Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: adhäsion KLEBEN & DICHTEN 1-2/2022

01-02-2022 | Aus Forschung und Entwicklung

Bioinspirierte Klebstoffe zur Anwendung in wässrigen Flüssigkeiten

Authors: Prof. Dr. Thomas Scheibel, Vanessa T. Trossmann, Annika Lechner, Dr. Hendrik Bargel, Dr. Martin Humenik, Prof. Dr. Michal Žurovec

Published in: adhäsion KLEBEN & DICHTEN | Issue 1-2/2022

Login to get access
share
SHARE

Auszug

Natürliche Klebproteine können als Vorbild für die Klebstoffentwicklung dienen. Der nachfolgende Artikel befasst sich mit den Mechanismen von natürlichen Klebproteinen aquatischer Organismen zur Nass- und Unterwasseranhaftung und verdeutlicht, wie die identifizierten Strategien aus der Natur als Vorbild für die Entwicklung neuer, bioinspirierter Klebstoffe für verschiedene Anwendungen in feuchter Umgebung dienen. …
Literature
[1]
go back to reference Fan, H. and J.P. Gong: Bioinspired Underwater Adhesives. Advanced Materials, 2021. 33 (44): p. 2102983. Fan, H. and J.P. Gong: Bioinspired Underwater Adhesives. Advanced Materials, 2021. 33 (44): p. 2102983.
[2]
go back to reference Lee, B.P. et al.: Mussel-Inspired Adhesives and Coatings. Annu Rev Mater Res, 2011. 41: p. 99-132. Lee, B.P. et al.: Mussel-Inspired Adhesives and Coatings. Annu Rev Mater Res, 2011. 41: p. 99-132.
[3]
go back to reference Waite, J.H.: Mussel adhesion - essential footwork. Journal of Experimental Biology, 2017. 220 (4): p. 517-530. Waite, J.H.: Mussel adhesion - essential footwork. Journal of Experimental Biology, 2017. 220 (4): p. 517-530.
[4]
go back to reference Rathi, S. et al.: Protein-based bioadhesives and bioglues. Polymers for Advanced Technologies, 2019. 30 (2): p. 217-234. Rathi, S. et al.: Protein-based bioadhesives and bioglues. Polymers for Advanced Technologies, 2019. 30 (2): p. 217-234.
[5]
go back to reference Hofman, A.H. et al.: Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox. Advanced Materials, 2018. 30 (19): p. 1704640. Hofman, A.H. et al.: Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox. Advanced Materials, 2018. 30 (19): p. 1704640.
[6]
go back to reference Cui, M. et al.: Natural and bio-inspired underwater adhesives: Current progress and new perspectives. APL Materials, 2017. 5 (11): p. 116102. Cui, M. et al.: Natural and bio-inspired underwater adhesives: Current progress and new perspectives. APL Materials, 2017. 5 (11): p. 116102.
[7]
go back to reference Balkenende, D.W.R., S.M. Winkler, P.B. Messersmith: Marine-inspired polymers in medical adhesion. European Polymer Journal, 2019. 116: p. 134-143. Balkenende, D.W.R., S.M. Winkler, P.B. Messersmith: Marine-inspired polymers in medical adhesion. European Polymer Journal, 2019. 116: p. 134-143.
[8]
go back to reference Stewart, R.J., T.C. Ransom, V. Hlady: Natural underwater adhesives. Journal of Polymer Science Part B: Polymer Physics, 2011. 49 (11): p. 757-771. Stewart, R.J., T.C. Ransom, V. Hlady: Natural underwater adhesives. Journal of Polymer Science Part B: Polymer Physics, 2011. 49 (11): p. 757-771.
[9]
go back to reference Lee, H., N.F. Scherer, P.B. Messersmith: Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 2006. 103 (35): p. 12999. Lee, H., N.F. Scherer, P.B. Messersmith: Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 2006. 103 (35): p. 12999.
[10]
go back to reference Wang, C.S., R.J. Stewart: Localization of the bioadhesive precursors of the sandcastle worm, Phragmatopoma californica (Fewkes). Journal of Experimental Biology, 2012. 215 (2): p. 351-361. Wang, C.S., R.J. Stewart: Localization of the bioadhesive precursors of the sandcastle worm, Phragmatopoma californica (Fewkes). Journal of Experimental Biology, 2012. 215 (2): p. 351-361.
[11]
go back to reference Stewart, R.J., C.S. Wang, H. Shao: Complex coacervates as a foundation for synthetic underwater adhesives. Advances in Colloid and Interface Science, 2011. 167 (1): p. 85-93. Stewart, R.J., C.S. Wang, H. Shao: Complex coacervates as a foundation for synthetic underwater adhesives. Advances in Colloid and Interface Science, 2011. 167 (1): p. 85-93.
[12]
go back to reference Tszydel, M. et al.: Structure and Physical and Chemical Properties of Fibres from the Fifth Larval Instar of Caddis-Flies of the Species Hydropsyche angustipennis. Fibres & Textiles in Eastern Europe, 2009. 77 (6): p. 7-12. Tszydel, M. et al.: Structure and Physical and Chemical Properties of Fibres from the Fifth Larval Instar of Caddis-Flies of the Species Hydropsyche angustipennis. Fibres & Textiles in Eastern Europe, 2009. 77 (6): p. 7-12.
[13]
go back to reference Davey, P.A. et al.: Omics-based molecular analyses of adhesion by aquatic invertebrates. Biological Reviews, 2021. 96 (3): p. 1051-1075. Davey, P.A. et al.: Omics-based molecular analyses of adhesion by aquatic invertebrates. Biological Reviews, 2021. 96 (3): p. 1051-1075.
[14]
