Grossman J, Tsai MT, Gomes JE, Lehmann J, Peterson J, Thies JE (2009) Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58(1):23–35. doi:10.1007/s00248-009-9515-yCrossRef
go back to reference Ottaway M (1982) Use of thermogravimetry for proximate analysis of coals and cokes. Fuel 61(8):713–716. doi:10.1016/0016-2361(82)90244-7CrossRef Ottaway M (1982) Use of thermogravimetry for proximate analysis of coals and cokes. Fuel 61(8):713–716. doi:10.1016/0016-2361(82)90244-7CrossRef
go back to reference Özçimen D, Karaosmanoğlu F (2004) Production and characterization of bio-oil and biochar from rapeseed cake. Renew Energy 29(5):779–787. doi:10.1016/j.renene.2003.09.006CrossRef Özçimen D, Karaosmanoğlu F (2004) Production and characterization of bio-oil and biochar from rapeseed cake. Renew Energy 29(5):779–787. doi:10.1016/j.renene.2003.09.006CrossRef
go back to reference Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48(1):147–163. doi:10.1023/A:1006271331703CrossRef Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48(1):147–163. doi:10.1023/A:1006271331703CrossRef
go back to reference Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89(2):231–242. doi:10.1034/j.1600-0706.2000.890203.xCrossRef Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89(2):231–242. doi:10.1034/j.1600-0706.2000.890203.xCrossRef
go back to reference Pujol D, Liu C, Gominho J, Olivella MÀ, Fiol N, Villaescusa I, Pereira H (2013) The chemical composition of exhausted coffee waste. Ind Crops Prod 50:423–429. doi:10.1016/j.indcrop.2013.07.056CrossRef Pujol D, Liu C, Gominho J, Olivella MÀ, Fiol N, Villaescusa I, Pereira H (2013) The chemical composition of exhausted coffee waste. Ind Crops Prod 50:423–429. doi:10.1016/j.indcrop.2013.07.056CrossRef
go back to reference Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman A, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48(3):271–284. doi:10.1007/s00374-011-0624-7CrossRef Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman A, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48(3):271–284. doi:10.1007/s00374-011-0624-7CrossRef
go back to reference Rondon M, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43(6):699–708. doi:10.1007/s00374-006-0152-zCrossRef Rondon M, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43(6):699–708. doi:10.1007/s00374-006-0152-zCrossRef
go back to reference Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5(2):104–115. doi:10.1111/gcbb.12018CrossRef Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5(2):104–115. doi:10.1111/gcbb.12018CrossRef
go back to reference Rutigliano FA, Romano M, Marzaioli R, Baglivo I, Baronti S, Miglietta F, Castaldi S (2014) Effect of biochar addition on soil microbial community in a wheat crop. Eur J Soil Biol 60:9–15. doi:10.1016/j.ejsobi.2013.10.007CrossRef Rutigliano FA, Romano M, Marzaioli R, Baglivo I, Baronti S, Miglietta F, Castaldi S (2014) Effect of biochar addition on soil microbial community in a wheat crop. Eur J Soil Biol 60:9–15. doi:10.1016/j.ejsobi.2013.10.007CrossRef
go back to reference Schmitt R (1885) Beitrag zur Kenntniss der Kolbe’schen Salicylsäure Synthese. J für Praktische Chemie 31:397–411CrossRef Schmitt R (1885) Beitrag zur Kenntniss der Kolbe’schen Salicylsäure Synthese. J für Praktische Chemie 31:397–411CrossRef
go back to reference Shaaban A, Se S-M, Mitan NMM, Dimin MF (2013) Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Eng 68:365–371. doi:10.1016/j.proeng.2013.12.193CrossRef Shaaban A, Se S-M, Mitan NMM, Dimin MF (2013) Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Eng 68:365–371. doi:10.1016/j.proeng.2013.12.193CrossRef
go back to reference Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Haszeldine S (2012) Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, part II: field trial results, carbon abatement, economic assessment and conclusions. Energy Policy 41:618–623. doi:10.1016/j.enpol.2011.11.023CrossRef Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Haszeldine S (2012) Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, part II: field trial results, carbon abatement, economic assessment and conclusions. Energy Policy 41:618–623. doi:10.1016/j.enpol.2011.11.023CrossRef
