Skip to main content
Top

2018 | OriginalPaper | Chapter

Biodegradable Metals as Biomaterials for Clinical Practice: Iron-Based Materials

Authors : Fatima Zivic, Nenad Grujovic, Eva Pellicer, Jordi Sort, Slobodan Mitrovic, Dragan Adamovic, Maja Vulovic

Published in: Biomaterials in Clinical Practice

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This review presents the state-of-the-art in the development of iron-based degradable medical implants. Basic properties demanded by the new concept of degradable implants are elaborated, along with the work devoted to understand the underlying mechanism and to improve the properties towards best fitted to the natural tissue. Three application areas are considered: vascular stents, orthopedic implants and tissue engineering scaffolds. Each of these has its own specific demands imposed upon the artificial substitution materials. Biocompatibility is an essential feature that each medical implant must have, but different aspects can be considered depending on the end application. Furthermore, adequate mechanical properties and various characteristics related to the fabrication and in vitro and in vivo testing are presented for pure iron, alloys and composites, as well as joint structures. Corrosion control is a foundation in the development of these materials development and different aspects are also given. Iron-based materials need increased degradation rate because they are still more similar to the permanent implants, due to the slow corrosion process and various methods to overcome this issue have been tried. Porosity and its relation to material structures, mechanical properties, degradation behaviour, magnetic properties, and fabrication technologies, as well as methods of numerical simulations as a supporting tool have been elaborated. Porous structures represent one way to enhance corrosion, while maintaining intact other necessary properties of the biomaterial. Economic impact of the biomaterials sector in general is significant and justifies large investments in research. Iron-based materials for degradable implants are not in clinical practice yet, but the research results achieved so far promise the future applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alexy RD, Levi DS (2013) Materials and manufacturing technologies available for production of a pediatric bioabsorbable stent. Biomed Res Int 2013:137985. doi:10.1155/2013/137985 Epub 2013CrossRef Alexy RD, Levi DS (2013) Materials and manufacturing technologies available for production of a pediatric bioabsorbable stent. Biomed Res Int 2013:137985. doi:10.​1155/​2013/​137985 Epub 2013CrossRef
go back to reference Andani MT, Moghaddam NS, Haberland C et al (2014) Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater 10:4058–4070CrossRef Andani MT, Moghaddam NS, Haberland C et al (2014) Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater 10:4058–4070CrossRef
go back to reference Bannwarth MB, Ebert S, Lauck M et al (2014) Tailor-made nanocontainers for combined magnetic-field-induced release and MRI. Macromol Biosci 14:1205–1214CrossRef Bannwarth MB, Ebert S, Lauck M et al (2014) Tailor-made nanocontainers for combined magnetic-field-induced release and MRI. Macromol Biosci 14:1205–1214CrossRef
go back to reference Bantsis G, Betsiou M, Bourliva A et al (2012) Synthesis of porous iron oxide ceramics using greek wooden templates and mill scale waste for EMI applications. Ceram Int 38:721–729CrossRef Bantsis G, Betsiou M, Bourliva A et al (2012) Synthesis of porous iron oxide ceramics using greek wooden templates and mill scale waste for EMI applications. Ceram Int 38:721–729CrossRef
go back to reference Bartosch M, Peters H, H-Ici DO et al (2014) Different approaches for in vivo testing of absorbable metals in blood vessels. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014 Bartosch M, Peters H, H-Ici DO et al (2014) Different approaches for in vivo testing of absorbable metals in blood vessels. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014
go back to reference Blackhear JL, O’Callaghan WG, Califf RM (1987) Medical approaches to prevention of restenosis after coronary angioplasty. J Am Coll Cardiol 9:834–848CrossRef Blackhear JL, O’Callaghan WG, Califf RM (1987) Medical approaches to prevention of restenosis after coronary angioplasty. J Am Coll Cardiol 9:834–848CrossRef
go back to reference Blank VD, Estrin EI (2014) Chapter 5: phase transformations in iron and its alloys at high pressure. In: Phase transitions in solids under high pressure. CRC Press, Taylor & Francis Group, Boca Raton, pp 166–190 Blank VD, Estrin EI (2014) Chapter 5: phase transformations in iron and its alloys at high pressure. In: Phase transitions in solids under high pressure. CRC Press, Taylor & Francis Group, Boca Raton, pp 166–190
go back to reference Bogachev IN, Zvigintseva GY, Chumakova LD (1975) Influence of the magnetic transformation of austenite on the fine structure of iron-manganese alloys. Phys Met Metallogr 39:96–101 Bogachev IN, Zvigintseva GY, Chumakova LD (1975) Influence of the magnetic transformation of austenite on the fine structure of iron-manganese alloys. Phys Met Metallogr 39:96–101
go back to reference Brodie B, Pokharel Y, Fleishman N et al (2011) Very late stent thrombosis after primary percutaneous coronary intervention with bare-metal and drug-eluting stents for st-segment elevation myocardial infarction. J Am Coll Cardiol Intv 4(1):30–38CrossRef Brodie B, Pokharel Y, Fleishman N et al (2011) Very late stent thrombosis after primary percutaneous coronary intervention with bare-metal and drug-eluting stents for st-segment elevation myocardial infarction. J Am Coll Cardiol Intv 4(1):30–38CrossRef
go back to reference Butscher A, Bohner M, Hofmann S et al (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7:907–920CrossRef Butscher A, Bohner M, Hofmann S et al (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7:907–920CrossRef
go back to reference Butscher A, Bohner M, Roth C et al (2012) Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater 8:373–385CrossRef Butscher A, Bohner M, Roth C et al (2012) Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater 8:373–385CrossRef