go back to reference Priemel, T. et al.: Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication. Nature Communications, 2017. 8 (1): p. 14539. Priemel, T. et al.: Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication. Nature Communications, 2017. 8 (1): p. 14539.
[15]
go back to reference Hagenau, A., M.H. Suhre, T.R. Scheibel: Nature as a blueprint for polymer material concepts: Protein fiber-reinforced composites as holdfasts of mussels. Progress in Polymer Science, 2014. 39 (8): p. 1564-1583. Hagenau, A., M.H. Suhre, T.R. Scheibel: Nature as a blueprint for polymer material concepts: Protein fiber-reinforced composites as holdfasts of mussels. Progress in Polymer Science, 2014. 39 (8): p. 1564-1583.
[16]
go back to reference Wei, W. et al.: A mussel-derived one component adhesive coacervate. Acta Biomaterialia, 2014. 10 (4): p. 1663-1670. Wei, W. et al.: A mussel-derived one component adhesive coacervate. Acta Biomaterialia, 2014. 10 (4): p. 1663-1670.
[17]
go back to reference Wang, J., T. Scheibel: Coacervation of the Recombinant Mytilus galloprovincialis Foot Protein-3b. Biomacromolecules, 2018. 19 (9): p. 3612-3619. Wang, J., T. Scheibel: Coacervation of the Recombinant Mytilus galloprovincialis Foot Protein-3b. Biomacromolecules, 2018. 19 (9): p. 3612-3619.
[18]
go back to reference Suhre, M.H.: Struktur-/Funktionsbeziehung rekombinant hergestellter Proteine aus dem Byssusfaden der Miesmuschel Mytilus galloprovincialis. Dissertation 2013: Bayreuth. Suhre, M.H.: Struktur-/Funktionsbeziehung rekombinant hergestellter Proteine aus dem Byssusfaden der Miesmuschel Mytilus galloprovincialis. Dissertation 2013: Bayreuth.
[19]
go back to reference Kord Forooshani, P., B.P. Lee: Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. Journal of Polymer Science Part A: Polymer Chemistry, 2017. 55 (1): p. 9-33. Kord Forooshani, P., B.P. Lee: Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. Journal of Polymer Science Part A: Polymer Chemistry, 2017. 55 (1): p. 9-33.
[20]
go back to reference Wang, C.S., R.J. Stewart: Multipart Copolyelectrolyte Adhesive of the Sandcastle Worm, Phragmatopoma californica (Fewkes): Catechol Oxidase Catalyzed Curing through Peptidyl-DOPA. Biomacromolecules, 2013. 14 (5): p. 1607-1617. Wang, C.S., R.J. Stewart: Multipart Copolyelectrolyte Adhesive of the Sandcastle Worm, Phragmatopoma californica (Fewkes): Catechol Oxidase Catalyzed Curing through Peptidyl-DOPA. Biomacromolecules, 2013. 14 (5): p. 1607-1617.
[21]
go back to reference Kastrup, C.J. et al.: Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proceedings of the National Academy of Sciences, 2012. 109 (52): p. 21444-21449. Kastrup, C.J. et al.: Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proceedings of the National Academy of Sciences, 2012. 109 (52): p. 21444-21449.
[22]
go back to reference Shin, J. et al.: Tissue Adhesive Catechol-Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy. Adv. Funct. Mater., 2015. 25 (25): p. 3814-3824. Shin, J. et al.: Tissue Adhesive Catechol-Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy. Adv. Funct. Mater., 2015. 25 (25): p. 3814-3824.
[23]
go back to reference Liu, Y. et al.: A moldable nanocomposite hydrogel composed of a Mussel-inspired polymer and a nanosilicate as a fit-to-shape tissue sealant. Angewandte Chemie International Edition, 2017. 56 (15): p. 4224-4228. Liu, Y. et al.: A moldable nanocomposite hydrogel composed of a Mussel-inspired polymer and a nanosilicate as a fit-to-shape tissue sealant. Angewandte Chemie International Edition, 2017. 56 (15): p. 4224-4228.
[24]
go back to reference Han, L. et al.: Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS nano, 2017. 11 (3): p. 2561-2574. Han, L. et al.: Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS nano, 2017. 11 (3): p. 2561-2574.
[25]
go back to reference Zhao, Q. et al.: Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nature materials, 2016. 15 (4): p. 407-412. Zhao, Q. et al.: Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nature materials, 2016. 15 (4): p. 407-412.
[26]
go back to reference Choi, Y.S. et al.: Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material. Biofouling, 2011. 27 (7): p. 729-737. Choi, Y.S. et al.: Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material. Biofouling, 2011. 27 (7): p. 729-737.
Metadata
Title
Bioinspirierte Klebstoffe zur Anwendung in wässrigen Flüssigkeiten
Authors
Prof. Dr. Thomas Scheibel
Vanessa T. Trossmann
Annika Lechner
Dr. Hendrik Bargel
Dr. Martin Humenik
Prof. Dr. Michal Žurovec
Publication date
01-02-2022
Publisher
Springer Fachmedien Wiesbaden
Published in
adhäsion KLEBEN & DICHTEN / Issue 1-2/2022
Print ISSN: 1619-1919
Electronic ISSN: 2192-8681
DOI
https://doi.org/10.1007/s35145-022-0554-6

Other articles of this Issue 1-2/2022

adhäsion KLEBEN & DICHTEN 1-2/2022 Go to the issue

Anlagen- und Gerätetechnik

3D-Bioprinting mit Alginat

Meistgeklickt auf Springer für Professionals

Trends aufspüren

Aus der Branche

Aus der Branche

Premium Partners