Skip to main content
Top

2024 | OriginalPaper | Chapter

Biogenic TiO2 Nanoparticles for Advanced Antimicrobial and Antiviral Applications

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Titanium dioxide, which is nontoxic and abundant in nature, has excellent optical and physicochemical properties. Hence, titanium dioxide nanoparticles (TiO2NPs) are generally applied as photocatalysts because of their non-toxicity, chemical stability, resistance to corrosion, and low-cost requirement for production. However, recent studies on the biogenic synthesis of TiO2NPs reported its potential antimicrobial activities. Thus, this chapter explains the application of TiO2NPs to inhibit various bacterial and fungal pathogens. Certain bacteria such as Acinetobacter baumannii S1, Acinetobacter seohaensis N3, Aeromonas hydrophila, Bacillus cereus A1, Bacillus mycoides, Rummeliibacillus pycnus M1, and Streptomyces sp. HC1 are reported to synthesize mostly spherical TiO2NPs that can vary from 20 to 80 nm in size. Likewise, fungi such as Aspergillus flavus, Fomes fomentarius, Fomitopsis pinicola, and Trichoderma citrinoviride can also synthesize therapeutically active TiO2NPs. Medicinal plants have rich phytochemistry that has been exploited for the synthesis of TiO2NPs. Certain plants such as Azadirachta indica, Ledebouria revoluta, Luffa acutangula, Mentha arvensis, Ocimum americanum, Piper betel, Prunus yedoensis, and Trigonella foenum-graecum can also synthesize TiO2NPs where extracts of different plant parts are used. The biogenic TiO2NPs are reported to inhibit pathogenic bacteria such as Bacillus cereus, Clostridium perfringens, Clostridium tetani, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella paratyphi, Salmonella typhi, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Vibrio cholerae, and Yersinia enterocolitica. Similarly, biologically fabricated TiO2NPs can effectively inhibit pathogenic fungi such as Aspergillus niger and Candida albicans. Hence, a further in-depth understanding of the mechanism of action of TiO2NPs against all these bacterial and fungal pathogens can help to develop broad-spectrum novel nanomedicine in future. Furthermore, there is a great scope in future for exploring the antiviral properties of the biogenic TiO2NPs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Acuña-Fuentes, N. L., Vargas-Hernandez, M., Rivero-Montejo, S. D. J., Rivas-Ramirez, L. K., Macias-Bobadilla, I., Palos-Barba, V., Rivera-Muñoz, E. M., Guevara-Gonzalez, R. G., & Torres-Pacheco, I. (2022). Antiviral activity of TiO2 NPs against tobacco mosaic virus in chili pepper (Capsicum annuum L.). Agriculture, 12(12), 2101.CrossRef Acuña-Fuentes, N. L., Vargas-Hernandez, M., Rivero-Montejo, S. D. J., Rivas-Ramirez, L. K., Macias-Bobadilla, I., Palos-Barba, V., Rivera-Muñoz, E. M., Guevara-Gonzalez, R. G., & Torres-Pacheco, I. (2022). Antiviral activity of TiO2 NPs against tobacco mosaic virus in chili pepper (Capsicum annuum L.). Agriculture, 12(12), 2101.CrossRef
go back to reference Adersh, A., Kulkarni, A. R., Ghosh, S., More, P., Chopade, B. A., & Gandhi, M. N. (2015). Surface defect rich ZnO quantum dots as antioxidant inhibiting α-amylase and α-glucosidase: A potential anti-diabetic nanomedicine. Journal of Materials Chemistry B, 3(22), 4597–4606.CrossRef Adersh, A., Kulkarni, A. R., Ghosh, S., More, P., Chopade, B. A., & Gandhi, M. N. (2015). Surface defect rich ZnO quantum dots as antioxidant inhibiting α-amylase and α-glucosidase: A potential anti-diabetic nanomedicine. Journal of Materials Chemistry B, 3(22), 4597–4606.CrossRef
go back to reference Ağçeli, G. K., Hammachi, H., Kodal, S. P., Cihangir, N., & Aksu, Z. (2020). A novel approach to synthesize TiO2 nanoparticles: Biosynthesis by using Streptomyces sp. HC1. Journal of Inorganic and Organometallic Polymers and Materials, 30, 3221–3229.CrossRef Ağçeli, G. K., Hammachi, H., Kodal, S. P., Cihangir, N., & Aksu, Z. (2020). A novel approach to synthesize TiO2 nanoparticles: Biosynthesis by using Streptomyces sp. HC1. Journal of Inorganic and Organometallic Polymers and Materials, 30, 3221–3229.CrossRef
go back to reference Ahmad, W., Jaiswal, K. K., & Soni, S. (2020). Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorganic and Nano-Metal Chemistry, 50(10), 1032–1038.CrossRef Ahmad, W., Jaiswal, K. K., & Soni, S. (2020). Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorganic and Nano-Metal Chemistry, 50(10), 1032–1038.CrossRef
go back to reference Amanulla, A. M., & Sundaram, R. J. M. T. P. (2019). Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Materials Today: Proceedings, 8, 323–331. Amanulla, A. M., & Sundaram, R. J. M. T. P. (2019). Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Materials Today: Proceedings, 8, 323–331.