go back to reference Čapek J, Vojtěch D (2014) Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy. Mater Sci Eng C 43:494–501CrossRef Čapek J, Vojtěch D (2014) Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy. Mater Sci Eng C 43:494–501CrossRef
go back to reference Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R Rep 87:1–57CrossRef Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R Rep 87:1–57CrossRef
go back to reference Chen Y, Xu Z, Smith C et al (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10:4561–4573CrossRef Chen Y, Xu Z, Smith C et al (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10:4561–4573CrossRef
go back to reference Cheng J, Zheng YF (2013) In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering. J Biomed Mater Res Part B 101B:485–497CrossRef Cheng J, Zheng YF (2013) In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering. J Biomed Mater Res Part B 101B:485–497CrossRef
go back to reference Cheng J, Huang T, Zheng YF (2014) Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites. J Biomed Mater Res A 102:2277–2287CrossRef Cheng J, Huang T, Zheng YF (2014) Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites. J Biomed Mater Res A 102:2277–2287CrossRef
go back to reference Cheng J, Huang T, Zheng YF (2015) Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays. Mater Sci Eng C 48:679–687CrossRef Cheng J, Huang T, Zheng YF (2015) Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays. Mater Sci Eng C 48:679–687CrossRef
go back to reference Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954CrossRef Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954CrossRef
go back to reference Chou D, Wells D, Hong D et al (2013) Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater 9:8593–8603CrossRef Chou D, Wells D, Hong D et al (2013) Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater 9:8593–8603CrossRef
go back to reference Costa-Mattos HS, Bastos IN, Gomes JACP (2008) A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride. Corros Sci 50:2858–2866CrossRef Costa-Mattos HS, Bastos IN, Gomes JACP (2008) A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride. Corros Sci 50:2858–2866CrossRef
go back to reference Crane NB, Wilkes J, Sachs E et al (2006) Improving accuracy of powder-based SFF processes by metal deposition from a nanoparticle dispersion. Rapid Prototyping J 12:266–274CrossRef Crane NB, Wilkes J, Sachs E et al (2006) Improving accuracy of powder-based SFF processes by metal deposition from a nanoparticle dispersion. Rapid Prototyping J 12:266–274CrossRef
go back to reference Curodeau A, Sachs E, Caldarise S (2000) Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J Biomed Mater Res 53:525–535CrossRef Curodeau A, Sachs E, Caldarise S (2000) Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J Biomed Mater Res 53:525–535CrossRef
go back to reference Davis JR (ed) (2000) Corrosion: understanding the basics. ASM International, Materials Park, Ohio, USA, pp 1–20 Davis JR (ed) (2000) Corrosion: understanding the basics. ASM International, Materials Park, Ohio, USA, pp 1–20
go back to reference De Santis R, Russo A, Gloria A et al (2015) Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol 11:1236–1246CrossRef De Santis R, Russo A, Gloria A et al (2015) Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol 11:1236–1246CrossRef
go back to reference Dill T (2008) Contraindications to magnetic resonance imaging. Heart 94:943–948CrossRef Dill T (2008) Contraindications to magnetic resonance imaging. Heart 94:943–948CrossRef
go back to reference Djurovic D, Hallstedt B, von Appenb J et al (2011) Thermodynamic assessment of the Fe–Mn–C system. Calphad 35:479–491CrossRef Djurovic D, Hallstedt B, von Appenb J et al (2011) Thermodynamic assessment of the Fe–Mn–C system. Calphad 35:479–491CrossRef
go back to reference Drynda A, Hassel T, Bach FW et al (2015) In vitro and in vivo corrosion properties of new iron–manganese alloys designed for cardiovascular applications. J Biomed Mater Res Part B 103B:649–660CrossRef Drynda A, Hassel T, Bach FW et al (2015) In vitro and in vivo corrosion properties of new iron–manganese alloys designed for cardiovascular applications. J Biomed Mater Res Part B 103B:649–660CrossRef
go back to reference Erbel R, Di Mario C, Bartunek J et al (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial, PROGRESS-AMS (clinical performance and angiographic results of coronary stenting with absorbable metal stents). Lancet 369(9576):1869–1875CrossRef Erbel R, Di Mario C, Bartunek J et al (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial, PROGRESS-AMS (clinical performance and angiographic results of coronary stenting with absorbable metal stents). Lancet 369(9576):1869–1875CrossRef
go back to reference Fagali NS, Grillo CA, Puntarulo S et al (2014) Evaluation of cell damage produced by Fe ions released as degradation products of biomaterials. Influence of pH changes. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014 Fagali NS, Grillo CA, Puntarulo S et al (2014) Evaluation of cell damage produced by Fe ions released as degradation products of biomaterials. Influence of pH changes. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014
go back to reference Fagali NS, Grillo CA, Puntarulo S et al (2015) Cytotoxicity of corrosion products of degradable Fe-based stents: relevance of pH and insoluble products. Colloids Surf B 128:480–488CrossRef Fagali NS, Grillo CA, Puntarulo S et al (2015) Cytotoxicity of corrosion products of degradable Fe-based stents: relevance of pH and insoluble products. Colloids Surf B 128:480–488CrossRef
go back to reference Fang G, Ai W, Leeflang S et al (2013) Multipass cold drawing of magnesium alloy minitubes for biodegradable vascular stents. Mater Sci Eng C 33:3481–3488CrossRef Fang G, Ai W, Leeflang S et al (2013) Multipass cold drawing of magnesium alloy minitubes for biodegradable vascular stents. Mater Sci Eng C 33:3481–3488CrossRef
go back to reference Farack J, Wolf-Brandstetter C, Glorius S et al (2011) The effect of perfusion culture on proliferation and differentiation of human mesenchymal stem cells on biocorrodible bone replacement material. Mater Sci Eng B 176:1767–1772CrossRef Farack J, Wolf-Brandstetter C, Glorius S et al (2011) The effect of perfusion culture on proliferation and differentiation of human mesenchymal stem cells on biocorrodible bone replacement material. Mater Sci Eng B 176:1767–1772CrossRef
