Skip to main content
Top

2017 | OriginalPaper | Chapter

Biochemical Conversion of Biomass to Fuels

Authors : Swetha Mahalaxmi, Clint Williford

Published in: Handbook of Climate Change Mitigation and Adaptation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomass can provide both hydrocarbon fuels and chemical compounds such as alcohols, gums, sugars, lipid-based products, etc. Biomass-derived fuels have acquired a lot of attention during recent years because of the abundance of supply of resources and lower green house gas emissions. Grasses, agricultural residues, animal residues and waste, used oils, etc., can be used as starting materials in the production of biofuels. Ethanol and biodiesel have found greatest application and contribute significantly to fuels. However, there is growing interest in other alternatives: hydrogen, methane, butanol, renewable diesel, and petroleum compatible fuels from advanced catalytic biotech processes. Characteristics of various feedstocks and fuels, processes for conversion of biomass to biofuels, the physical, chemical factors, and limitations affecting the conversion of biomass to fuels are discussed in this chapter. Process parameters include pH, temperature, and residence time. Additionally, chemical parameters include carbon source, nutrients, acid and alkaline hydrolysis agents, and phenolic inhibitors and sugars generated within the process. Several limitations to bioconversion of biomass are described such as size reduction, crystallinity, byproduct inhibition to fermentation, deactivation of cellulases, ethanol tolerance by yeast, and cofermentation of various sugars. Recent innovations and future developments in recombinant DNA technology and protein engineering are aimed at overcoming limitations to bioconversion. Understanding the limitations and applying suitable biotechnological applications will support future developments for producing biofuels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Åhman M (2010) Biomethane in the transport sector-an appraisal of the forgotten option. Energy Policy 1:208–217CrossRef Åhman M (2010) Biomethane in the transport sector-an appraisal of the forgotten option. Energy Policy 1:208–217CrossRef
go back to reference Alizadeh H, Teymouri F, Gilbert T et al (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 1:1133–1141CrossRef Alizadeh H, Teymouri F, Gilbert T et al (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 1:1133–1141CrossRef
go back to reference Almeida JRM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 4:340–349CrossRef Almeida JRM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 4:340–349CrossRef
go back to reference Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 13:4851–4861CrossRef Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 13:4851–4861CrossRef
go back to reference Alzate-Gaviria LM, Sebastian PJ, Pérez-Hernández A et al (2007) Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrog Energy 15:3141–3146CrossRef Alzate-Gaviria LM, Sebastian PJ, Pérez-Hernández A et al (2007) Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrog Energy 15:3141–3146CrossRef
go back to reference Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Biorefin 1:57–66CrossRef Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Biorefin 1:57–66CrossRef
go back to reference Al-Zuhair S, Hasan M, Ramachandran KB (2003) Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochem 8:1155–1163CrossRef Al-Zuhair S, Hasan M, Ramachandran KB (2003) Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochem 8:1155–1163CrossRef
go back to reference Aminifarshidmehr N (1996) The management of chronic suppurative otitis media with acid media solution. Otol Neurotol 1:24–25 Aminifarshidmehr N (1996) The management of chronic suppurative otitis media with acid media solution. Otol Neurotol 1:24–25
go back to reference Anand RC, Singh R (1993) A simple technique, charcoal coating around the digester, improves biogas production in winter. Bioresour Technol 2:151–152CrossRef Anand RC, Singh R (1993) A simple technique, charcoal coating around the digester, improves biogas production in winter. Bioresour Technol 2:151–152CrossRef
go back to reference Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 5:414–419CrossRef Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 5:414–419CrossRef
go back to reference Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 4:421–433CrossRef Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 4:421–433CrossRef
go back to reference Balat M (2007) Global bio-fuel processing and production trends. Energy Explor Exploit 3:195–218CrossRef Balat M (2007) Global bio-fuel processing and production trends. Energy Explor Exploit 3:195–218CrossRef