go back to reference Slaghuis JH, Raijmakers N (2004) The use of thermogravimetry in establishing the Fischer tar of a series of South African coal types. Fuel 83(4–5):533–536. doi:10.1016/j.fuel.2003.10.002CrossRef Slaghuis JH, Raijmakers N (2004) The use of thermogravimetry in establishing the Fischer tar of a series of South African coal types. Fuel 83(4–5):533–536. doi:10.1016/j.fuel.2003.10.002CrossRef
go back to reference Sohi SP (2012) Agriculture. Carbon storage with benefits. Science 338(6110):1034–1035. doi:10.1126/science.1225987CrossRef Sohi SP (2012) Agriculture. Carbon storage with benefits. Science 338(6110):1034–1035. doi:10.1126/science.1225987CrossRef
go back to reference Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82CrossRef Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82CrossRef
go back to reference Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, Dusaire MG, Ro KS (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85(5):869–882. doi:10.1016/j.chemosphere.2011.06.108CrossRef Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, Dusaire MG, Ro KS (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85(5):869–882. doi:10.1016/j.chemosphere.2011.06.108CrossRef
go back to reference Spokas K, Novak J, Venterea R (2012) Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant and Soil 350(1–2):35–42. doi:10.1007/s11104-011-0930-8CrossRef Spokas K, Novak J, Venterea R (2012) Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant and Soil 350(1–2):35–42. doi:10.1007/s11104-011-0930-8CrossRef
go back to reference Srinivasan P, Sarmah AK (2014) Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Sci Total Environ 502c:471–480. doi:10.1016/j.scitotenv.2014.09.048 Srinivasan P, Sarmah AK (2014) Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Sci Total Environ 502c:471–480. doi:10.1016/j.scitotenv.2014.09.048
go back to reference Stanger R, Wall T, Lucas J, Mahoney M (2013) Dynamic Elemental Thermal Analysis (DETA) – a characterisation technique for the production of biochar and bio-oil from biomass resources. Fuel 108:656–667. doi:10.1016/j.fuel.2013.02.065CrossRef Stanger R, Wall T, Lucas J, Mahoney M (2013) Dynamic Elemental Thermal Analysis (DETA) – a characterisation technique for the production of biochar and bio-oil from biomass resources. Fuel 108:656–667. doi:10.1016/j.fuel.2013.02.065CrossRef
go back to reference Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
go back to reference Steiner C, Teixeira W, Lehmann J, Nehls T, de Macêdo J, Blum WH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil 291(1–2):275–290. doi:10.1007/s11104-007-9193-9CrossRef Steiner C, Teixeira W, Lehmann J, Nehls T, de Macêdo J, Blum WH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil 291(1–2):275–290. doi:10.1007/s11104-007-9193-9CrossRef
go back to reference Styring P, Jansen D, de Coninck H, Reith H, Armstrong K (2011) Carbon capture and utilisation in the green economy: using CO2 to manufacture fuel, chemicals and materials. Report no. 501, The Centre for Low Carbon Futures 2011 and CO2 Chem Publishing 2012, July 2011 Styring P, Jansen D, de Coninck H, Reith H, Armstrong K (2011) Carbon capture and utilisation in the green economy: using CO2 to manufacture fuel, chemicals and materials. Report no. 501, The Centre for Low Carbon Futures 2011 and CO2 Chem Publishing 2012, July 2011
go back to reference Suslick K, Flannigan J (2008) Inside a collapsing bubble: sonoluminesence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683CrossRef Suslick K, Flannigan J (2008) Inside a collapsing bubble: sonoluminesence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683CrossRef
go back to reference Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659. doi:10.1016/j.jbiosc.2013.05.035CrossRef Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659. doi:10.1016/j.jbiosc.2013.05.035CrossRef
go back to reference Tazuke S, Ozawa H (1975) Photofixation of carbon dioxide: formation of 9,10-dihydrophenanthrene-9,carboxylic acid from phenanthrene-amine-carbon dioxide systems. J Chem Soc Chem Commun 7:237–238CrossRef Tazuke S, Ozawa H (1975) Photofixation of carbon dioxide: formation of 9,10-dihydrophenanthrene-9,carboxylic acid from phenanthrene-amine-carbon dioxide systems. J Chem Soc Chem Commun 7:237–238CrossRef