go back to reference Anbumani, D., Vizhi Dhandapani, K., Manoharan, J., Babujanarthanam, R., Bashir, A. K. H., Muthusamy, K., & Kanimozhi, K. (2022). Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. Journal of King Saud University-Science, 34(3), 101896.CrossRef Anbumani, D., Vizhi Dhandapani, K., Manoharan, J., Babujanarthanam, R., Bashir, A. K. H., Muthusamy, K., & Kanimozhi, K. (2022). Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. Journal of King Saud University-Science, 34(3), 101896.CrossRef
go back to reference Arya, S., Sonawane, H., Math, S., Tambade, P., Chaskar, M., & Shinde, D. (2021). Biogenic titanium nanoparticles (TiO2 NPs) from Tricoderma citrinoviride extract: Synthesis, characterization and antibacterial activity against extremely drug-resistant Pseudomonas aeruginosa. International Nano Letters, 11, 35–42.CrossRef Arya, S., Sonawane, H., Math, S., Tambade, P., Chaskar, M., & Shinde, D. (2021). Biogenic titanium nanoparticles (TiO2 NPs) from Tricoderma citrinoviride extract: Synthesis, characterization and antibacterial activity against extremely drug-resistant Pseudomonas aeruginosa. International Nano Letters, 11, 35–42.CrossRef
go back to reference Aslam, M., Abdullah, A. Z., & Rafatullah, M. (2021). Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. Journal of Industrial and Engineering Chemistry, 98, 1–16.CrossRef Aslam, M., Abdullah, A. Z., & Rafatullah, M. (2021). Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. Journal of Industrial and Engineering Chemistry, 98, 1–16.CrossRef
go back to reference Aswini, R., Murugesan, S., & Kannan, K. (2021). Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity. International Journal of Environmental Analytical Chemistry, 101(15), 2926–2936.CrossRef Aswini, R., Murugesan, S., & Kannan, K. (2021). Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity. International Journal of Environmental Analytical Chemistry, 101(15), 2926–2936.CrossRef
go back to reference Blecher, K., Nasir, A., & Friedman, A. (2011). The growing role of nanotechnology in combating infectious disease. Virulence, 2(5), 395–401.PubMedCrossRef Blecher, K., Nasir, A., & Friedman, A. (2011). The growing role of nanotechnology in combating infectious disease. Virulence, 2(5), 395–401.PubMedCrossRef
go back to reference Bloch, K., Pardesi, K., Satriano, C., & Ghosh, S. (2021). Bacteriogenic platinum nanoparticles for application in nanomedicine. Frontiers in Chemistry, 9, 624344.PubMedPubMedCentralCrossRef Bloch, K., Pardesi, K., Satriano, C., & Ghosh, S. (2021). Bacteriogenic platinum nanoparticles for application in nanomedicine. Frontiers in Chemistry, 9, 624344.PubMedPubMedCentralCrossRef
go back to reference Buazar, F., Baghlani-Nejazd, M. H., Badri, M., Kashisaz, M., Khaledi-Nasab, A., & Kroushawi, F. (2016). Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch-Stärke, 68(7–8), 796–804.CrossRef Buazar, F., Baghlani-Nejazd, M. H., Badri, M., Kashisaz, M., Khaledi-Nasab, A., & Kroushawi, F. (2016). Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch-Stärke, 68(7–8), 796–804.CrossRef
go back to reference Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces, B: Biointerfaces, 79(1), 5–18.PubMedCrossRef Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces, B: Biointerfaces, 79(1), 5–18.PubMedCrossRef
go back to reference Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278–284.PubMedCrossRef Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278–284.PubMedCrossRef