go back to reference Farooq V, Gogas BD, Serruys PW (2011) Restenosis. Delineating the numerous causes of drug-eluting stent restenosis, contemporary reviews in interventional cardiology. Circulation 4:195–205 Farooq V, Gogas BD, Serruys PW (2011) Restenosis. Delineating the numerous causes of drug-eluting stent restenosis, contemporary reviews in interventional cardiology. Circulation 4:195–205
go back to reference Feng Q, Zhang D, Xin C et al (2013) Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent. J Mater Sci Mater Med 24:713–724CrossRef Feng Q, Zhang D, Xin C et al (2013) Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent. J Mater Sci Mater Med 24:713–724CrossRef
go back to reference Francis A, Yang Y, Virtanen S et al (2015) Iron and iron-based alloys for temporary cardiovascular applications. J Mater Sci Mater Med 26:138CrossRef Francis A, Yang Y, Virtanen S et al (2015) Iron and iron-based alloys for temporary cardiovascular applications. J Mater Sci Mater Med 26:138CrossRef
go back to reference Gastaldia D, Sassia V, Petrinia L et al (2011) Continuum damage model for bioresorbable magnesium alloy devices—application to coronary stents. J Mech Behav Biomed Mater 4:352–365CrossRef Gastaldia D, Sassia V, Petrinia L et al (2011) Continuum damage model for bioresorbable magnesium alloy devices—application to coronary stents. J Mech Behav Biomed Mater 4:352–365CrossRef
go back to reference Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRef Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRef
go back to reference Geis-Gerstorfer J, Schille Ch, Schweizer E et al (2011) Blood triggered corrosion of magnesium alloys. Mater Sci Eng B 176(20):1761–1766CrossRef Geis-Gerstorfer J, Schille Ch, Schweizer E et al (2011) Blood triggered corrosion of magnesium alloys. Mater Sci Eng B 176(20):1761–1766CrossRef
go back to reference Gkouvatsos K, Papanikolaou G, Pantopoulos K (2012) Regulation of iron transport and the role of transferrin. Biochim Biophys Acta 1820:188–202CrossRef Gkouvatsos K, Papanikolaou G, Pantopoulos K (2012) Regulation of iron transport and the role of transferrin. Biochim Biophys Acta 1820:188–202CrossRef
go back to reference Glorius S, Nies B, Farack J et al (2011) Metal foam—bone cement composites mechanical and biological properties and perspectives for bone implant design. Adv Eng Mater 13:1019–1023CrossRef Glorius S, Nies B, Farack J et al (2011) Metal foam—bone cement composites mechanical and biological properties and perspectives for bone implant design. Adv Eng Mater 13:1019–1023CrossRef
go back to reference Gorkunov ES, Gladkovskii SV, Zadvorkin SM et al (2008) Evolution of magnetic properties of Fe–Mn and Fe–Mn–Cr steels with different stability of austenite during plastic deformation. Phys Metals Metallography 105(4):343–350 Gorkunov ES, Gladkovskii SV, Zadvorkin SM et al (2008) Evolution of magnetic properties of Fe–Mn and Fe–Mn–Cr steels with different stability of austenite during plastic deformation. Phys Metals Metallography 105(4):343–350
go back to reference Grabke HJ, Hennesen K, Möller R et al (1987) Effects of manganese on the grain boundary segregation, bulk and grain boundary diffusivity of P in ferrite. Scr Metall 21:1529–1534CrossRef Grabke HJ, Hennesen K, Möller R et al (1987) Effects of manganese on the grain boundary segregation, bulk and grain boundary diffusivity of P in ferrite. Scr Metall 21:1529–1534CrossRef
go back to reference Grogan JA, O’Brien BJ, Leen SB et al (2011) A corrosion model for bioabsorbable metallic stents. Acta Biomater 7:3523–3533CrossRef Grogan JA, O’Brien BJ, Leen SB et al (2011) A corrosion model for bioabsorbable metallic stents. Acta Biomater 7:3523–3533CrossRef
go back to reference Grogan JA, Leen SB, McHugh PE (2014) A physical corrosion model for bioabsorbable metal stents. Acta Biomater 10:2313–2322CrossRef Grogan JA, Leen SB, McHugh PE (2014) A physical corrosion model for bioabsorbable metal stents. Acta Biomater 10:2313–2322CrossRef
go back to reference Hänzi AC, Gerber I, Schinhammer M et al (2010) On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater 6:1824–1833CrossRef Hänzi AC, Gerber I, Schinhammer M et al (2010) On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater 6:1824–1833CrossRef
go back to reference Harjanto S, Pratesa Y, Prasetyo Y et al (2013) Properties of Fe-Mn-C alloy as degradable biomaterials candidate for coronary stent. Adv Mater Res 789:210–214CrossRef Harjanto S, Pratesa Y, Prasetyo Y et al (2013) Properties of Fe-Mn-C alloy as degradable biomaterials candidate for coronary stent. Adv Mater Res 789:210–214CrossRef
go back to reference Heiden M, Walker E, Nauman E et al (2015a) Evolution of novel bioresorbable iron–manganese implant surfaces and their degradation behaviors in vitro. J Biomed Mater Res Part A 103A:185–193CrossRef Heiden M, Walker E, Nauman E et al (2015a) Evolution of novel bioresorbable iron–manganese implant surfaces and their degradation behaviors in vitro. J Biomed Mater Res Part A 103A:185–193CrossRef
go back to reference Heiden M, Kustas A, Chaput K et al (2015b) Effect of microstructure and strain on the degradation behavior of novel bioresorbable iron–manganese alloy implants. J Biomed Mater Res Part A 103A:738–745CrossRef Heiden M, Kustas A, Chaput K et al (2015b) Effect of microstructure and strain on the degradation behavior of novel bioresorbable iron–manganese alloy implants. J Biomed Mater Res Part A 103A:738–745CrossRef
go back to reference Henderson SE, Verdelis K, Maiti S et al (2014) Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomater 10:2323–2332CrossRef Henderson SE, Verdelis K, Maiti S et al (2014) Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomater 10:2323–2332CrossRef
go back to reference Hermawan H (2012) Biodegradable metals, from concept to applications. Springer briefs in materials. Springer, Heidelberg Hermawan H (2012) Biodegradable metals, from concept to applications. Springer briefs in materials. Springer, Heidelberg