go back to reference Banerjee S, Mudliar S, Sen R et al (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin 1:77–93CrossRef Banerjee S, Mudliar S, Sen R et al (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin 1:77–93CrossRef
go back to reference Bansal NK (1988) A techno-economic assessment of solar assisted biogas systems. Energy Sources 4:213–229CrossRef Bansal NK (1988) A techno-economic assessment of solar assisted biogas systems. Energy Sources 4:213–229CrossRef
go back to reference Basu HN, Norris ME (1996) Process for production of esters for use as a diesel fuel substitute using a non-alkaline catalyst. US Patent 5,525,126 Basu HN, Norris ME (1996) Process for production of esters for use as a diesel fuel substitute using a non-alkaline catalyst. US Patent 5,525,126
go back to reference Benjamin MM, Woods SL, Ferguson JF (1984) Anaerobic toxicity and biodegradability of pulp mill waste constituents. Water Res 5:601–607CrossRef Benjamin MM, Woods SL, Ferguson JF (1984) Anaerobic toxicity and biodegradability of pulp mill waste constituents. Water Res 5:601–607CrossRef
go back to reference Bobleter O (1994a) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 5:797–841CrossRef Bobleter O (1994a) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 5:797–841CrossRef
go back to reference Bobleter O (1994b) Hydrothermal degradation of polymers derived from plants. Elsevier, Kidlington Bobleter O (1994b) Hydrothermal degradation of polymers derived from plants. Elsevier, Kidlington
go back to reference Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 6:792–801CrossRef Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 6:792–801CrossRef
go back to reference Carvalheiro F, Duarte LC et al (2008) Hemicellulose biorefineries: a review on biomass pretreatments. National Institute of Science Communication and Information Resources, New Delhi Carvalheiro F, Duarte LC et al (2008) Hemicellulose biorefineries: a review on biomass pretreatments. National Institute of Science Communication and Information Resources, New Delhi
go back to reference Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 1:5–37CrossRef Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 1:5–37CrossRef
go back to reference Chisti Y (1996) Biotechnology advances. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC Chisti Y (1996) Biotechnology advances. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC
go back to reference Delgenes JP, Penaud V, Moletta R (2003) Pretreatments for the enhancement of anaerobic digestion of solid wastes. ChemInform 34(13). doi:10.1002/chin.200313271 Delgenes JP, Penaud V, Moletta R (2003) Pretreatments for the enhancement of anaerobic digestion of solid wastes. ChemInform 34(13). doi:10.1002/chin.200313271
go back to reference Dodic S, Popov S, Dodic J et al (2009) Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenergy 5:822–827CrossRef Dodic S, Popov S, Dodic J et al (2009) Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenergy 5:822–827CrossRef
go back to reference Du W, Xu Y, Liu D et al (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 3–4:125–129CrossRef Du W, Xu Y, Liu D et al (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 3–4:125–129CrossRef
go back to reference Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 12:1525–1534CrossRef Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 12:1525–1534CrossRef
go back to reference Dürre P (2008) Fermentative butanol production. Ann N Y Acad Sci 1:353–362CrossRef Dürre P (2008) Fermentative butanol production. Ann N Y Acad Sci 1:353–362CrossRef
go back to reference Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 18:2019–2025CrossRef Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 18:2019–2025CrossRef
go back to reference Feldman D (1985) Wood-chemistry, ultrastructure, reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM. J Polym Sci 11:601–602 Feldman D (1985) Wood-chemistry, ultrastructure, reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM. J Polym Sci 11:601–602
go back to reference Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 5:1298–1315CrossRef Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 5:1298–1315CrossRef
go back to reference García V, Päkkilä J, Ojamo H et al (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sust Energy Rev 2:964–980CrossRef García V, Päkkilä J, Ojamo H et al (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sust Energy Rev 2:964–980CrossRef