go back to reference Drummer, S., Madzimbamuto, T., & Chowdhury, M. (2021). Green synthesis of transition-metal nanoparticles and their oxides: A review. Materials, 14(11), 2700.PubMedPubMedCentralCrossRef Drummer, S., Madzimbamuto, T., & Chowdhury, M. (2021). Green synthesis of transition-metal nanoparticles and their oxides: A review. Materials, 14(11), 2700.PubMedPubMedCentralCrossRef
go back to reference Gami, B., Bloch, K., Mohammed, S. M., Karmakar, S., Shukla, S., Asok, A., Thongmee, S., & Ghosh, S. (2022). Leucophyllum frutescens mediated synthesis of silver and gold nanoparticles for catalytic dye degradation. Frontiers in Chemistry, 10, 932416.PubMedPubMedCentralCrossRef Gami, B., Bloch, K., Mohammed, S. M., Karmakar, S., Shukla, S., Asok, A., Thongmee, S., & Ghosh, S. (2022). Leucophyllum frutescens mediated synthesis of silver and gold nanoparticles for catalytic dye degradation. Frontiers in Chemistry, 10, 932416.PubMedPubMedCentralCrossRef
go back to reference Ghosh, S. (2018). Copper and palladium nanostructures: A bacteriogenic approach. Applied Microbiology and Biotechnology, 101, 7693–7701.CrossRef Ghosh, S. (2018). Copper and palladium nanostructures: A bacteriogenic approach. Applied Microbiology and Biotechnology, 101, 7693–7701.CrossRef
go back to reference Ghosh, S., & Webster, T. J. (2021a). Nanobiotechnology: Microbes and plant assisted synthesis of nanoparticles, mechanisms and applications. Elsevier Inc. eBook ISBN: 978-0-12-823115-9; Paperback ISBN: 978-0-12-822878-4. Ghosh, S., & Webster, T. J. (2021a). Nanobiotechnology: Microbes and plant assisted synthesis of nanoparticles, mechanisms and applications. Elsevier Inc. eBook ISBN: 978-0-12-823115-9; Paperback ISBN: 978-0-12-822878-4.
go back to reference Ghosh, S., & Webster, T. J. (2021b). Mesoporous silica based nanostructures for bone tissue regeneration. Front Mater, 8, 692309.CrossRef Ghosh, S., & Webster, T. J. (2021b). Mesoporous silica based nanostructures for bone tissue regeneration. Front Mater, 8, 692309.CrossRef
go back to reference Ghosh, S., Chacko, M. J., Harke, A. N., Gurav, S. P., Joshi, K. A., Dhepe, A., Kulkarni, A. S., Shinde, V. S., Parihar, V. S., Asok, A., & Banerjee, K. (2016a). Barleria prionitis leaf mediated synthesis of silver and gold nanocatalysts. Journal of Nanomedicine & Nanotechnology, 7(4), 394.CrossRef Ghosh, S., Chacko, M. J., Harke, A. N., Gurav, S. P., Joshi, K. A., Dhepe, A., Kulkarni, A. S., Shinde, V. S., Parihar, V. S., Asok, A., & Banerjee, K. (2016a). Barleria prionitis leaf mediated synthesis of silver and gold nanocatalysts. Journal of Nanomedicine & Nanotechnology, 7(4), 394.CrossRef
go back to reference Ghosh, S., Gurav, S. P., Harke, A. N., Chacko, M. J., Joshi, K. A., Dhepe, A., Charolkar, C., Shinde, V. S., Kitture, R., Parihar, V. S., Banerjee, K., Kamble, N., Bellare, J., & Chopade, B. A. (2016b). Dioscorea oppositifolia mediated synthesis of gold and silver nanoparticles with catalytic activity. Journal of Nanomedicine & Nanotechnology, 7(5), 1000398.CrossRef Ghosh, S., Gurav, S. P., Harke, A. N., Chacko, M. J., Joshi, K. A., Dhepe, A., Charolkar, C., Shinde, V. S., Kitture, R., Parihar, V. S., Banerjee, K., Kamble, N., Bellare, J., & Chopade, B. A. (2016b). Dioscorea oppositifolia mediated synthesis of gold and silver nanoparticles with catalytic activity. Journal of Nanomedicine & Nanotechnology, 7(5), 1000398.CrossRef