go back to reference Hermawan H, Mantovani D (2013) Process of prototyping coronary stents from biodegradable Fe–Mn alloys. Acta Biomater 9:8585–8592CrossRef Hermawan H, Mantovani D (2013) Process of prototyping coronary stents from biodegradable Fe–Mn alloys. Acta Biomater 9:8585–8592CrossRef
go back to reference Hermawan H, Dube D, Mantovani D (2007) Development of degradable Fe-35Mn alloy for biomedical application. Adv Mater Res 15:107–112CrossRef Hermawan H, Dube D, Mantovani D (2007) Development of degradable Fe-35Mn alloy for biomedical application. Adv Mater Res 15:107–112CrossRef
go back to reference Hermawan H, Dube D, Mantovani D (2008a) Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J Biomed Mater Res A 93(1):1–11 Hermawan H, Dube D, Mantovani D (2008a) Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J Biomed Mater Res A 93(1):1–11
go back to reference Hermawan H, Alamdari H, Mantovani D et al (2008b) Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall 51(1):38–45CrossRef Hermawan H, Alamdari H, Mantovani D et al (2008b) Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall 51(1):38–45CrossRef
go back to reference Hermawan H, Dube D, Mantovani D (2010a) Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J Biomed Mater Res A 93:1–11 Hermawan H, Dube D, Mantovani D (2010a) Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J Biomed Mater Res A 93:1–11
go back to reference Hermawan H, Purnama A, Dube D, Couet J, Mantovani D (2010b) Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater 6:1852–1860CrossRef Hermawan H, Purnama A, Dube D, Couet J, Mantovani D (2010b) Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater 6:1852–1860CrossRef
go back to reference Hermawan H, Ramdan D, Djuansjah JRP (2011) Metals for biomedical applications. In: Fazel R (ed) Biomedical engineering—from theory to applications, InTech, www.intechopen.com. pp 1–20 Hermawan H, Ramdan D, Djuansjah JRP (2011) Metals for biomedical applications. In: Fazel R (ed) Biomedical engineering—from theory to applications, InTech, www.​intechopen.​com. pp 1–20
go back to reference Higuera GA, Hendriks JAA, van Dalum J et al (2013) In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integr Biol (Camb) 5:889–898CrossRef Higuera GA, Hendriks JAA, van Dalum J et al (2013) In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integr Biol (Camb) 5:889–898CrossRef
go back to reference Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8(7):2442–2455CrossRef Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8(7):2442–2455CrossRef
go back to reference Hort N, Wiese B, Wolff M et al (2014) Stiffness of metals, alloys and components. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014 Hort N, Wiese B, Wolff M et al (2014) Stiffness of metals, alloys and components. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014
go back to reference Huang W (1987) An assessment of the Fe-Mn system. Calphad 2:183–186 Huang W (1987) An assessment of the Fe-Mn system. Calphad 2:183–186
go back to reference Huang T, Cheng J, Zheng YF (2014) In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering. Mater Sci Eng C 35:43–53CrossRef Huang T, Cheng J, Zheng YF (2014) In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering. Mater Sci Eng C 35:43–53CrossRef
go back to reference Huang T, Cheng J, Bian D et al (2015) Fe–Au and Fe–Ag composites as candidates for biodegradable stent materials. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33389 Huang T, Cheng J, Bian D et al (2015) Fe–Au and Fe–Ag composites as candidates for biodegradable stent materials. J Biomed Mater Res B Appl Biomater. doi:10.​1002/​jbm.​b.​33389
go back to reference Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362CrossRef Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362CrossRef
go back to reference Hyun S-K, Ikeda T, Nakajima H (2004) Fabrication of lotus-type porous iron and its mechanical properties. Sci Technol Adv Mater 5:201–205CrossRef Hyun S-K, Ikeda T, Nakajima H (2004) Fabrication of lotus-type porous iron and its mechanical properties. Sci Technol Adv Mater 5:201–205CrossRef
go back to reference Ishikawa Y, Endoh Y (1968) Antiferromagnetism of γ-FeMn alloys. J Appl Phys 39:1318–1319CrossRef Ishikawa Y, Endoh Y (1968) Antiferromagnetism of γ-FeMn alloys. J Appl Phys 39:1318–1319CrossRef
go back to reference Jayalekshmi AC, Victor SP, Sharma CP (2013) Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications. Colloids Surf B 101:196–204CrossRef Jayalekshmi AC, Victor SP, Sharma CP (2013) Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications. Colloids Surf B 101:196–204CrossRef
go back to reference Kashef S, Asgari A, Hilditch TB et al (2013) Fracture mechanics of stainless steel foams. Mater Sci Eng A 578:115–124CrossRef Kashef S, Asgari A, Hilditch TB et al (2013) Fracture mechanics of stainless steel foams. Mater Sci Eng A 578:115–124CrossRef
go back to reference Keen CL, Ensunsa JL, Clegg MS (2000) Manganese metabolism in animals and humans including the toxicity of manganese. In: Siegel A, Siegel H (eds) Manganese and its role in biological proceses. Marcel Dekker, New York, pp 89–121 Keen CL, Ensunsa JL, Clegg MS (2000) Manganese metabolism in animals and humans including the toxicity of manganese. In: Siegel A, Siegel H (eds) Manganese and its role in biological proceses. Marcel Dekker, New York, pp 89–121
go back to reference Kini U, Nandeesh BN (2012) Physiology of bone formation, remodeling, and metabolism. In: Fogelman I et al (eds) Radionuclide and hybrid bone imaging. Springer, Berlin, p 43 Kini U, Nandeesh BN (2012) Physiology of bone formation, remodeling, and metabolism. In: Fogelman I et al (eds) Radionuclide and hybrid bone imaging. Springer, Berlin, p 43
go back to reference Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8:925–936CrossRef Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8:925–936CrossRef
go back to reference Kubaschewski O (1982) Iron—binary phase diagrams. Springer, Berlin, pp 61–63 Kubaschewski O (1982) Iron—binary phase diagrams. Springer, Berlin, pp 61–63
go back to reference Lee BJ, Lee DN (1989) A thermodynamic study on the Mn-C and Fe-Mn systems. Calphad 4: 345–354 Lee BJ, Lee DN (1989) A thermodynamic study on the Mn-C and Fe-Mn systems. Calphad 4: 345–354
