Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

7. Biokatalytische Konversion

Authors : Frank R. Bengelsdorf, Peter Dürre

Published in: CO2 und CO – Nachhaltige Kohlenstoffquellen für die Kreislaufwirtschaft

Publisher: Springer Berlin Heidelberg

share
SHARE

Zusammenfassung

Kohlenstoffdioxid, Kohlenstoffmonoxid und Methan sind gasförmige Kohlenstoffquellen, die von einer Vielzahl von Mikroorganismen verwertet werden können. Kap. 7 stellt die entsprechenden Bakterien, Cyanobakterien und Mikroalgen sowie die von ihnen verwendeten Stoffwechselwege vor. Abschließend wird der Stand der industriellen Nutzung präsentiert.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Bengelsdorf FR, Beck BH, Erz C, Hoffmeister S, Karl MM, Riegler P, Wirth S, Poehlein A, Weuster-Botz D, Dürre P (2018) Bacterial anaerobic synthesis gas (syngas) and CO 2 + H 2 fermentation. Adv Appl Microbiol 103:143–221 CrossRef Bengelsdorf FR, Beck BH, Erz C, Hoffmeister S, Karl MM, Riegler P, Wirth S, Poehlein A, Weuster-Botz D, Dürre P (2018) Bacterial anaerobic synthesis gas (syngas) and CO 2 + H 2 fermentation. Adv Appl Microbiol 103:143–221 CrossRef
4.
go back to reference Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing Clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. https://​doi.​org/​10.​1099/​ijs.​0.​63482-0 CrossRef Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing Clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. https://​doi.​org/​10.​1099/​ijs.​0.​63482-0 CrossRef
8.
go back to reference Genthner BR, Davis CL, Bryant MP (1981) Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H 2-CO 2-utilizing species. Appl Environ Microbiol 42:12–19 CrossRef Genthner BR, Davis CL, Bryant MP (1981) Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H 2-CO 2-utilizing species. Appl Environ Microbiol 42:12–19 CrossRef
14.
go back to reference Buschhorn H, Dürre P, Gottschalk G (1989) Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55:1835–1840 CrossRef Buschhorn H, Dürre P, Gottschalk G (1989) Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55:1835–1840 CrossRef
18.
go back to reference Strätz M, Sauer U, Kuhn A, Dürre P (1994) Plasmid transfer into the homoacetogen Acetobacterium woodii by electroporation and conjugation. Appl Environ Microbiol 60:1033–1037 CrossRef Strätz M, Sauer U, Kuhn A, Dürre P (1994) Plasmid transfer into the homoacetogen Acetobacterium woodii by electroporation and conjugation. Appl Environ Microbiol 60:1033–1037 CrossRef
24.
go back to reference Lynd LH, Zeikus JG (1983) Metabolism of H 2-CO 2, methanol, and glucose by Butyribacterium methylotrophicum. J Bacteriol 153:1415–1423 CrossRef Lynd LH, Zeikus JG (1983) Metabolism of H 2-CO 2, methanol, and glucose by Butyribacterium methylotrophicum. J Bacteriol 153:1415–1423 CrossRef
41.
go back to reference Huhnke RL, Lewis RS, Tanner RS (2008) Isolation and characterization of novel clostridial species. US20080057554 A1. Washington, DC: U.S. Patent and Trademark Office Huhnke RL, Lewis RS, Tanner RS (2008) Isolation and characterization of novel clostridial species. US20080057554 A1. Washington, DC: U.S. Patent and Trademark Office
42.
go back to reference Zahn JA, Saxena J (2012) Ethanologenic Clostridium species, Clostridium coskatii. US 8143037 B2. Washington, DC: U.S. Patent and Trademark Office Zahn JA, Saxena J (2012) Ethanologenic Clostridium species, Clostridium coskatii. US 8143037 B2. Washington, DC: U.S. Patent and Trademark Office
46.
go back to reference Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M (2016) Gas fermentation – a flexible platform for commercial scale production of low-carbon fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694 CrossRef Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M (2016) Gas fermentation – a flexible platform for commercial scale production of low-carbon fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694 CrossRef
47.
go back to reference Fontaine FE, Peterson WH, McCoy E, Johnson MJ, Ritter GJ (1942) A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol 43:701–715 CrossRef Fontaine FE, Peterson WH, McCoy E, Johnson MJ, Ritter GJ (1942) A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol 43:701–715 CrossRef
58.
go back to reference Basen M, Geiger I, Henke L, Müller V (2018) A genetic system for the thermophilic acetogenic bacterium Thermoanaerobacter kivui. Appl Environ Microbiol 84:e02210-17 Basen M, Geiger I, Henke L, Müller V (2018) A genetic system for the thermophilic acetogenic bacterium Thermoanaerobacter kivui. Appl Environ Microbiol 84:e02210-17