go back to reference Guo, Y., Ma, L., Mao, K., Ju, M., Bai, Y., Zhao, J., & Zeng, X. C. (2019). Eighteen functional monolayer metal oxides: Wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility. Nanoscale Horizons, 4(3), 592–600.CrossRef Guo, Y., Ma, L., Mao, K., Ju, M., Bai, Y., Zhao, J., & Zeng, X. C. (2019). Eighteen functional monolayer metal oxides: Wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility. Nanoscale Horizons, 4(3), 592–600.CrossRef
go back to reference Hemalatha, K., Madhumitha, G., Kajbafvala, A., Anupama, N., Sompalle, R., & Roopan, S. M. (2013). Function of nanocatalyst in chemistry of organic compounds revolution: An overview. Journal of Nanomaterials, 2013, 4.CrossRef Hemalatha, K., Madhumitha, G., Kajbafvala, A., Anupama, N., Sompalle, R., & Roopan, S. M. (2013). Function of nanocatalyst in chemistry of organic compounds revolution: An overview. Journal of Nanomaterials, 2013, 4.CrossRef
go back to reference Hunagund, S. M., Desai, V. R., Kadadevarmath, J. S., Barretto, D. A., Vootla, S., & Sidarai, A. H. (2016). Biogenic and chemogenic synthesis of TiO2 NPs via hydrothermal route and their antibacterial activities. RSC Advances, 6(99), 97438–97444.CrossRef Hunagund, S. M., Desai, V. R., Kadadevarmath, J. S., Barretto, D. A., Vootla, S., & Sidarai, A. H. (2016). Biogenic and chemogenic synthesis of TiO2 NPs via hydrothermal route and their antibacterial activities. RSC Advances, 6(99), 97438–97444.CrossRef
go back to reference Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650.CrossRef Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650.CrossRef
go back to reference Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19, 355–374.CrossRef Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19, 355–374.CrossRef
go back to reference Jayaseelan, C., Rahuman, A. A., Roopan, S. M., Kirthi, A. V., Venkatesan, J., Kim, S. K., Iyappan, M., & Siva, C. (2013). Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 107, 82–89.PubMedCrossRef Jayaseelan, C., Rahuman, A. A., Roopan, S. M., Kirthi, A. V., Venkatesan, J., Kim, S. K., Iyappan, M., & Siva, C. (2013). Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 107, 82–89.PubMedCrossRef
go back to reference Karmakar, S., Ghosh, S., & Kumbhakar, P. (2020). Enhanced sunlight driven photocatalytic and antibacterial activity of flower-like ZnO@MoS2 nanocomposite. Journal of Nanoparticle Research, 22, 11.CrossRef Karmakar, S., Ghosh, S., & Kumbhakar, P. (2020). Enhanced sunlight driven photocatalytic and antibacterial activity of flower-like ZnO@MoS2 nanocomposite. Journal of Nanoparticle Research, 22, 11.CrossRef
go back to reference Khaiboullina, S., Uppal, T., Dhabarde, N., Subramanian, V. R., & Verma, S. C. (2020). Inactivation of human coronavirus by titania nanoparticle coatings and UVC radiation: Throwing light on SARS-CoV-2. Viruses, 13(1), 19.PubMedPubMedCentralCrossRef Khaiboullina, S., Uppal, T., Dhabarde, N., Subramanian, V. R., & Verma, S. C. (2020). Inactivation of human coronavirus by titania nanoparticle coatings and UVC radiation: Throwing light on SARS-CoV-2. Viruses, 13(1), 19.PubMedPubMedCentralCrossRef
go back to reference Kitture, R., Ghosh, S., More, P. A., Gaware, S., Datar, S., Chopade, B. A., & Kale, S. N. (2015). Curcumin-loaded, self-assembled aloe vera template for superior antioxidant activity and trans-membrane drug release. Journal of Nanoscience and Nanotechnology, 15(6), 4039–4045.PubMedCrossRef Kitture, R., Ghosh, S., More, P. A., Gaware, S., Datar, S., Chopade, B. A., & Kale, S. N. (2015). Curcumin-loaded, self-assembled aloe vera template for superior antioxidant activity and trans-membrane drug release. Journal of Nanoscience and Nanotechnology, 15(6), 4039–4045.PubMedCrossRef