go back to reference Li N, Zheng Y (2013) Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 29(6):489–502CrossRef Li N, Zheng Y (2013) Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 29(6):489–502CrossRef
go back to reference Li H, Zheng Y, Qin L (2014) Progress of biodegradable metals. Prog Nat Sci Mater Int 24:414–422CrossRef Li H, Zheng Y, Qin L (2014) Progress of biodegradable metals. Prog Nat Sci Mater Int 24:414–422CrossRef
go back to reference Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9:1450–1466CrossRef Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9:1450–1466CrossRef
go back to reference Lintzen S, von Appen J, Hallstedt B et al (2013) The Fe–Mn enthalpy phase diagram from first principles. J Alloy Compd 577:370–375CrossRef Lintzen S, von Appen J, Hallstedt B et al (2013) The Fe–Mn enthalpy phase diagram from first principles. J Alloy Compd 577:370–375CrossRef
go back to reference Liu B, Zheng Y (2011) Effects of alloying elements (Mn Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater 7:1407–1420CrossRef Liu B, Zheng Y (2011) Effects of alloying elements (Mn Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater 7:1407–1420CrossRef
go back to reference Liu Z, Fan T, Zhang W et al (2005) The synthesis of hierarchical porous iron oxide with wood templates. Microporous Mesoporous Mater 85:82–88CrossRef Liu Z, Fan T, Zhang W et al (2005) The synthesis of hierarchical porous iron oxide with wood templates. Microporous Mesoporous Mater 85:82–88CrossRef
go back to reference Liu B, Zheng Y, Ruan L (2010) In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett 65:540–543CrossRef Liu B, Zheng Y, Ruan L (2010) In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett 65:540–543CrossRef
go back to reference Long J, Laughlin DE, McHenry ME (2008) Structural and soft magnetic properties of a new Fe-Zr soft magnetic nanocrystalline alloy. J Appl Phys 103:07E708CrossRef Long J, Laughlin DE, McHenry ME (2008) Structural and soft magnetic properties of a new Fe-Zr soft magnetic nanocrystalline alloy. J Appl Phys 103:07E708CrossRef
go back to reference Melican M, Zimmerman M, Dhillon M et al (2001) Three-dimensional printing and porous metallic surfaces: a new orthopedic application. J Biomed Mater Res 55:194–202CrossRef Melican M, Zimmerman M, Dhillon M et al (2001) Three-dimensional printing and porous metallic surfaces: a new orthopedic application. J Biomed Mater Res 55:194–202CrossRef
go back to reference Moravej M, Mantovani D (2011) Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci 12:4250–4270CrossRef Moravej M, Mantovani D (2011) Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci 12:4250–4270CrossRef
go back to reference Moravej M, Prima F, Fiset M, Mantovani D et al (2010a) Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship. Acta Biomater 6:1726–1735CrossRef Moravej M, Prima F, Fiset M, Mantovani D et al (2010a) Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship. Acta Biomater 6:1726–1735CrossRef
go back to reference Moravej M, Purnama A, Fiset M et al (2010b) Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater 6:1843–1851CrossRef Moravej M, Purnama A, Fiset M et al (2010b) Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater 6:1843–1851CrossRef
go back to reference Moravej M, Amira S, Prima F et al (2011) Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents. Mater Sci Eng B 176:1812–1822CrossRef Moravej M, Amira S, Prima F et al (2011) Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents. Mater Sci Eng B 176:1812–1822CrossRef
go back to reference Moszner F, Sologubenko AS, Schinhammer M et al (2011) Precipitation hardening of biodegradable Fe–Mn–Pd alloys. Acta Mater 59:981–991CrossRef Moszner F, Sologubenko AS, Schinhammer M et al (2011) Precipitation hardening of biodegradable Fe–Mn–Pd alloys. Acta Mater 59:981–991CrossRef
go back to reference Mouzou E, Paternoster C, ToloueiR et al (2014) A comparative study of the degradation of pure Fe and Fe-20Mn-1.2C alloy in modified Hanks’ solution for biodegradable cardiovascular device. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014 Mouzou E, Paternoster C, ToloueiR et al (2014) A comparative study of the degradation of pure Fe and Fe-20Mn-1.2C alloy in modified Hanks’ solution for biodegradable cardiovascular device. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014
go back to reference Mueller PP, May T, Perz A et al (2006) Control of smooth muscle cell proliferation by ferrous iron. Biomaterials 27:2193–2200CrossRef Mueller PP, May T, Perz A et al (2006) Control of smooth muscle cell proliferation by ferrous iron. Biomaterials 27:2193–2200CrossRef
go back to reference Murakami T, Ohara K, Narushima T et al (2007) Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide. Mater Trans 48:2937–2944CrossRef Murakami T, Ohara K, Narushima T et al (2007) Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide. Mater Trans 48:2937–2944CrossRef
go back to reference Nasution AK, Murni NS, Sing NB et al (2015) Partially degradable friction-welded pure iron–stainless steel 316L bone pin. J Biomed Mater Res Part B 103B:31–38CrossRef Nasution AK, Murni NS, Sing NB et al (2015) Partially degradable friction-welded pure iron–stainless steel 316L bone pin. J Biomed Mater Res Part B 103B:31–38CrossRef
go back to reference Neacsu P, Ion RN, Mitran V et al (2015) State of the art and recent patents on Mg-based biodegradable bone implants. Recent Pat Regenerative Med 4(3):168–188CrossRef Neacsu P, Ion RN, Mitran V et al (2015) State of the art and recent patents on Mg-based biodegradable bone implants. Recent Pat Regenerative Med 4(3):168–188CrossRef
go back to reference Nie FL, Zheng YF, Wei SC et al (2010) In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater 5:1843–1851CrossRef Nie FL, Zheng YF, Wei SC et al (2010) In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater 5:1843–1851CrossRef
go back to reference Niendorf T, Brenne F, Hoyer P et al (2015) Processing of new materials by additive manufacturing iron-based alloys containing silver for biomedical applications. Metall Mater Trans A 46:2829–2833CrossRef Niendorf T, Brenne F, Hoyer P et al (2015) Processing of new materials by additive manufacturing iron-based alloys containing silver for biomedical applications. Metall Mater Trans A 46:2829–2833CrossRef