60.
go back to reference García JL, Vicente M, Galan B (2017) Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 10:1017–1024 CrossRef García JL, Vicente M, Galan B (2017) Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 10:1017–1024 CrossRef
61.
go back to reference Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Savre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809. https://​doi.​org/​10.​1126/​science.​1200165 CrossRef Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Savre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809. https://​doi.​org/​10.​1126/​science.​1200165 CrossRef
63.
go back to reference de Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352 CrossRef de Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352 CrossRef
64.
go back to reference Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455 CrossRef Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455 CrossRef
65.
go back to reference Chang EH, Yang SS (2003) Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot Bull Acad Sinica 44:43–52 Chang EH, Yang SS (2003) Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot Bull Acad Sinica 44:43–52
66.
go back to reference Kishimoto M, Okakura T, Nagashima H, Minowa T, Yokoyama SY, Yamaberi K (1994) CO 2 fixation and oil production using micro-algae. J Ferment Bioeng 78:479–482 CrossRef Kishimoto M, Okakura T, Nagashima H, Minowa T, Yokoyama SY, Yamaberi K (1994) CO 2 fixation and oil production using micro-algae. J Ferment Bioeng 78:479–482 CrossRef
67.
go back to reference Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Biores Technol 98:288–295. Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Biores Technol 98:288–295.
68.
go back to reference Huntley M, Redjalje D (2007) Carbon dioxide mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Chang 12:573–608 CrossRef Huntley M, Redjalje D (2007) Carbon dioxide mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Chang 12:573–608 CrossRef
69.
go back to reference Meiser A, Schmid-Staiger U, Trösch W (2004) Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutumin the flat panel airlift (FPA) reactor. J Appl Phycol 16:215–225 CrossRef Meiser A, Schmid-Staiger U, Trösch W (2004) Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutumin the flat panel airlift (FPA) reactor. J Appl Phycol 16:215–225 CrossRef
70.
go back to reference Bitaubé E, Caro I, Perèz L (2008) Kinetic model for growth of Phaedolactynum tricornitum in intensive culture photobioreactor. Biochem Eng J 40:520–525 CrossRef Bitaubé E, Caro I, Perèz L (2008) Kinetic model for growth of Phaedolactynum tricornitum in intensive culture photobioreactor. Biochem Eng J 40:520–525 CrossRef
72.
go back to reference Costache TA, Acièn FG, Morales MM, Fernández-Sevilla JM, Stamatin I, Molina E (2013) Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactor. Appl Biotechnol 97:7627–7637 CrossRef Costache TA, Acièn FG, Morales MM, Fernández-Sevilla JM, Stamatin I, Molina E (2013) Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactor. Appl Biotechnol 97:7627–7637 CrossRef
73.
go back to reference Cabello J, Morales M, Revah S (2015) Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions. Bioresour Technol 181:128–135 CrossRef Cabello J, Morales M, Revah S (2015) Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions. Bioresour Technol 181:128–135 CrossRef
74.
go back to reference Stanier RY, Van Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42:17–35 CrossRef Stanier RY, Van Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42:17–35 CrossRef
75.
go back to reference Sánchez M, Bernal-Castillo J, Rozo C, Rodríguez I (2003) Spirulina (Arthrospira): an edible microorganism: a review. Uni Sci 8:7–24 Sánchez M, Bernal-Castillo J, Rozo C, Rodríguez I (2003) Spirulina (Arthrospira): an edible microorganism: a review. Uni Sci 8:7–24
76.
go back to reference Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082 Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082
78.
go back to reference Li J, Zhu D, Niu J, Shen S, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29:568–574 CrossRef Li J, Zhu D, Niu J, Shen S, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29:568–574 CrossRef
80.