go back to reference Kubacka, A., Diez, M. S., Rojo, D., Bargiela, R., Ciordia, S., Zapico, I., Albar, J. P., Barbas, C., Martins dos Santos, V. A., Fernández-García, M., & Ferrer, M. (2014). Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Scientific Reports, 4(1), 4134.PubMedPubMedCentralCrossRef Kubacka, A., Diez, M. S., Rojo, D., Bargiela, R., Ciordia, S., Zapico, I., Albar, J. P., Barbas, C., Martins dos Santos, V. A., Fernández-García, M., & Ferrer, M. (2014). Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Scientific Reports, 4(1), 4134.PubMedPubMedCentralCrossRef
go back to reference Lazar, M. A., Varghese, S., & Nair, S. S. (2012). Photocatalytic water treatment by titanium dioxide: Recent updates. Catalysts, 2(4), 572–601.CrossRef Lazar, M. A., Varghese, S., & Nair, S. S. (2012). Photocatalytic water treatment by titanium dioxide: Recent updates. Catalysts, 2(4), 572–601.CrossRef
go back to reference León-Gutiérrez, G., Cabello-Gutiérrez, C., Martínez-Gómez, M. H., Azuara, P., Madden, B., Shalkow, J., & Mejía, A. (2021). Secondary metabolites in functionalized titanium dioxide (TIO2) nanoparticles: A novel and safe virucide against SARS-CoV-2. Journal of Nano Research, 70, 137–145.CrossRef León-Gutiérrez, G., Cabello-Gutiérrez, C., Martínez-Gómez, M. H., Azuara, P., Madden, B., Shalkow, J., & Mejía, A. (2021). Secondary metabolites in functionalized titanium dioxide (TIO2) nanoparticles: A novel and safe virucide against SARS-CoV-2. Journal of Nano Research, 70, 137–145.CrossRef
go back to reference Lingaraju, K., Basavaraj, R. B., Jayanna, K., Bhavana, S., Devaraja, S., Swamy, H. K., Nagaraju, G., Nagabhushana, H., & Naika, H. R. (2021). Biocompatible fabrication of TiO2 nanoparticles: Antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties. Inorganic Chemistry Communications, 127, 108505.CrossRef Lingaraju, K., Basavaraj, R. B., Jayanna, K., Bhavana, S., Devaraja, S., Swamy, H. K., Nagaraju, G., Nagabhushana, H., & Naika, H. R. (2021). Biocompatible fabrication of TiO2 nanoparticles: Antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties. Inorganic Chemistry Communications, 127, 108505.CrossRef
go back to reference Manikandan, V., Velmurugan, P., Jayanthi, P., Park, J. H., Chang, W. S., Park, Y. J., & Oh, B. T. (2018). Biogenic synthesis from Prunus× yedoensis leaf extract, characterization, and photocatalytic and antibacterial activity of TiO2 nanoparticles. Research on Chemical Intermediates, 44, 2489–2502.CrossRef Manikandan, V., Velmurugan, P., Jayanthi, P., Park, J. H., Chang, W. S., Park, Y. J., & Oh, B. T. (2018). Biogenic synthesis from Prunus× yedoensis leaf extract, characterization, and photocatalytic and antibacterial activity of TiO2 nanoparticles. Research on Chemical Intermediates, 44, 2489–2502.CrossRef
go back to reference Meenatchisundaram, N., Chellamuthu, J., Jeyaraman, A. R., Arjunan, N., Muthuramalingam, J. B., & Karuppuchamy, S. (2022). Biosynthesized TiO2 nanoparticles an efficient biogenic material for photocatalytic and antibacterial applications. Energy & Environment, 33(2), 377–398.CrossRef Meenatchisundaram, N., Chellamuthu, J., Jeyaraman, A. R., Arjunan, N., Muthuramalingam, J. B., & Karuppuchamy, S. (2022). Biosynthesized TiO2 nanoparticles an efficient biogenic material for photocatalytic and antibacterial applications. Energy & Environment, 33(2), 377–398.CrossRef