go back to reference Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903CrossRef Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903CrossRef
go back to reference Obayi CS, Tolouei R, Paternoster C et al (2015) Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants. Acta Biomater 17:68–77CrossRef Obayi CS, Tolouei R, Paternoster C et al (2015) Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants. Acta Biomater 17:68–77CrossRef
go back to reference Orinak A, Orinakova R, Kralova ZO et al (2014) Sintered metallic foams for biodegradable bone replacement materials. J Porous Mater 21:131–140CrossRef Orinak A, Orinakova R, Kralova ZO et al (2014) Sintered metallic foams for biodegradable bone replacement materials. J Porous Mater 21:131–140CrossRef
go back to reference Orinakova R, Orinak A, Kupkova M et al (2015) Study of electrochemical deposition and degradation of hydroxyapatite coated iron biomaterials. Int J Electrochem Sci 10:659–670 Orinakova R, Orinak A, Kupkova M et al (2015) Study of electrochemical deposition and degradation of hydroxyapatite coated iron biomaterials. Int J Electrochem Sci 10:659–670
go back to reference Peck M, Dusserre N, McAllister TN et al (2011) Tissue engineering by self-assembly. Mater Today 14:218–224CrossRef Peck M, Dusserre N, McAllister TN et al (2011) Tissue engineering by self-assembly. Mater Today 14:218–224CrossRef
go back to reference Pepperhoff W, Acet M (2001) Constitution and magnetism of iron and its alloys. Springer, BerlinCrossRef Pepperhoff W, Acet M (2001) Constitution and magnetism of iron and its alloys. Springer, BerlinCrossRef
go back to reference Persaud-Sharma D, McGoron A (2012) Biodegradable magnesium alloys: a review of material development and applications. J Biomim Biomater Tissue Eng 12:25–39CrossRef Persaud-Sharma D, McGoron A (2012) Biodegradable magnesium alloys: a review of material development and applications. J Biomim Biomater Tissue Eng 12:25–39CrossRef
go back to reference Peuster M, Wohlsein P, Brugmann M et al (2001) A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569CrossRef Peuster M, Wohlsein P, Brugmann M et al (2001) A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569CrossRef
go back to reference Peuster M, Hesse C, Schloo T et al (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962CrossRef Peuster M, Hesse C, Schloo T et al (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962CrossRef
go back to reference Pierson D, Edick J, Tauscher A et al (2012) A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomed Mater Res Part B 100B:58–67CrossRef Pierson D, Edick J, Tauscher A et al (2012) A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomed Mater Res Part B 100B:58–67CrossRef
go back to reference Purnama A, Hermawan H, Couet J et al (2010) Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta Biomater 6:1800–1807CrossRef Purnama A, Hermawan H, Couet J et al (2010) Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta Biomater 6:1800–1807CrossRef
go back to reference Purnama A, Hermawan H, Champetier S et al (2013) Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents. Acta Biomater 9:8746–8753CrossRef Purnama A, Hermawan H, Champetier S et al (2013) Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents. Acta Biomater 9:8746–8753CrossRef
go back to reference Quadbeck P, Hauser R, Kümmel K et al (2010) Iron based cellular metals for degradable synthetic bone replacement. In: Proceedings of powder metallurgy world congress & exhibition. PM2010, Florence, Italy 10–14 Oct 2010, vol 4. pp 95–102 Quadbeck P, Hauser R, Kümmel K et al (2010) Iron based cellular metals for degradable synthetic bone replacement. In: Proceedings of powder metallurgy world congress & exhibition. PM2010, Florence, Italy 10–14 Oct 2010, vol 4. pp 95–102
go back to reference Quadbeck P, Kümmel K, Hauser R et al (2011) Structural and material design of open-cell powder metallurgical foams. Adv Eng Mater 13:1024–1030CrossRef Quadbeck P, Kümmel K, Hauser R et al (2011) Structural and material design of open-cell powder metallurgical foams. Adv Eng Mater 13:1024–1030CrossRef
go back to reference Quadbeck P, Redlich C, Göhler H et al (2014) Methodical screening of corrosion mechanisms of iron alloys for the manipulation of degradation rates. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014 Quadbeck P, Redlich C, Göhler H et al (2014) Methodical screening of corrosion mechanisms of iron alloys for the manipulation of degradation rates. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014
go back to reference Rabinkin A (1979) On magnetic contributions to γ → ε phase transformations in Fe-Mn alloys. Calphad 3:77–84CrossRef Rabinkin A (1979) On magnetic contributions to γ → ε phase transformations in Fe-Mn alloys. Calphad 3:77–84CrossRef
go back to reference Reindl A, Borowsky R, Hein SB et al (2014) Degradation behavior of novel Fe/ß-TCP composites produced by powder injection molding for cortical bone replacement. J Mater Sci 49:8234–8243CrossRef Reindl A, Borowsky R, Hein SB et al (2014) Degradation behavior of novel Fe/ß-TCP composites produced by powder injection molding for cortical bone replacement. J Mater Sci 49:8234–8243CrossRef
go back to reference Russo T, D’Amora U, Gloria A et al (2013) Systematic analysis of injectable materials and 3D rapid prototyped magnetic scaffolds: from CNS applications to soft and hard tissue repair/regeneration. Procedia Eng 59:233–239CrossRef Russo T, D’Amora U, Gloria A et al (2013) Systematic analysis of injectable materials and 3D rapid prototyped magnetic scaffolds: from CNS applications to soft and hard tissue repair/regeneration. Procedia Eng 59:233–239CrossRef
go back to reference Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670CrossRef Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670CrossRef
go back to reference Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635CrossRef Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635CrossRef
go back to reference Sanchez AHM, Luthringer BJC, Feyerabend F et al (2015) Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? a review. Acta Biomaterialia 13(2015):16–31CrossRef Sanchez AHM, Luthringer BJC, Feyerabend F et al (2015) Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? a review. Acta Biomaterialia 13(2015):16–31CrossRef
