Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 2/2013

01-06-2013 | Original Article

Biochemical and thermochemical conversion of wood to ethanol—simulation and analysis of different processes

Authors: Hannes Wagner, Martin Kaltschmitt

Published in: Biomass Conversion and Biorefinery | Issue 2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bioethanol as a transportation fuel offers various advantages. It can directly be used in existing transportation options and it can be produced by different conversion routes (i.e. thermochemical or biochemical processes) as well as from various types of feedstock (i.e. biomass containing sugar or starch, lignocellulosic biomass). Especially, the conversion of lignocellulosic biomass promises to improve the environmental performance, e.g. in terms of greenhouse gas emissions, and seems to have a better acceptance compared to sugar- or starch-based processes (i.e. food vs. fuel discussion). However, the process technology for the production of bioethanol from lignocellulosic biomass is still under development. Thus, within this paper, three basic process routes for ethanol from lignocelluloses are analysed from a systems point of view to allow for statements how the further technological development should be directed. For this reason, thermochemical gasification based on wood followed by alcohol synthesis and thermochemical gasification followed by syngas fermentation is compared to a process based on saccharification and subsequent fermentation. This analysis shows that ethanol yields exceeding the theoretical potential based on glucose cannot be reached with the analysed processes. Nevertheless, gasification with syngas fermentation and mixed alcohol synthesis is promising regarding alcohol yields as well as overall energy efficiencies, also compared to other options for liquid biofuels like Fischer–Tropsch diesel or methanol.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schubert R et al (2008) Future bioenergy and sustainable land use. German Advisory Council on Global Change (WBGU), Berlin, ISBN 978-3-936191-24-0 Schubert R et al (2008) Future bioenergy and sustainable land use. German Advisory Council on Global Change (WBGU), Berlin, ISBN 978-3-936191-24-0
2.
go back to reference Wei L et al (2009) Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysis. Biomass Bioenergy 33:255–266CrossRef Wei L et al (2009) Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysis. Biomass Bioenergy 33:255–266CrossRef
3.
go back to reference Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002CrossRef Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002CrossRef
4.
go back to reference Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef
5.
go back to reference Linde M et al (2008) Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 32:326–332MathSciNetCrossRef Linde M et al (2008) Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 32:326–332MathSciNetCrossRef
6.
go back to reference Mosier N et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier N et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
7.
go back to reference Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762CrossRef Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762CrossRef
8.
go back to reference Wooley R et al (1999) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. National Renewable Energy Laboratory, Golden, NREL/TP-580-26157CrossRef Wooley R et al (1999) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. National Renewable Energy Laboratory, Golden, NREL/TP-580-26157CrossRef
9.
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
10.
go back to reference Tucker MP et al (1998) Comparison of yellow poplar pretreatment between NREL digester and sunds hydrolyser. Appl Biochem Biotechnol 70:25–35CrossRef Tucker MP et al (1998) Comparison of yellow poplar pretreatment between NREL digester and sunds hydrolyser. Appl Biochem Biotechnol 70:25–35CrossRef
11.
go back to reference Phillips A et al (2007) Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. National Renewable Energy Laboratory, Golden, NREL/TP-510-41168CrossRef Phillips A et al (2007) Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. National Renewable Energy Laboratory, Golden, NREL/TP-510-41168CrossRef
12.
go back to reference Larson ED (2006) A cost–benefit assessment of gasification-based biorefining in the kraft pulp and paper industry: volume 2 detailed biorefinery design and performance simulation. Princeton University, Princeton Larson ED (2006) A cost–benefit assessment of gasification-based biorefining in the kraft pulp and paper industry: volume 2 detailed biorefinery design and performance simulation. Princeton University, Princeton
13.
go back to reference Hofbauer H et al (1997) The FICFB—gasification process. In: Bridgewater AV, Boocock D (eds) Developments in thermochemical biomass conversion, vol 2. Blackie Academic, Glasgow, pp 1016–1025 Hofbauer H et al (1997) The FICFB—gasification process. In: Bridgewater AV, Boocock D (eds) Developments in thermochemical biomass conversion, vol 2. Blackie Academic, Glasgow, pp 1016–1025
14.
go back to reference Hamelink CN, Faaji APC (2001) Future prospects for production of methanol and hydrogen from biomass. Utrecht University, Utrecht, ISBN 90-73958-84-9 Hamelink CN, Faaji APC (2001) Future prospects for production of methanol and hydrogen from biomass. Utrecht University, Utrecht, ISBN 90-73958-84-9
15.
go back to reference Christensen JM et al (2009) Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt–molybdenum sulfide. Appl Catal 366:29–43CrossRef Christensen JM et al (2009) Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt–molybdenum sulfide. Appl Catal 366:29–43CrossRef
16.
go back to reference Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory, Golden, NREL/TP-510-34929CrossRef Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory, Golden, NREL/TP-510-34929CrossRef