go back to reference Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356.PubMedCrossRef Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356.PubMedCrossRef
go back to reference Moradpoor, H., Safaei, M., Golshah, A., Mozaffari, H. R., Sharifi, R., Imani, M. M., & Mobarakeh, M. S. (2021). Green synthesis and antifungal effect of titanium dioxide nanoparticles on oral Candida albicans pathogen. Inorganic Chemistry Communications, 130, 108748.CrossRef Moradpoor, H., Safaei, M., Golshah, A., Mozaffari, H. R., Sharifi, R., Imani, M. M., & Mobarakeh, M. S. (2021). Green synthesis and antifungal effect of titanium dioxide nanoparticles on oral Candida albicans pathogen. Inorganic Chemistry Communications, 130, 108748.CrossRef
go back to reference Nabi, G., Khalid, N. R., Tahir, M. B., Rafique, M., Rizwan, M., Hussain, S., Iqbal, T., & Majid, A. (2018). A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts. Journal of Inorganic and Organometallic Polymers and Materials, 28, 1552–1564.CrossRef Nabi, G., Khalid, N. R., Tahir, M. B., Rafique, M., Rizwan, M., Hussain, S., Iqbal, T., & Majid, A. (2018). A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts. Journal of Inorganic and Organometallic Polymers and Materials, 28, 1552–1564.CrossRef
go back to reference Nadeem, M., Tungmunnithum, D., Hano, C., Abbasi, B. H., Hashmi, S. S., Ahmad, W., & Zahir, A. (2018). The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chemistry Letters and Reviews, 11(4), 492–502.CrossRef Nadeem, M., Tungmunnithum, D., Hano, C., Abbasi, B. H., Hashmi, S. S., Ahmad, W., & Zahir, A. (2018). The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chemistry Letters and Reviews, 11(4), 492–502.CrossRef
go back to reference Nohynek, G. J., Lademann, J., Ribaud, C., & Roberts, M. S. (2007). Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Critical Reviews in Toxicology, 37(3), 251–277.PubMedCrossRef Nohynek, G. J., Lademann, J., Ribaud, C., & Roberts, M. S. (2007). Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Critical Reviews in Toxicology, 37(3), 251–277.PubMedCrossRef
go back to reference Órdenes-Aenishanslins, N. A., Saona, L. A., Durán-Toro, V. M., Monrás, J. P., Bravo, D. M., & Pérez-Donoso, J. M. (2014). Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microbial Cell Factories, 13, 90.PubMedPubMedCentral Órdenes-Aenishanslins, N. A., Saona, L. A., Durán-Toro, V. M., Monrás, J. P., Bravo, D. M., & Pérez-Donoso, J. M. (2014). Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microbial Cell Factories, 13, 90.PubMedPubMedCentral
go back to reference Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14, 1109.CrossRef Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14, 1109.CrossRef
go back to reference Rajakumar, G., Rahuman, A. A., Roopan, S. M., Khanna, V. G., Elango, G., Kamaraj, C., Zahir, A. A., & Velayutham, K. (2012). Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 91, 23–29.PubMedCrossRef Rajakumar, G., Rahuman, A. A., Roopan, S. M., Khanna, V. G., Elango, G., Kamaraj, C., Zahir, A. A., & Velayutham, K. (2012). Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 91, 23–29.PubMedCrossRef
go back to reference Rehman, S., Farooq, R., Jermy, R., Mousa Asiri, S., Ravinayagam, V., Al Jindan, R., Alsalem, Z., Shah, M. A., Reshi, Z., Sabit, H., & Alam Khan, F. (2020a). A wild Fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application. Biomolecules, 10(4), 622.PubMedPubMedCentralCrossRef Rehman, S., Farooq, R., Jermy, R., Mousa Asiri, S., Ravinayagam, V., Al Jindan, R., Alsalem, Z., Shah, M. A., Reshi, Z., Sabit, H., & Alam Khan, F. (2020a). A wild Fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application. Biomolecules, 10(4), 622.PubMedPubMedCentralCrossRef