go back to reference Tazuke S, Kazama S, Kitamura N (1986) Reductive photocarboxylation of aromatic hydrocarbons. J Org Chem 51:4548–4553CrossRef Tazuke S, Kazama S, Kitamura N (1986) Reductive photocarboxylation of aromatic hydrocarbons. J Org Chem 51:4548–4553CrossRef
go back to reference Teraoka F, Hamada Y, Takahashi J (2004) Bamboo charcoal inhibits growth of HeLa cells in vitro. Dent Mater J 23(4):633–637CrossRef Teraoka F, Hamada Y, Takahashi J (2004) Bamboo charcoal inhibits growth of HeLa cells in vitro. Dent Mater J 23(4):633–637CrossRef
go back to reference Uchimiya M, Lima IM, Klasson KT, Wartelle LH (2010) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80(8):935–940. doi:10.1016/j.chemosphere.2010.05.020CrossRef Uchimiya M, Lima IM, Klasson KT, Wartelle LH (2010) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80(8):935–940. doi:10.1016/j.chemosphere.2010.05.020CrossRef
go back to reference Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011a) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 82(10):1431–1437. doi:10.1016/j.chemosphere.2010.11.050CrossRef Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011a) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 82(10):1431–1437. doi:10.1016/j.chemosphere.2010.11.050CrossRef
go back to reference Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011b) Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms. Chemosphere 82(10):1438–1447. doi:10.1016/j.chemosphere.2010.11.078CrossRef Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011b) Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms. Chemosphere 82(10):1438–1447. doi:10.1016/j.chemosphere.2010.11.078CrossRef
go back to reference Udagawa Y, Nagasawa H (2000) Effects of far-infrared ray on reproduction, growth, behaviour and some physiological parameters in mice. In vivo 14(2):321–6 Udagawa Y, Nagasawa H (2000) Effects of far-infrared ray on reproduction, growth, behaviour and some physiological parameters in mice. In vivo 14(2):321–6
go back to reference U.S. DOE (2010) Biomass multi-year program plan (MYPP). Office of the biomass program. Energy Efficiency and Renewable Energy, U.S. Department of Energy U.S. DOE (2010) Biomass multi-year program plan (MYPP). Office of the biomass program. Energy Efficiency and Renewable Energy, U.S. Department of Energy
go back to reference Ussiri DAN, Lal R, Jarecki MK (2009) Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Tillage Res 104(2):247–255. doi:10.1016/j.still.2009.03.001CrossRef Ussiri DAN, Lal R, Jarecki MK (2009) Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Tillage Res 104(2):247–255. doi:10.1016/j.still.2009.03.001CrossRef
go back to reference Verheijen F, Jeffery S, Bastos A, Van der Velde M, Diafas I (2010) Biochar application to soils. Institute for Environment and Sustainability, Luxembourg Verheijen F, Jeffery S, Bastos A, Van der Velde M, Diafas I (2010) Biochar application to soils. Institute for Environment and Sustainability, Luxembourg
go back to reference Wall TF, Liu GS, Wu HW, Roberts DG, Benfell KE, Gupta S, Lucas JA, Harris DJ (2002) The effects of pressure on coal reactions during pulverized coal combustion and gasification. Progr Energ Combus 28:405–433CrossRef Wall TF, Liu GS, Wu HW, Roberts DG, Benfell KE, Gupta S, Lucas JA, Harris DJ (2002) The effects of pressure on coal reactions during pulverized coal combustion and gasification. Progr Energ Combus 28:405–433CrossRef
go back to reference Wang GW, Hu GZ, Kong Q, He HB, Xu L (2006) Research progress in properties of bamboo activated charcoal. J Bamboo Res 25(4):9–12 Wang GW, Hu GZ, Kong Q, He HB, Xu L (2006) Research progress in properties of bamboo activated charcoal. J Bamboo Res 25(4):9–12
go back to reference Warnock D, Lehmann J, Kuyper T, Rillig M (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and Soil 300(1–2):9–20. doi:10.1007/s11104-007-9391-5CrossRef Warnock D, Lehmann J, Kuyper T, Rillig M (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and Soil 300(1–2):9–20. doi:10.1007/s11104-007-9391-5CrossRef
