Skip to main content
Top

2019 | OriginalPaper | Chapter

48. Biodegradable Hydrogels for Controlled Drug Delivery

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrogels are three-dimensional cross-linked polymeric networks that can imbibe large amount of water or biological fluids. The ability of hydrogel to absorb water appears due to the presence of hydrophilic groups such as –OH, –CONH, –CONH2, –COOH, and –SO3H, along the polymer chain. Depending on the pendant functional groups, hydrogels have the ability to respond to their environmental changes such as pH, ionic strength, or temperature. The high water content and soft texture of these hydrogels translate them into a biocompatible material. This property renders the hydrogel similar to biological tissues and consequently minimizes inflammation once implanted or injected in the body. Biodegradable hydrogels are further adding advantages of degradation of the matrix into innocuous biocompatible products that can be eliminated after serving, thus eliminating the necessity of their removal. The degree of biodegradation can be controlled by manipulating the cross-linking with suitable precursors. Their mechanical property can also be tailored to have structural stability followed by extended release of cargo molecules. Their flexibility and minimally invasive administration are useful characteristics for their increased application in biomedical fields. Biodegradable hydrogels as controlled release systems are investigated to improve the temporal and spatial presentation of drug in the body, to protect drug from physiological degradation or elimination and to improve patient compliance. Hence the author has made an attempt to discuss biodegradable polymers of natural and synthetic origin, the biodegradation mechanisms, hydrogel engineering strategies, drug-hydrogel interactions, and release kinetics and mechanisms of such hydrogels to attain controlled delivery of drugs to different site of action in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Prashant PK, Vivek BR, Deepashree ND, Pranav PP (2012) Hydrogels as a drug delivery system and applications: a review. Int J Pharm Pharm Sci 4(1):1–7 Prashant PK, Vivek BR, Deepashree ND, Pranav PP (2012) Hydrogels as a drug delivery system and applications: a review. Int J Pharm Pharm Sci 4(1):1–7
2.
go back to reference Das N, Bera T, Mukherjee A (2012) Biomaterial hydrogels for different biomedical applications. Int J Pharm Bio Sci 3:586–595 Das N, Bera T, Mukherjee A (2012) Biomaterial hydrogels for different biomedical applications. Int J Pharm Bio Sci 3:586–595
3.
go back to reference De SK, Aluru N, Johnson B, Crone W, Beebe DJ, Moore J (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 11:544–555CrossRef De SK, Aluru N, Johnson B, Crone W, Beebe DJ, Moore J (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 11:544–555CrossRef
4.
go back to reference Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46PubMedCrossRef Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46PubMedCrossRef
5.
go back to reference Grassi M, Sandolo C, Perin D, Coviello T, Lapasin R, Grassi G (2009) Structural characterization of calcium alginate matrices by means of mechanical and release tests. Molecules 14:3003–3017PubMedPubMedCentralCrossRef Grassi M, Sandolo C, Perin D, Coviello T, Lapasin R, Grassi G (2009) Structural characterization of calcium alginate matrices by means of mechanical and release tests. Molecules 14:3003–3017PubMedPubMedCentralCrossRef
6.
go back to reference Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–457PubMedCrossRef Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–457PubMedCrossRef
7.
go back to reference Huaping T, Kacey GM (2010) Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3:1746–1767CrossRef Huaping T, Kacey GM (2010) Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3:1746–1767CrossRef
8.
go back to reference Jay RJ, Ronak PP (2012) Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res 4:74–81 Jay RJ, Ronak PP (2012) Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res 4:74–81
9.
go back to reference Xiong XY, Tam KC, Gan LH (2006) Polymeric nanostructures for drug delivery applications based on pluronic copolymer systems. J Nanosci Nanotechnol 6(9–10):2638–2650PubMedCrossRef Xiong XY, Tam KC, Gan LH (2006) Polymeric nanostructures for drug delivery applications based on pluronic copolymer systems. J Nanosci Nanotechnol 6(9–10):2638–2650PubMedCrossRef
10.