go back to reference Rehman, S., Jermy, R., Asiri, S. M., Shah, M. A., Farooq, R., Ravinayagam, V., Ansari, M. A., Alsalem, Z., Al Jindan, R., Reshi, Z., & Khan, F. A. (2020b). Using Fomitopsis pinicola for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. RSC Advances, 10(53), 32137–32147.PubMedPubMedCentralCrossRef Rehman, S., Jermy, R., Asiri, S. M., Shah, M. A., Farooq, R., Ravinayagam, V., Ansari, M. A., Alsalem, Z., Al Jindan, R., Reshi, Z., & Khan, F. A. (2020b). Using Fomitopsis pinicola for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. RSC Advances, 10(53), 32137–32147.PubMedPubMedCentralCrossRef
go back to reference Robkhob, P., Ghosh, S., Bellare, J., Jamdade, D., Tang, I. M., & Thongmee, S. (2020). Effect of silver doping on antidiabetic and antioxidant potential of ZnO nanorods. Journal of Trace Elements in Medicine and Biology, 58, 126448.PubMedCrossRef Robkhob, P., Ghosh, S., Bellare, J., Jamdade, D., Tang, I. M., & Thongmee, S. (2020). Effect of silver doping on antidiabetic and antioxidant potential of ZnO nanorods. Journal of Trace Elements in Medicine and Biology, 58, 126448.PubMedCrossRef
go back to reference Roopan, S. M., & Khan, M. A. (2021). MoS2 based ternary composites: Review on heterogeneous materials as catalyst for photocatalytic degradation. Catalysis Reviews, 27, 1–74. Roopan, S. M., & Khan, M. A. (2021). MoS2 based ternary composites: Review on heterogeneous materials as catalyst for photocatalytic degradation. Catalysis Reviews, 27, 1–74.
go back to reference Sagadevan, S., Imteyaz, S., Murugan, B., Lett, J. A., Sridewi, N., Weldegebrieal, G. K., Fatimah, I., & Oh, W. C. (2022). A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Processing and Synthesis, 11(1), 44–63.CrossRef Sagadevan, S., Imteyaz, S., Murugan, B., Lett, J. A., Sridewi, N., Weldegebrieal, G. K., Fatimah, I., & Oh, W. C. (2022). A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Processing and Synthesis, 11(1), 44–63.CrossRef
go back to reference Santos, C. S., Gabriel, B., Blanchy, M., Menes, O., García, D., Blanco, M., Arconada, N., & Neto, V. (2015). Industrial applications of nanoparticles–A prospective overview. Materials Today: Proceedings, 2(1), 456–465. Santos, C. S., Gabriel, B., Blanchy, M., Menes, O., García, D., Blanco, M., Arconada, N., & Neto, V. (2015). Industrial applications of nanoparticles–A prospective overview. Materials Today: Proceedings, 2(1), 456–465.
go back to reference Sharma, M., Behl, K., Nigam, S., & Joshi, M. (2018). TiO2-GO nanocomposite for energy and environmental applications: A green synthesis approach. Vacuum, 156, 434–439.CrossRef Sharma, M., Behl, K., Nigam, S., & Joshi, M. (2018). TiO2-GO nanocomposite for energy and environmental applications: A green synthesis approach. Vacuum, 156, 434–439.CrossRef
go back to reference Shende, S., Joshi, K. A., Kulkarni, A. S., Shinde, V. S., Parihar, V. S., Kitture, R., Banerjee, K., Kamble, N., Bellare, J., & Ghosh, S. (2017). Litchi chinensis peel: A novel source for synthesis of gold and silver nanocatalysts. Global Journal of Nanomedicine, 3(1), 555603. Shende, S., Joshi, K. A., Kulkarni, A. S., Shinde, V. S., Parihar, V. S., Kitture, R., Banerjee, K., Kamble, N., Bellare, J., & Ghosh, S. (2017). Litchi chinensis peel: A novel source for synthesis of gold and silver nanocatalysts. Global Journal of Nanomedicine, 3(1), 555603.