go back to reference Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 3:191–202CrossRef Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 3:191–202CrossRef
go back to reference Gogerty DS, Bobik TA (2010) Formation of isobutene from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase. Appl Environ Microbiol 76(24):8004–8010CrossRef Gogerty DS, Bobik TA (2010) Formation of isobutene from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase. Appl Environ Microbiol 76(24):8004–8010CrossRef
go back to reference Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 6:2086–2097CrossRef Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 6:2086–2097CrossRef
go back to reference Gregg D, Saddler J (1996) A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol 1:711–727CrossRef Gregg D, Saddler J (1996) A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol 1:711–727CrossRef
go back to reference Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 5:287–297CrossRef Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 5:287–297CrossRef
go back to reference Hartmann H, Ahring BK (2000) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci Technol 3:145–153 Hartmann H, Ahring BK (2000) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci Technol 3:145–153
go back to reference Helwani Z, Othman MR, Aziz N et al (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 12:1502–1514CrossRef Helwani Z, Othman MR, Aziz N et al (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 12:1502–1514CrossRef
go back to reference Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 1:10–18CrossRef Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 1:10–18CrossRef
go back to reference Huo Y-X, Cho KM, Lafontaine Rivera JG, Monte E, Shen CR, Yan Y, Liao JC (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29:346–351CrossRef Huo Y-X, Cho KM, Lafontaine Rivera JG, Monte E, Shen CR, Yan Y, Liao JC (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29:346–351CrossRef
go back to reference Jansson C, Wullschleger SD, Kalluri UC et al (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 9:685–696CrossRef Jansson C, Wullschleger SD, Kalluri UC et al (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 9:685–696CrossRef
go back to reference Jung K-W, Kim D-H, Shin H-S (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 3:2745–2750CrossRef Jung K-W, Kim D-H, Shin H-S (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 3:2745–2750CrossRef
go back to reference Kalia AK, Singh SP (1998) Horse dung as a partial substitute for cattle dung for operating family-size biogas plants in a hilly region. Bioresour Technol 1:63–66CrossRef Kalia AK, Singh SP (1998) Horse dung as a partial substitute for cattle dung for operating family-size biogas plants in a hilly region. Bioresour Technol 1:63–66CrossRef
go back to reference Kaparaju P, Serrano M, Thomsen AB et al (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 9:2562–2568CrossRef Kaparaju P, Serrano M, Thomsen AB et al (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 9:2562–2568CrossRef
go back to reference Kassim EA, El-Shahed AS (1986) Enzymatic and chemical hydrolysis of certain cellulosic materials. Agric Waste 3:229–233CrossRef Kassim EA, El-Shahed AS (1986) Enzymatic and chemical hydrolysis of certain cellulosic materials. Agric Waste 3:229–233CrossRef
go back to reference Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70°C) by mixed culture fermentation. Water Res 5:1414–1424CrossRef Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70°C) by mixed culture fermentation. Water Res 5:1414–1424CrossRef
go back to reference Kongjan P, O-Thong S, Kotay M et al (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 5:899–908 Kongjan P, O-Thong S, Kotay M et al (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 5:899–908
go back to reference Koskinen PEP, Lay C-H, Puhakka JA et al (2008) High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Biotechnol Bioeng 4:665–678CrossRef Koskinen PEP, Lay C-H, Puhakka JA et al (2008) High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Biotechnol Bioeng 4:665–678CrossRef
go back to reference Koutrouli EC, Kalfas H, Gavala HN et al (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 15:3718–3723CrossRef Koutrouli EC, Kalfas H, Gavala HN et al (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 15:3718–3723CrossRef
go back to reference Kumar R, Singh S, Singh O (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 5:377–391CrossRef Kumar R, Singh S, Singh O (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 5:377–391CrossRef
go back to reference Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 8:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 8:3713–3729CrossRef