go back to reference Chen PC, Kohane DS, Park YJ, Bartlett RH, Langer R, Yang VC (2004) Injectable microparticle-gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects. J Biomed Mater Res A 70(3):459–466PubMedCrossRef Chen PC, Kohane DS, Park YJ, Bartlett RH, Langer R, Yang VC (2004) Injectable microparticle-gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects. J Biomed Mater Res A 70(3):459–466PubMedCrossRef
11.
go back to reference Sosnik A, Cohn D (2004) Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers. Biomaterials 25(14):2851–2588PubMedCrossRef Sosnik A, Cohn D (2004) Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers. Biomaterials 25(14):2851–2588PubMedCrossRef
12.
go back to reference Cho KY, Chung TW, Kim BC, Kim MK, Lee JH, Wee WR, Cho CS (2003) Release of ciprofloxacin from poloxamer-graft-hyaluronic acid hydrogels in vitro. Int J Pharm 260(1):83–91PubMedCrossRef Cho KY, Chung TW, Kim BC, Kim MK, Lee JH, Wee WR, Cho CS (2003) Release of ciprofloxacin from poloxamer-graft-hyaluronic acid hydrogels in vitro. Int J Pharm 260(1):83–91PubMedCrossRef
13.
go back to reference Kim MR, Park TG (2002) Temperature-responsive and degradable hyaluronic acid/pluronic composite hydrogels for controlled release of human growth hormone. J Control Release 80(1–3):69–77PubMedCrossRef Kim MR, Park TG (2002) Temperature-responsive and degradable hyaluronic acid/pluronic composite hydrogels for controlled release of human growth hormone. J Control Release 80(1–3):69–77PubMedCrossRef
14.
go back to reference Determan MD, Cox JP, Mallapragada SK (2007) Drug release from pH-responsive thermogelling pentablock copolymers. J Biomed Mater Res A 81(2):326–333PubMedCrossRef Determan MD, Cox JP, Mallapragada SK (2007) Drug release from pH-responsive thermogelling pentablock copolymers. J Biomed Mater Res A 81(2):326–333PubMedCrossRef
15.
go back to reference Singh S, Webster DC, Singh J (2007) Thermosensitive polymers: synthesis, characterization, and delivery of proteins. Int J Pharm 341(1–2):68–77PubMedCrossRef Singh S, Webster DC, Singh J (2007) Thermosensitive polymers: synthesis, characterization, and delivery of proteins. Int J Pharm 341(1–2):68–77PubMedCrossRef
16.
go back to reference Lee WC, Li YC, Chu IM (2006) Amphiphilic poly(d,l-lactic acid)/poly(ethylene glycol)/poly(d,l-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromol Biosci 6(10):846–854PubMedCrossRef Lee WC, Li YC, Chu IM (2006) Amphiphilic poly(d,l-lactic acid)/poly(ethylene glycol)/poly(d,l-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromol Biosci 6(10):846–854PubMedCrossRef
17.
go back to reference Qiao M, Chen D, Ma X, Liu Y (2005) Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm 294(1–2):103–112PubMedCrossRef Qiao M, Chen D, Ma X, Liu Y (2005) Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm 294(1–2):103–112PubMedCrossRef
18.
go back to reference Li C, Tang Y, Armes SP, Morris CJ, Rose SF, Lloyd AW, Lewis AL (2005) Synthesis and characterization of biocompatible thermo-responsive gelators based on ABA triblock copolymers. Biomacromolecules 6(2):994–999PubMedCrossRef Li C, Tang Y, Armes SP, Morris CJ, Rose SF, Lloyd AW, Lewis AL (2005) Synthesis and characterization of biocompatible thermo-responsive gelators based on ABA triblock copolymers. Biomacromolecules 6(2):994–999PubMedCrossRef
19.