go back to reference Schaffer JE, Nauman EA, Stanciu LA (2012) Cold-drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of mechanical strength and fatigue durability. Metall Mater Trans B 43B:984–994CrossRef Schaffer JE, Nauman EA, Stanciu LA (2012) Cold-drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of mechanical strength and fatigue durability. Metall Mater Trans B 43B:984–994CrossRef
go back to reference Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer P (2010) Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 6:1705–1713CrossRef Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer P (2010) Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 6:1705–1713CrossRef
go back to reference Schinhammer M, Gerber I, Hänzi AC et al (2012) Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe–Mn–C(–Pd) TWIP alloys. Acta Mater 60:2746–2756CrossRef Schinhammer M, Gerber I, Hänzi AC et al (2012) Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe–Mn–C(–Pd) TWIP alloys. Acta Mater 60:2746–2756CrossRef
go back to reference Schinhammer M, Steiger P, Moszner F et al (2013a) Degradation performance of biodegradable Fe-Mn-C(-Pd) alloys. Mater Sci Eng C 33:1882–1893CrossRef Schinhammer M, Steiger P, Moszner F et al (2013a) Degradation performance of biodegradable Fe-Mn-C(-Pd) alloys. Mater Sci Eng C 33:1882–1893CrossRef
go back to reference Schinhammer M, Gerber I, Hänzi AC et al (2013b) On the cytocompatibility of biodegradable Fe-based alloys. Mater Sci Eng C 33:782–789CrossRef Schinhammer M, Gerber I, Hänzi AC et al (2013b) On the cytocompatibility of biodegradable Fe-based alloys. Mater Sci Eng C 33:782–789CrossRef
go back to reference Schomig A, Kastrati A, Mudra H, Blasini R, Schuhlen H, Klauss V, Richardt G, Neumann FJ (1994) Four-year experience with Palmaz-Schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure. Circulation 90:2716–2724CrossRef Schomig A, Kastrati A, Mudra H, Blasini R, Schuhlen H, Klauss V, Richardt G, Neumann FJ (1994) Four-year experience with Palmaz-Schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure. Circulation 90:2716–2724CrossRef
go back to reference Serruys PW, Kutryk MJ, Ong AT (2006) Coronary-artery stents. N Engl J Med 354:483–495CrossRef Serruys PW, Kutryk MJ, Ong AT (2006) Coronary-artery stents. N Engl J Med 354:483–495CrossRef
go back to reference Sing NB, Mostavan A, Hamzah E et al (2015) Degradation behavior of biodegradable Fe35Mn alloy stents. J Biomed Mater Res Part B 103B:572–577CrossRef Sing NB, Mostavan A, Hamzah E et al (2015) Degradation behavior of biodegradable Fe35Mn alloy stents. J Biomed Mater Res Part B 103B:572–577CrossRef
go back to reference Stephani G, Andersen O, Quadbeck P et al (2010) Cellular metals for functional applications—an overview. In: Proceedings of powder metallurgy world congress & exhibition. PM2010, Florence, Italy 10–14 Oct 2010, vol 4. pp 95–102 Stephani G, Andersen O, Quadbeck P et al (2010) Cellular metals for functional applications—an overview. In: Proceedings of powder metallurgy world congress & exhibition. PM2010, Florence, Italy 10–14 Oct 2010, vol 4. pp 95–102
go back to reference Sua X, Tang NY, Toguri JM (2001) Thermodynamic evaluation of the Fe–Zn system. J Alloy Compd 325:129–136CrossRef Sua X, Tang NY, Toguri JM (2001) Thermodynamic evaluation of the Fe–Zn system. J Alloy Compd 325:129–136CrossRef
go back to reference Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24(2):47–66MathSciNet Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24(2):47–66MathSciNet
go back to reference Tampieri A, D’Alessandro T, Sandri M et al (2012) Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater 8:843–851CrossRef Tampieri A, D’Alessandro T, Sandri M et al (2012) Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater 8:843–851CrossRef
go back to reference Tan L, Yu X, Wan P et al (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29(6):503–513CrossRef Tan L, Yu X, Wan P et al (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29(6):503–513CrossRef
go back to reference Trinidad J, Marco I, Arruebarrena G et al (2014) Processing of magnesium porous structures by infiltration casting for biomedical applications. Adv Eng Mater 16(2):241–247CrossRef Trinidad J, Marco I, Arruebarrena G et al (2014) Processing of magnesium porous structures by infiltration casting for biomedical applications. Adv Eng Mater 16(2):241–247CrossRef
go back to reference Ulum MF, Arafat A, Noviana D et al (2014a) In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Mater Sci Eng C 36:336–344CrossRef Ulum MF, Arafat A, Noviana D et al (2014a) In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Mater Sci Eng C 36:336–344CrossRef
go back to reference Ulum MF, Nasution AK, Yusop AH et al (2014b) Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants. J Biomed Mater Res Part B Appl Biomater 00B. doi:10.1002/jbm.b.33315 Ulum MF, Nasution AK, Yusop AH et al (2014b) Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants. J Biomed Mater Res Part B Appl Biomater 00B. doi:10.​1002/​jbm.​b.​33315
go back to reference Ulum MF, Murni NS, Noviana D et al (2014c) Peri-implant assessment of Fe-HA composite for temporary bone implants. Eur Cells Mater 28(3):81 Ulum MF, Murni NS, Noviana D et al (2014c) Peri-implant assessment of Fe-HA composite for temporary bone implants. Eur Cells Mater 28(3):81
go back to reference Waksman R, Pakala R, Baffour R et al (2008) Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol 21:15–20CrossRef Waksman R, Pakala R, Baffour R et al (2008) Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol 21:15–20CrossRef
go back to reference Waksman R, Erbel R, Di Mario C et al (2009) Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC: Cardiovasc Interv 2(4):312–320 Waksman R, Erbel R, Di Mario C et al (2009) Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC: Cardiovasc Interv 2(4):312–320
go back to reference Walker J, Shadanbaz S, Woodfield TBF et al (2014) Magnesium biomaterials for orthopedic application: a review from a biological perspective. J Biomed Mater Res Part B 102B:1316–1331CrossRef Walker J, Shadanbaz S, Woodfield TBF et al (2014) Magnesium biomaterials for orthopedic application: a review from a biological perspective. J Biomed Mater Res Part B 102B:1316–1331CrossRef