go back to reference Laser M, Schulman D, Allen SG et al (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 1:33–44CrossRef Laser M, Schulman D, Allen SG et al (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 1:33–44CrossRef
go back to reference Lee SK, Chou H, Ham TS et al (2008a) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 6:556–563CrossRef Lee SK, Chou H, Ham TS et al (2008a) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 6:556–563CrossRef
go back to reference Lee J-W, Koo B-W, Choi J-W et al (2008b) Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour Technol 8:2736–2741CrossRef Lee J-W, Koo B-W, Choi J-W et al (2008b) Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour Technol 8:2736–2741CrossRef
go back to reference Lee SY, Park JH, Jang SH et al (2008c) Fermentative butanol production by Clostridia. Biotechnol Bioeng 2:209–228CrossRef Lee SY, Park JH, Jang SH et al (2008c) Fermentative butanol production by Clostridia. Biotechnol Bioeng 2:209–228CrossRef
go back to reference Lee H, Choi S (2015) An origami paper-based bacteria-powered battery. Nano Energy 15:549–557CrossRef Lee H, Choi S (2015) An origami paper-based bacteria-powered battery. Nano Energy 15:549–557CrossRef
go back to reference Liu L, Sun J, Li M et al (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 23:5853–5858CrossRef Liu L, Sun J, Li M et al (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 23:5853–5858CrossRef
go back to reference Mabee WE, Saddler JN (2009) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 13:4806–4813 Mabee WE, Saddler JN (2009) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 13:4806–4813
go back to reference Maeda RN, Serpa VI, Rocha VAL et al (2011) Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 5:1196–1201CrossRef Maeda RN, Serpa VI, Rocha VAL et al (2011) Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 5:1196–1201CrossRef
go back to reference Mahalaxmi S, Jackson C, Williford C et al (2010) Estimation of treatment time for microbial preprocessing of biomass. Appl Biochem Biotechnol 5:1414–1422CrossRef Mahalaxmi S, Jackson C, Williford C et al (2010) Estimation of treatment time for microbial preprocessing of biomass. Appl Biochem Biotechnol 5:1414–1422CrossRef
go back to reference McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 1:37–46CrossRef McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 1:37–46CrossRef
go back to reference Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 6:841–846CrossRef Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 6:841–846CrossRef
go back to reference Miao Z, Grift TE, Hansen AC et al (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crop Prod 2:504–513CrossRef Miao Z, Grift TE, Hansen AC et al (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crop Prod 2:504–513CrossRef
go back to reference Mohagheghi A, Evans K, Chou Y-C et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 1:885–898CrossRef Mohagheghi A, Evans K, Chou Y-C et al (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 1:885–898CrossRef
go back to reference Mohanty SK, Behera S, Swain MR et al (2009) Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Appl Energy 5:640–644CrossRef Mohanty SK, Behera S, Swain MR et al (2009) Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Appl Energy 5:640–644CrossRef
go back to reference Mosier N, Hendrickson R, Ho N et al (2005a) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 18:1986–1993CrossRef Mosier N, Hendrickson R, Ho N et al (2005a) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 18:1986–1993CrossRef
go back to reference Mosier N, Wyman C, Dale B et al (2005b) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 6:673–686CrossRef Mosier N, Wyman C, Dale B et al (2005b) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 6:673–686CrossRef
go back to reference Murphy JD, McCarthy K (2005) The optimal production of biogas for use as a transport fuel in Ireland. Renew Energy 14:2111–2127CrossRef Murphy JD, McCarthy K (2005) The optimal production of biogas for use as a transport fuel in Ireland. Renew Energy 14:2111–2127CrossRef
go back to reference Nelson DL, Cox MM (2008) Lehninger principles of biochemistry. W. H Freeman, New York Nelson DL, Cox MM (2008) Lehninger principles of biochemistry. W. H Freeman, New York
go back to reference Oliva J, Sáez F, Ballesteros I et al (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 1:141–153CrossRef Oliva J, Sáez F, Ballesteros I et al (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 1:141–153CrossRef