go back to reference West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agr Ecosyst Environ 108(2):145–154. doi:10.1016/j.agee.2005.01.002CrossRef West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agr Ecosyst Environ 108(2):145–154. doi:10.1016/j.agee.2005.01.002CrossRef
go back to reference Xu T, Lou L, Luo L, Cao R, Duan D, Chen Y (2012) Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci Total Environ 414:727–731. doi:10.1016/j.scitotenv.2011.11.005CrossRef Xu T, Lou L, Luo L, Cao R, Duan D, Chen Y (2012) Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci Total Environ 414:727–731. doi:10.1016/j.scitotenv.2011.11.005CrossRef
go back to reference Yang Y, Sheng G (2003) Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol 37(16):3635–3639. doi:10.1021/es034006aCrossRef Yang Y, Sheng G (2003) Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol 37(16):3635–3639. doi:10.1021/es034006aCrossRef
go back to reference Yang Z-H, Xiong S, Wang B, Li Q, Yang W-C (2013) Cr(III) adsorption by sugarcane pulp residue and biochar. J Cent South Univ 20(5):1319–1325CrossRef Yang Z-H, Xiong S, Wang B, Li Q, Yang W-C (2013) Cr(III) adsorption by sugarcane pulp residue and biochar. J Cent South Univ 20(5):1319–1325CrossRef
go back to reference Yang Y, Lin X, Wei B, Zhao Y, Wang J (2014) Evaluation of adsorption potential of bamboo biochar for metal-complex dye: equilibrium, kinetics and artificial neural network modeling. Int J Environ Sci Technol 11(4):1093–1100CrossRef Yang Y, Lin X, Wei B, Zhao Y, Wang J (2014) Evaluation of adsorption potential of bamboo biochar for metal-complex dye: equilibrium, kinetics and artificial neural network modeling. Int J Environ Sci Technol 11(4):1093–1100CrossRef
go back to reference Yen TF, Erdman JG, Pollack SS (1961) Investigation of the structure of petroleum asphaltenes by X-ray diffraction. Anal Chem 33:1587–1594CrossRef Yen TF, Erdman JG, Pollack SS (1961) Investigation of the structure of petroleum asphaltenes by X-ray diffraction. Anal Chem 33:1587–1594CrossRef
go back to reference Yu XY, Ying GG, Kookana RS (2006) Sorption and desorption behaviors of diuron in soils amended with charcoal. J Agric Food Chem 54(22):8545–8550. doi:10.1021/jf061354yCrossRef Yu XY, Ying GG, Kookana RS (2006) Sorption and desorption behaviors of diuron in soils amended with charcoal. J Agric Food Chem 54(22):8545–8550. doi:10.1021/jf061354yCrossRef
go back to reference Yu X, Pan L, Ying G, Kookana RS (2010) Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J Environ Sci 22(4):615–620. doi:10.1016/S1001-0742(09)60153-4CrossRef Yu X, Pan L, Ying G, Kookana RS (2010) Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J Environ Sci 22(4):615–620. doi:10.1016/S1001-0742(09)60153-4CrossRef
go back to reference Zhang H, Tang Y, Liu X, Ke Z, Su X, Cai D, Yu Z (2011) Improved adsorptive capacity of pine wood decayed by fungi Poria cocos for removal of malachite green from aqueous solutions. Desalination 274(1–3):97–104CrossRef Zhang H, Tang Y, Liu X, Ke Z, Su X, Cai D, Yu Z (2011) Improved adsorptive capacity of pine wood decayed by fungi Poria cocos for removal of malachite green from aqueous solutions. Desalination 274(1–3):97–104CrossRef
go back to reference Zhao G, Mu X, Wen Z, Wang F, Gao P (2013a) Soil erosion, conservation, and eco-environment changes in the loess plateau Of China. Land Degrad Dev 24(5):499–510. doi:10.1002/ldr.2246 Zhao G, Mu X, Wen Z, Wang F, Gao P (2013a) Soil erosion, conservation, and eco-environment changes in the loess plateau Of China. Land Degrad Dev 24(5):499–510. doi:10.1002/ldr.2246
go back to reference Zhao L, Cao X, Mašek O, Zimmerman A (2013b) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256–257:1–9. doi:10.1016/j.jhazmat.2013.04.015 Zhao L, Cao X, Mašek O, Zimmerman A (2013b) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256–257:1–9. doi:10.1016/j.jhazmat.2013.04.015
Metadata
Title
Biochar from Biomass: A Strategy for Carbon Dioxide Sequestration, Soil Amendment, Power Generation, and CO2 Utilization
Authors
Vanisree Mulabagal
David A. Baah
Nosa O. Egiebor
Wei-Yin Chen
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-14409-2_80