go back to reference Gwo JC, Chiu JY, Chou CC, Cheng HY (2005) Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae). Cryobiology 50:338–343 CrossRef Gwo JC, Chiu JY, Chou CC, Cheng HY (2005) Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae). Cryobiology 50:338–343 CrossRef
84.
go back to reference Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJ, Jetten MS, Lüke C, Reimann J (2016) Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep 8:941–955 CrossRef Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJ, Jetten MS, Lüke C, Reimann J (2016) Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep 8:941–955 CrossRef
85.
go back to reference Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methé B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:e303. https://​doi.​org/​10.​1371/​journal.​pbio.​0020303 CrossRef Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methé B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:e303. https://​doi.​org/​10.​1371/​journal.​pbio.​0020303 CrossRef
86.
go back to reference Welander PV, Summons RE (2012) Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc Natl Acad Sci USA 109:12905–12910 CrossRef Welander PV, Summons RE (2012) Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc Natl Acad Sci USA 109:12905–12910 CrossRef
89.
go back to reference Stein LY, Yoon S, Semrau JD, Dispirito AA, Crombie A, Murrell JC, Vuilleumier S, Kalyuzhnaya MG, Op den Camp HJ, Bringel F, Bruce D, Cheng JF, Copeland A, Goodwin L, Han S, Hauser L, Jetten MS, Lajus A, Land ML, Lapidus A, Lucas S, Médique C, Pitluck S, Woyke T, Zeytun A, Klotz MG (2010) Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol 192:6497–6498. https://​doi.​org/​10.​1128/​JB.​01144-10 CrossRef Stein LY, Yoon S, Semrau JD, Dispirito AA, Crombie A, Murrell JC, Vuilleumier S, Kalyuzhnaya MG, Op den Camp HJ, Bringel F, Bruce D, Cheng JF, Copeland A, Goodwin L, Han S, Hauser L, Jetten MS, Lajus A, Land ML, Lapidus A, Lucas S, Médique C, Pitluck S, Woyke T, Zeytun A, Klotz MG (2010) Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol 192:6497–6498. https://​doi.​org/​10.​1128/​JB.​01144-10 CrossRef
90.
go back to reference Drake H (1995) Acetogenesis, acetogenic bacteria, and the acetyl-CoA, Wood/Ljungdahl‘ pathway: past and current perspectives. In: Drake H (Hrsg) Acetogenesis. Chapman & Hall, New York, S 3–60 CrossRef Drake H (1995) Acetogenesis, acetogenic bacteria, and the acetyl-CoA, Wood/Ljungdahl‘ pathway: past and current perspectives. In: Drake H (Hrsg) Acetogenesis. Chapman & Hall, New York, S 3–60 CrossRef
92.
go back to reference Wood HG (1991) Life with CO or CO 2 and H 2 as a source of carbon and energy. FASEB J 5:156–163 CrossRef Wood HG (1991) Life with CO or CO 2 and H 2 as a source of carbon and energy. FASEB J 5:156–163 CrossRef
94.
go back to reference Ragsdale SW, Ljungdahl LG, DerVartanian DV (1983) Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of Clostridium thermoaceticum enzyme. J Bacteriol 155:1224–1237 CrossRef Ragsdale SW, Ljungdahl LG, DerVartanian DV (1983) Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of Clostridium thermoaceticum enzyme. J Bacteriol 155:1224–1237 CrossRef
96.
go back to reference Drake HL, Hu SI, Wood HG (1980) Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermocaceticum. J Biological Chem 255:7174–7180 Drake HL, Hu SI, Wood HG (1980) Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermocaceticum. J Biological Chem 255:7174–7180
97.
go back to reference Raybuck SA, Bastian NR, Orme-Johnson WH, Walsh CT (1988) Kinetic characterization of the carbon monoxide-acetyl-CoA (carbonyl group) exchange activity of the acetyl-CoA synthesizing carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 27:7698–7702 Raybuck SA, Bastian NR, Orme-Johnson WH, Walsh CT (1988) Kinetic characterization of the carbon monoxide-acetyl-CoA (carbonyl group) exchange activity of the acetyl-CoA synthesizing carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 27:7698–7702
103.
go back to reference Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Op Biotechnol 35:63–72 CrossRef Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Op Biotechnol 35:63–72 CrossRef
104.
go back to reference Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578 CrossRef Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578 CrossRef
Metadata
Title
Biokatalytische Konversion
Authors
Frank R. Bengelsdorf
Peter Dürre
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-60649-0_7

Premium Partner