go back to reference Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 1:17–24CrossRef Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 1:17–24CrossRef
go back to reference Pan X, Xie D, Gilkes N et al (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 1:1069–1079CrossRef Pan X, Xie D, Gilkes N et al (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 1:1069–1079CrossRef
go back to reference Panalotov I, Verger R (2000) Enzymatic reactions at interfaces: interfacial and temporal organization of enzymatic hydrolysis. In: Baszkin A, Norde W (eds) Physical chemistry of biological interfaces. Marcel Dekker, New York Panalotov I, Verger R (2000) Enzymatic reactions at interfaces: interfacial and temporal organization of enzymatic hydrolysis. In: Baszkin A, Norde W (eds) Physical chemistry of biological interfaces. Marcel Dekker, New York
go back to reference Park MJ, Jo JH, Park D et al (2010) Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int J Hydrog Energy 12:6194–6202CrossRef Park MJ, Jo JH, Park D et al (2010) Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int J Hydrog Energy 12:6194–6202CrossRef
go back to reference Pattra S, Sangyoka S, Boonmee M et al (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrog Energy 19:5256–5265CrossRef Pattra S, Sangyoka S, Boonmee M et al (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrog Energy 19:5256–5265CrossRef
go back to reference Pavlostathis SG, Gossett JM (1985) Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol Bioeng 3:334–344CrossRef Pavlostathis SG, Gossett JM (1985) Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol Bioeng 3:334–344CrossRef
go back to reference Power NM, Murphy JD (2009) Which is the preferable transport fuel on a greenhouse gas basis; biomethane or ethanol? Biomass Bioenergy 10:1403–1412CrossRef Power NM, Murphy JD (2009) Which is the preferable transport fuel on a greenhouse gas basis; biomethane or ethanol? Biomass Bioenergy 10:1403–1412CrossRef
go back to reference Prakasham RS, Brahmaiah P, Sathish T et al (2009) Fermentative biohydrogen production by mixed anaerobic consortia: impact of glucose to xylose ratio. Int J Hydrog Energy 23:9354–9361CrossRef Prakasham RS, Brahmaiah P, Sathish T et al (2009) Fermentative biohydrogen production by mixed anaerobic consortia: impact of glucose to xylose ratio. Int J Hydrog Energy 23:9354–9361CrossRef
go back to reference Qureshi N, Meagher MM, Hutkins RW (1999) Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane. J Membr Sci 1–2:115–125CrossRef Qureshi N, Meagher MM, Hutkins RW (1999) Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane. J Membr Sci 1–2:115–125CrossRef
go back to reference Rastogi S, Dwivedi UN (2008) Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci 3:264–277CrossRef Rastogi S, Dwivedi UN (2008) Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci 3:264–277CrossRef
go back to reference Rupar K, Sanati M (2005) The release of terpenes during storage of biomass. Biomass Bioenergy 1:29–34CrossRef Rupar K, Sanati M (2005) The release of terpenes during storage of biomass. Biomass Bioenergy 1:29–34CrossRef
go back to reference Ryu WH, Bai S-J, Park JS, Huang Z, Moseley J, Fabian T, Fasching RJ, Grossman AR, Prinz FB (2010) Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system. Nano Lett 10(4):1137–1143CrossRef Ryu WH, Bai S-J, Park JS, Huang Z, Moseley J, Fabian T, Fasching RJ, Grossman AR, Prinz FB (2010) Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system. Nano Lett 10(4):1137–1143CrossRef
go back to reference Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. American Chemical Society, Washington, DCCrossRef Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. American Chemical Society, Washington, DCCrossRef
go back to reference Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 13:5270–5295CrossRef Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 13:5270–5295CrossRef
go back to reference Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9(1):199–210 Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9(1):199–210
go back to reference Seiffert M, Kaltschmitt M, Miranda JA (2009) The biomethane potential in Chile. Biomass Bioenergy 4:564–572CrossRef Seiffert M, Kaltschmitt M, Miranda JA (2009) The biomethane potential in Chile. Biomass Bioenergy 4:564–572CrossRef
go back to reference Shi Y, Zhao X-T, Cao P et al (2009) Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Biotechnol Lett 9:1327–1333CrossRef Shi Y, Zhao X-T, Cao P et al (2009) Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Biotechnol Lett 9:1327–1333CrossRef