17.
go back to reference Gerber MA et al (2007) Mixed alcohol synthesis catalyst screening. Pacific Northwest National Laboratory, Richland, PNNL-17074 Gerber MA et al (2007) Mixed alcohol synthesis catalyst screening. Pacific Northwest National Laboratory, Richland, PNNL-17074
18.
go back to reference Fang K et al (2009) A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catal Today 147:133–138CrossRef Fang K et al (2009) A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catal Today 147:133–138CrossRef
19.
go back to reference Gunturu AK et al (1998) A kinetic model for the synthesis of high-molecular-weight alcohols over a sulfided Co-K-Mo/C catalyst. Ind Eng Chem Res 37:2107–2115CrossRef Gunturu AK et al (1998) A kinetic model for the synthesis of high-molecular-weight alcohols over a sulfided Co-K-Mo/C catalyst. Ind Eng Chem Res 37:2107–2115CrossRef
20.
go back to reference Munasinghe PC, Khanal SK (2010) Biomass derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022CrossRef Munasinghe PC, Khanal SK (2010) Biomass derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022CrossRef
21.
go back to reference Slivka RM et al (2011) Gasification and synthesis gas fermentation: an alternative route to biofuel production. Biofuels 2:405–419CrossRef Slivka RM et al (2011) Gasification and synthesis gas fermentation: an alternative route to biofuel production. Biofuels 2:405–419CrossRef
22.
go back to reference Ahmed A (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7. Biomass Bioenergy 30:665–672CrossRef Ahmed A (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7. Biomass Bioenergy 30:665–672CrossRef
23.
go back to reference Ahmed A (2006) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97:1080–1086CrossRef Ahmed A (2006) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97:1080–1086CrossRef
24.
go back to reference Klasson KT et al (1993) Biological conversion of coal and coal-derived gas. Fuel 72:1673–1678CrossRef Klasson KT et al (1993) Biological conversion of coal and coal-derived gas. Fuel 72:1673–1678CrossRef
25.
go back to reference Datar RP (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86:587–594CrossRef Datar RP (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86:587–594CrossRef
26.
go back to reference Aurora D et al (1997) Production of ethanol from refinery waste gases. Bioengineering Resources, Inc., Fayetteville, DOE/AL/98770-2 Aurora D et al (1997) Production of ethanol from refinery waste gases. Bioengineering Resources, Inc., Fayetteville, DOE/AL/98770-2
27.
go back to reference Bredwell MD et al (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15:834–844CrossRef Bredwell MD et al (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15:834–844CrossRef
28.
go back to reference Aspen Plus. V7.1 (23.0.4507). Aspen Technology, Inc, Burlington, Massachusetts Aspen Plus. V7.1 (23.0.4507). Aspen Technology, Inc, Burlington, Massachusetts
29.
go back to reference Kemp IC (2007) Pinch analysis and process integration—a user guide on process integration for the efficient use of energy. Elsevier/Butterworth-Heinemann, Amsterdam Kemp IC (2007) Pinch analysis and process integration—a user guide on process integration for the efficient use of energy. Elsevier/Butterworth-Heinemann, Amsterdam
30.
go back to reference Müller-Langer F (2011) Analyse und Bewertung ausgewählter zukünftiger Biokraftstoffoptionen auf der Basis fester Biomasse. Diss, Leipzig Müller-Langer F (2011) Analyse und Bewertung ausgewählter zukünftiger Biokraftstoffoptionen auf der Basis fester Biomasse. Diss, Leipzig
31.
go back to reference Humbird D et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol—dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Laboratory, Golden, NREL/TP-5100-47764CrossRef Humbird D et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol—dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Laboratory, Golden, NREL/TP-5100-47764CrossRef
32.
go back to reference Aden A et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory, GoldenCrossRef Aden A et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory, GoldenCrossRef
33.
go back to reference Kerdoncuff P (2008) Modellierung und Bewertung von Prozessketten zur Herstellung von Biokraftstoffen der zweiten Generation. Diss, Karlsruhe Kerdoncuff P (2008) Modellierung und Bewertung von Prozessketten zur Herstellung von Biokraftstoffen der zweiten Generation. Diss, Karlsruhe
34.
go back to reference Hamelink CN (2004) Outlook for advanced biofuels. Diss, Utrecht. ISBN: 90-393 Hamelink CN (2004) Outlook for advanced biofuels. Diss, Utrecht. ISBN: 90-393
35.
go back to reference Bain RL (1992) Material and energy balances for methanol from biomass using biomass gasifiers. National Renewable Energy Laboratory, GoldenCrossRef Bain RL (1992) Material and energy balances for methanol from biomass using biomass gasifiers. National Renewable Energy Laboratory, GoldenCrossRef
36.
go back to reference Hofbauer H et al. (2009) Technische, ökonomische und ökologische Bewertung verschiedener Wege der energetischen und stofflichen Verwertung von Synthesegas aus der Biomassevergasung. Bundesministerium für Verkehr, Innovation und Technologie, Wien Hofbauer H et al. (2009) Technische, ökonomische und ökologische Bewertung verschiedener Wege der energetischen und stofflichen Verwertung von Synthesegas aus der Biomassevergasung. Bundesministerium für Verkehr, Innovation und Technologie, Wien
Metadata
Title
Biochemical and thermochemical conversion of wood to ethanol—simulation and analysis of different processes
Authors
Hannes Wagner
Martin Kaltschmitt
Publication date
01-06-2013
Publisher
Springer-Verlag
Published in
Biomass Conversion and Biorefinery / Issue 2/2013
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-012-0064-0

Other articles of this Issue 2/2013

Biomass Conversion and Biorefinery 2/2013 Go to the issue