go back to reference Ha DI, Lee SB, Chong MS, Lee YM, Kim SY, Park YH (2006) Preparation of thermo-responsive and injectable hydrogels based on hyaluronic acid and poly(N-isopropylacrylamide) and their drug release behaviors. Macromol Res 14(1):87–93CrossRef Ha DI, Lee SB, Chong MS, Lee YM, Kim SY, Park YH (2006) Preparation of thermo-responsive and injectable hydrogels based on hyaluronic acid and poly(N-isopropylacrylamide) and their drug release behaviors. Macromol Res 14(1):87–93CrossRef
20.
go back to reference Hyun H, Kim YH, Song IB, Lee JW, Kim MS, Khang G, Park K, Lee HB (2007) In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier. Biomacromolecules 8(4):1093–1100PubMedCrossRef Hyun H, Kim YH, Song IB, Lee JW, Kim MS, Khang G, Park K, Lee HB (2007) In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier. Biomacromolecules 8(4):1093–1100PubMedCrossRef
21.
go back to reference Kang GD, Cheon SH, Song SC (2006) Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Int J Pharm 319(1–2):29–36PubMedCrossRef Kang GD, Cheon SH, Song SC (2006) Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Int J Pharm 319(1–2):29–36PubMedCrossRef
22.
go back to reference Molinaro G, Leroux JC, Damas J, Adam A (2002) Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 23(13):2717–2722PubMedCrossRef Molinaro G, Leroux JC, Damas J, Adam A (2002) Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 23(13):2717–2722PubMedCrossRef
23.
go back to reference Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang MQ (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103(3):609–624PubMedCrossRef Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang MQ (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103(3):609–624PubMedCrossRef
24.
go back to reference Van Tomme SR, van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE (2005) Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials 26(14):2129–2135PubMedCrossRef Van Tomme SR, van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE (2005) Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials 26(14):2129–2135PubMedCrossRef
25.
go back to reference Ricciardi R, Gaillet C, Ducouret G, Lafuma F, Laupretre F (2003) Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol) hydrogels. Polymer 44(11):3375–3380CrossRef Ricciardi R, Gaillet C, Ducouret G, Lafuma F, Laupretre F (2003) Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol) hydrogels. Polymer 44(11):3375–3380CrossRef
26.
go back to reference Hiemstra C, Zhong Z, Li L, Dijkstra PJ, Feijen F (2006) In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Biomacromolecules 7(10):2790–2795PubMedCrossRef Hiemstra C, Zhong Z, Li L, Dijkstra PJ, Feijen F (2006) In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Biomacromolecules 7(10):2790–2795PubMedCrossRef
27.
go back to reference Bos GW, Jacobs JJ, Koten JW, Van Tomme S, Veldhuis T, van Nostrum CF, Den Otter W, Hennink WE (2004) In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Eur J Pharm Sci 21(4):561–567PubMedCrossRef Bos GW, Jacobs JJ, Koten JW, Van Tomme S, Veldhuis T, van Nostrum CF, Den Otter W, Hennink WE (2004) In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Eur J Pharm Sci 21(4):561–567PubMedCrossRef
28.
go back to reference Li J, Ni XP, Leong KW (2003) Injectable drug delivery systems based on supramolecular hydrogels formed by poly(ethylene oxides) and α-cyclodextrin. J Biomed Mater Res A 65(2):196–202PubMedCrossRef Li J, Ni XP, Leong KW (2003) Injectable drug delivery systems based on supramolecular hydrogels formed by poly(ethylene oxides) and α-cyclodextrin. J Biomed Mater Res A 65(2):196–202PubMedCrossRef
29.