go back to reference Wang X, Dong LH, Ma XL, Zheng YF (2013) Microstructure, mechanical property and corrosion behaviors of interpenetrating C/Mg-Zn-Mn composite fabricated by suction casting. Mater Sci Eng C 33:618–625CrossRef Wang X, Dong LH, Ma XL, Zheng YF (2013) Microstructure, mechanical property and corrosion behaviors of interpenetrating C/Mg-Zn-Mn composite fabricated by suction casting. Mater Sci Eng C 33:618–625CrossRef
go back to reference Wegener B, Sievers B, Utzschneider S et al (2011) Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater Sci Eng B 176:1789–1796CrossRef Wegener B, Sievers B, Utzschneider S et al (2011) Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater Sci Eng B 176:1789–1796CrossRef
go back to reference Willbold E, Gu X, Albert D et al (2015) Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater 11:554–562CrossRef Willbold E, Gu X, Albert D et al (2015) Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater 11:554–562CrossRef
go back to reference Witte F, Hort N, Vogt C et al (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72CrossRef Witte F, Hort N, Vogt C et al (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72CrossRef
go back to reference Wu CZ, Chen SC, Shih YH et al (2011) Development of the novel ferrous-based stainless steel for biomedical applications, Part I: high-temperature microstructure, mechanical properties and damping behavior. J Mech Behav Biomed Mater 4:1548–1553CrossRef Wu CZ, Chen SC, Shih YH et al (2011) Development of the novel ferrous-based stainless steel for biomedical applications, Part I: high-temperature microstructure, mechanical properties and damping behavior. J Mech Behav Biomed Mater 4:1548–1553CrossRef
go back to reference Wu J, Lu X, Tan L et al (2013) Effect of hydrion evolution by polylactic-co-glycolic acid coating on degradation rate of pure iron. J Biomed Mater Res Part B 101B:1222–1232CrossRef Wu J, Lu X, Tan L et al (2013) Effect of hydrion evolution by polylactic-co-glycolic acid coating on degradation rate of pure iron. J Biomed Mater Res Part B 101B:1222–1232CrossRef
go back to reference Yabuuchi K, Kasada R, Kimura A (2013) Effect of Mn addition on one-dimensional migration of dislocation loops in body-centered cubic Fe. Acta Mater 61:6517–6523CrossRef Yabuuchi K, Kasada R, Kimura A (2013) Effect of Mn addition on one-dimensional migration of dislocation loops in body-centered cubic Fe. Acta Mater 61:6517–6523CrossRef
go back to reference Yang R, Zhao DL, Wang YM et al (2001) Effects of Cr, Mn on the cohesion of the γ-iron grain boundary. Acta Mater 49:1079–1085CrossRef Yang R, Zhao DL, Wang YM et al (2001) Effects of Cr, Mn on the cohesion of the γ-iron grain boundary. Acta Mater 49:1079–1085CrossRef
go back to reference Yusop AH, Bakir AA, Shaharom NA et al (2012) Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater 2012:1–10CrossRef Yusop AH, Bakir AA, Shaharom NA et al (2012) Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater 2012:1–10CrossRef
go back to reference Yusop AHM, Daud NM, Nur H et al (2015) Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants. Sci Rep 5:11194. doi:10.1038/srep11194 CrossRef Yusop AHM, Daud NM, Nur H et al (2015) Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants. Sci Rep 5:11194. doi:10.​1038/​srep11194 CrossRef
go back to reference Zberg B, Uggowitzer PJ, Löffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8(11):887–891CrossRef Zberg B, Uggowitzer PJ, Löffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8(11):887–891CrossRef
go back to reference Zhang YS, Zhu XM, Zhong SH (2004) Effect of alloying elements on the electrochemical polarization behavior and passive film of Fe–Mn base alloys in various aqueous solutions. Corros Sci 46:853–876CrossRef Zhang YS, Zhu XM, Zhong SH (2004) Effect of alloying elements on the electrochemical polarization behavior and passive film of Fe–Mn base alloys in various aqueous solutions. Corros Sci 46:853–876CrossRef
go back to reference Zhang EL, Chen HY, Shen F et al (2010) Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J Mater Sci Mater Med 21:2151–2163CrossRef Zhang EL, Chen HY, Shen F et al (2010) Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J Mater Sci Mater Med 21:2151–2163CrossRef
go back to reference Zhen Z, Xi TF, Zheng YF (2013) A review on in vitro corrosion performance test of biodegradable metallic materials. Trans Nonferrous Met Soc China 23:2283–2293CrossRef Zhen Z, Xi TF, Zheng YF (2013) A review on in vitro corrosion performance test of biodegradable metallic materials. Trans Nonferrous Met Soc China 23:2283–2293CrossRef
go back to reference Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R Rep 77:1–34CrossRef Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R Rep 77:1–34CrossRef
go back to reference Zhu S, Huang N, Xu L et al (2009) Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surf Coat Technol 203:1523–1529CrossRef Zhu S, Huang N, Xu L et al (2009) Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surf Coat Technol 203:1523–1529CrossRef
go back to reference Zivic F, Babic M, Grujovic N et al (2012) Effect of vacuum-treatment on deformation properties of PMMA bone cement. J Mech Behav Biomed Mater 5:129–138CrossRef Zivic F, Babic M, Grujovic N et al (2012) Effect of vacuum-treatment on deformation properties of PMMA bone cement. J Mech Behav Biomed Mater 5:129–138CrossRef
go back to reference Zivic F, Babic M, Grujovic N et al (2013) Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopaedic AISI 316LVM stainless steel during reciprocating sliding. Wear 300:65–77CrossRef Zivic F, Babic M, Grujovic N et al (2013) Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopaedic AISI 316LVM stainless steel during reciprocating sliding. Wear 300:65–77CrossRef
Metadata
Title
Biodegradable Metals as Biomaterials for Clinical Practice: Iron-Based Materials
Authors
Fatima Zivic
Nenad Grujovic
Eva Pellicer
Jordi Sort
Slobodan Mitrovic
Dragan Adamovic
Maja Vulovic
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-68025-5_9