go back to reference Shuler ML, Kargi F (2008) Bioprocess engineering basic concepts. Prentice Hall International Series, New York Shuler ML, Kargi F (2008) Bioprocess engineering basic concepts. Prentice Hall International Series, New York
go back to reference Silverstein RA, Chen Y, Sharma-Shivappa RR et al (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 16:3000–3011CrossRef Silverstein RA, Chen Y, Sharma-Shivappa RR et al (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 16:3000–3011CrossRef
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 1:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 1:1–11CrossRef
go back to reference Taherzadeh M, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRef Taherzadeh M, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRef
go back to reference Tengborg C, Stenberg K, Galbe M et al (1998) Comparison of SO2and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Appl Biochem Biotechnol 1:3–15CrossRef Tengborg C, Stenberg K, Galbe M et al (1998) Comparison of SO2and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Appl Biochem Biotechnol 1:3–15CrossRef
go back to reference Tran NH, Bartlett JR, Kannangara GSK et al (2010) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 2:265–274CrossRef Tran NH, Bartlett JR, Kannangara GSK et al (2010) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 2:265–274CrossRef
go back to reference Venturi P, Gigler JK, Huisman W (1999) Economical and technical comparison between herbaceous (Miscanthus × giganteus) and woody energy crops (Salix viminalis). Renew Energy 1–4:1023–1026CrossRef Venturi P, Gigler JK, Huisman W (1999) Economical and technical comparison between herbaceous (Miscanthus × giganteus) and woody energy crops (Salix viminalis). Renew Energy 1–4:1023–1026CrossRef
go back to reference Wallecha A, Mishra S (2003) Purification and characterization of two [beta]-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim Biophys Acta 1649(1):74–84CrossRef Wallecha A, Mishra S (2003) Purification and characterization of two [beta]-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim Biophys Acta 1649(1):74–84CrossRef
go back to reference Watanabe Y, Shimada Y, Sugihara A et al (2002) Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B Enzym 3–5:151–155CrossRef Watanabe Y, Shimada Y, Sugihara A et al (2002) Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B Enzym 3–5:151–155CrossRef
go back to reference Wukovits W, Schnitzhofer W et al (2009) Fuels – hydrogen production, biomass: fermentation. In: Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B, Garche J (eds) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam Wukovits W, Schnitzhofer W et al (2009) Fuels – hydrogen production, biomass: fermentation. In: Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B, Garche J (eds) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam
go back to reference Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 18:1959–1966CrossRef Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 18:1959–1966CrossRef
go back to reference Xiao W, Clarkson WW (1997) Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 1:61–66CrossRef Xiao W, Clarkson WW (1997) Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 1:61–66CrossRef
go back to reference Xu Z, Wang Q, Jiang Z et al (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy 2–3:162–167CrossRef Xu Z, Wang Q, Jiang Z et al (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy 2–3:162–167CrossRef
go back to reference Yadvika S, Sreekrishnan TR et al (2004) Enhancement of biogas production from solid substrates using different techniques-a review. Bioresour Technol 1:1–10CrossRef Yadvika S, Sreekrishnan TR et al (2004) Enhancement of biogas production from solid substrates using different techniques-a review. Bioresour Technol 1:1–10CrossRef
go back to reference Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 1:26–40CrossRef Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 1:26–40CrossRef
go back to reference Yang Z, Guo R, Xu X et al (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrog Energy 18:9618–9623CrossRef Yang Z, Guo R, Xu X et al (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrog Energy 18:9618–9623CrossRef
go back to reference Zhu H, Stadnyk A, Béland M et al (2008) Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresour Technol 11:5078–5084CrossRef Zhu H, Stadnyk A, Béland M et al (2008) Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresour Technol 11:5078–5084CrossRef
Metadata
Title
Biochemical Conversion of Biomass to Fuels
Authors
Swetha Mahalaxmi
Clint Williford
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-14409-2_26