go back to reference Choi HS, Kontani K, Huh KM, Sasaki S, Ooya T, Lee WK, Yui N (2002) Rapid induction of thermoreversible hydrogel formation based on poly(propylene glycol)-grafted dextran inclusion complexes. Macromol Biosci 2(6):298–303CrossRef Choi HS, Kontani K, Huh KM, Sasaki S, Ooya T, Lee WK, Yui N (2002) Rapid induction of thermoreversible hydrogel formation based on poly(propylene glycol)-grafted dextran inclusion complexes. Macromol Biosci 2(6):298–303CrossRef
30.
go back to reference Li J, Li X, Ni XP, Wang X, Li HZ, Leong KW (2006) Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and a-cyclodextrin. Biomaterials 27(22):4132–4140PubMedCrossRef Li J, Li X, Ni XP, Wang X, Li HZ, Leong KW (2006) Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and a-cyclodextrin. Biomaterials 27(22):4132–4140PubMedCrossRef
31.
go back to reference Seal BL, Panitch A (2003) Physical polymer matrices based on affinity interactions between peptides and polysaccharides. Biomacromolecules 4(6):1572–1582PubMedCrossRef Seal BL, Panitch A (2003) Physical polymer matrices based on affinity interactions between peptides and polysaccharides. Biomacromolecules 4(6):1572–1582PubMedCrossRef
32.
go back to reference Jin R, Hiemstra C, Zhong Z, Feijen J (2007) Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials 28(18):2791–2800PubMedCrossRef Jin R, Hiemstra C, Zhong Z, Feijen J (2007) Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials 28(18):2791–2800PubMedCrossRef
33.
go back to reference Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 14(34):4312–4314CrossRef Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 14(34):4312–4314CrossRef
34.
go back to reference Nishi KK, Jayakrishnan A (2007) Self-gelling primaquine-gum arabic conjugate: an injectable controlled delivery system for primaquine. Biomacromolecules 8(1):84–90PubMedCrossRef Nishi KK, Jayakrishnan A (2007) Self-gelling primaquine-gum arabic conjugate: an injectable controlled delivery system for primaquine. Biomacromolecules 8(1):84–90PubMedCrossRef
35.
go back to reference Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS (2007) The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28(6):975–983PubMedCrossRef Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS (2007) The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28(6):975–983PubMedCrossRef
36.
go back to reference Hiemstra C, van der Aa LJ, Zhong Z, Dijkstra PJ, Feijen J (2007) Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromolecules 40(4):1165–1173CrossRef Hiemstra C, van der Aa LJ, Zhong Z, Dijkstra PJ, Feijen J (2007) Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromolecules 40(4):1165–1173CrossRef
37.
go back to reference Hahn SK, Oh EJ, Miyamoto H, Shimobouji T (2006) Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition. Int J Pharm 322(1–2):44–51PubMedCrossRef Hahn SK, Oh EJ, Miyamoto H, Shimobouji T (2006) Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition. Int J Pharm 322(1–2):44–51PubMedCrossRef
38.
go back to reference Muhammad R, Rosiyah Y, Aziz H, Muhammad Y, Ahmad DA, Vidhya S, Faridah S, Cheyma NA (2017) pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9(4):137–174 Muhammad R, Rosiyah Y, Aziz H, Muhammad Y, Ahmad DA, Vidhya S, Faridah S, Cheyma NA (2017) pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9(4):137–174
39.
go back to reference Baljit S, Nisha S (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584CrossRef Baljit S, Nisha S (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584CrossRef
40.
go back to reference Kondiah PJ, Choonara YE, Kondiah PP, Marimuthu T, Kumar P, du Toit LC, Pillay V (2016) A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules 21(11):1580–1584PubMedCentralCrossRef Kondiah PJ, Choonara YE, Kondiah PP, Marimuthu T, Kumar P, du Toit LC, Pillay V (2016) A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules 21(11):1580–1584PubMedCentralCrossRef
41.
go back to reference Sweta G, Ashish G, Vishal S (2016) Hydrogels: effectiveness extension for drug delivery and biomedical application. Asian J Biomater Res 2(5):142–151 Sweta G, Ashish G, Vishal S (2016) Hydrogels: effectiveness extension for drug delivery and biomedical application. Asian J Biomater Res 2(5):142–151
42.