go back to reference Shende, S., Joshi, K. A., Kulkarni, A. S., Charolkar, C., Shinde, V. S., Parihar, V. S., Kitture, R., Banerjee, K., Kamble, N., Bellare, J., & Ghosh, S. (2018). Platanus orientalis leaf mediated rapid synthesis of catalytic gold and silver nanoparticles. Journal of Nanomedicine & Nanotechnology, 9(2), 494.CrossRef Shende, S., Joshi, K. A., Kulkarni, A. S., Charolkar, C., Shinde, V. S., Parihar, V. S., Kitture, R., Banerjee, K., Kamble, N., Bellare, J., & Ghosh, S. (2018). Platanus orientalis leaf mediated rapid synthesis of catalytic gold and silver nanoparticles. Journal of Nanomedicine & Nanotechnology, 9(2), 494.CrossRef
go back to reference Shimi, A. K., Ahmed, H. M., Wahab, M., Katheria, S., Wabaidur, S. M., Eldesoky, G. E., & Rane, K. P. (2022). Synthesis and applications of green synthesized TiO2 nanoparticles for photocatalytic dye degradation and antibacterial activity. Journal of Nanomaterials, 2022, 7060388.CrossRef Shimi, A. K., Ahmed, H. M., Wahab, M., Katheria, S., Wabaidur, S. M., Eldesoky, G. E., & Rane, K. P. (2022). Synthesis and applications of green synthesized TiO2 nanoparticles for photocatalytic dye degradation and antibacterial activity. Journal of Nanomaterials, 2022, 7060388.CrossRef
go back to reference Subhapriya, S., & Gomathipriya, P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis, 116, 215–220.PubMedCrossRef Subhapriya, S., & Gomathipriya, P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis, 116, 215–220.PubMedCrossRef
go back to reference Thakur, B. K., Kumar, A., & Kumar, D. (2019). Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. South African Journal of Botany, 124, 223–227.CrossRef Thakur, B. K., Kumar, A., & Kumar, D. (2019). Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. South African Journal of Botany, 124, 223–227.CrossRef
go back to reference Vasanth, V., Murugesh, K. A., & Susikaran, S. (2022). Synthesis of titanium dioxide nanoparticles using Spirulina platensis algae extract. The Pharma Innovation, 11(7), 266–269. Vasanth, V., Murugesh, K. A., & Susikaran, S. (2022). Synthesis of titanium dioxide nanoparticles using Spirulina platensis algae extract. The Pharma Innovation, 11(7), 266–269.
go back to reference Vijayakumar, S., Vidhya, E., Anand, G. C., Nilavukkarasi, M., Punitha, V. N., & Sakthivel, B. (2020). Eco friendly synthesis of TiO2 nanoparticles using aqueous Ocimum americanum L. leaf extracts and their antimicrobial, anti-proliferative and photocatalytic activities. Vegetos, 33, 805–810.CrossRef Vijayakumar, S., Vidhya, E., Anand, G. C., Nilavukkarasi, M., Punitha, V. N., & Sakthivel, B. (2020). Eco friendly synthesis of TiO2 nanoparticles using aqueous Ocimum americanum L. leaf extracts and their antimicrobial, anti-proliferative and photocatalytic activities. Vegetos, 33, 805–810.CrossRef
go back to reference Wang, Z., Haidry, A. A., Xie, L., Zavabeti, A., Li, Z., Yin, W., Fomekong, R. L., & Saruhan, B. (2020). Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method. Applied Surface Science, 533, 147383.CrossRef Wang, Z., Haidry, A. A., Xie, L., Zavabeti, A., Li, Z., Yin, W., Fomekong, R. L., & Saruhan, B. (2020). Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method. Applied Surface Science, 533, 147383.CrossRef
go back to reference Zhang, W., Li, Y., Su, Y., Mao, K., & Wang, Q. (2012). Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent. Journal of Hazardous Materials, 215-216, 252–258.PubMedCrossRef Zhang, W., Li, Y., Su, Y., Mao, K., & Wang, Q. (2012). Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent. Journal of Hazardous Materials, 215-216, 252–258.PubMedCrossRef
Metadata
Title
Biogenic TiO2 Nanoparticles for Advanced Antimicrobial and Antiviral Applications
Authors
Pranav Pandya
Sougata Ghosh
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50093-0_7

Premium Partners