go back to reference Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117 Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117
43.
go back to reference Todd RH, Daniel SK (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRef Todd RH, Daniel SK (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRef
44.
go back to reference Fariba G, Ebrahim VF (2009) Hydrogels in controlled drug delivery systems. Iran Polym J 18(1):63–88 Fariba G, Ebrahim VF (2009) Hydrogels in controlled drug delivery systems. Iran Polym J 18(1):63–88
45.
go back to reference Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408PubMedCrossRef Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408PubMedCrossRef
46.
go back to reference Roman Z, Zofia M, Katarzyna N (2010) Drug release from hydrogel matrices. Ecol Chem Eng S 17(2):117–136 Roman Z, Zofia M, Katarzyna N (2010) Drug release from hydrogel matrices. Ecol Chem Eng S 17(2):117–136
47.
go back to reference Ford Versypt AN, Pack DW, Braatz RD (2013) Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres-a review. J Control Release 165(1):29–37PubMedCrossRef Ford Versypt AN, Pack DW, Braatz RD (2013) Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres-a review. J Control Release 165(1):29–37PubMedCrossRef
48.
go back to reference Wu N, Wang LS, Tan DCW, Moochhala SM, Yang YY (2005) Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights. J Control Release 102(3):569–581PubMedCrossRef Wu N, Wang LS, Tan DCW, Moochhala SM, Yang YY (2005) Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights. J Control Release 102(3):569–581PubMedCrossRef
49.
go back to reference Ehrbar M, Metters A, Zammaretti P, Hubbell JA, Zisch AH (2005) Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101(1–3):93–109PubMedCrossRef Ehrbar M, Metters A, Zammaretti P, Hubbell JA, Zisch AH (2005) Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101(1–3):93–109PubMedCrossRef
50.
go back to reference DuBose JW, Cutshall C, Metters AT (2005) Controlled release of tethered molecules via engineered hydrogel degradation: model development and validation. J Biomed Mater Res A 74(1):104–116PubMedCrossRef DuBose JW, Cutshall C, Metters AT (2005) Controlled release of tethered molecules via engineered hydrogel degradation: model development and validation. J Biomed Mater Res A 74(1):104–116PubMedCrossRef
51.
go back to reference Rice MA, Sanchez-Adams J, Anseth KS (2006) Exogenously triggered, enzymatic degradation of photopolymerized hydrogels with polycaprolactone subunits: experimental observation and modeling of mass loss behavior. Biomacromolecules 7(6):1968–1975PubMedPubMedCentralCrossRef Rice MA, Sanchez-Adams J, Anseth KS (2006) Exogenously triggered, enzymatic degradation of photopolymerized hydrogels with polycaprolactone subunits: experimental observation and modeling of mass loss behavior. Biomacromolecules 7(6):1968–1975PubMedPubMedCentralCrossRef
52.
go back to reference Siepmann J, Gopferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 48(2–3):229–247PubMedCrossRef Siepmann J, Gopferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 48(2–3):229–247PubMedCrossRef
53.
go back to reference Charlier A, Leclerc B, Couarraze G (2000) Release of mifepristone from biodegradable matrices: experimental and theoretical evaluations. Int J Pharm 200(1):115–120PubMedCrossRef Charlier A, Leclerc B, Couarraze G (2000) Release of mifepristone from biodegradable matrices: experimental and theoretical evaluations. Int J Pharm 200(1):115–120PubMedCrossRef
54.
go back to reference Yong Q, Kinam P (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339CrossRef Yong Q, Kinam P (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339CrossRef
55.
go back to reference Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6–21PubMedCentralCrossRef Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6–21PubMedCentralCrossRef
Metadata
Title
Biodegradable Hydrogels for Controlled Drug Delivery
Author
Nilimanka Das
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_47

Premium Partners