Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 2/2012

01-06-2012 | Original Article

Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content

Authors: Paloma Manzanares, Ignacio Ballesteros, María José Negro, José Miguel Oliva, Alberto Gonzalez, Mercedes Ballesteros

Published in: Biomass Conversion and Biorefinery | Issue 2/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, forage sorghum biomass was studied as feedstock for ethanol production by a biological conversion process comprising the steps of hydrothermal steam explosion pretreatment, enzymatic hydrolysis with commercial enzymes, and fermentation with the yeast Saccharomyces cerevisiae. Steam explosion conditions were optimized using a response surface methodology considering temperature (180–230°C) and time (2–10 min). Sugar recovery in the pretreatment and the enzymatic digestibility of the pretreated solid were used to determine the optimum conditions, i.e., 220°C and 7 min. At these conditions, saccharification efficiency attained 89 % of the theoretical and the recovery of xylose in the prehydrolyzate accounted for 35 % of the amount of xylose present in raw material. Then, a simultaneous hydrolysis and fermentation (SSF) process was tested at laboratory scale on the solid fraction of forage sorghum pretreated at optimum condition, in order to evaluate ethanol production. The effect of the enzyme dose and the supplementation with xylanase enzyme of the cellulolytic enzyme cocktail was studied at increasing solid concentration up to 18 % (w/w) in SSF media. Results show good performance of SSF in all consistencies tested with a significant effect of increasing enzyme load in SSF yield and final ethanol concentration. Xylanase supplementation allows increasing solid concentration up to 18 % (w/w) with good SSF performance and final ethanol content of 55 g/l after 4–5 days. Based on this result, about 190 l of ethanol could be obtained from 1 t of untreated forage sorghum, which means a transformation yield of 85 % of the glucose contained in the feedstock.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRef Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRef
2.
go back to reference Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7. doi:10.1186/1754-6834-1-7 CrossRef Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7. doi:10.​1186/​1754-6834-1-7 CrossRef
3.
go back to reference Hallam A, Anderson IC, Buxton DR (2001) Comparative economic analysis of perennial, annual, and intercrops for biomass production. Biomass Bioenergy 21(6):407–424CrossRef Hallam A, Anderson IC, Buxton DR (2001) Comparative economic analysis of perennial, annual, and intercrops for biomass production. Biomass Bioenergy 21(6):407–424CrossRef
4.
go back to reference Hunter EL, Anderson IC (1997) Sweet sorghum. Hortic Rev 21:73–104 Hunter EL, Anderson IC (1997) Sweet sorghum. Hortic Rev 21:73–104
5.
go back to reference Miller FR, McBee GG (1993) Genetics and management of physiologic systems of sorghum for biomass production. Biomass Bioenergy 5(1):41–49CrossRef Miller FR, McBee GG (1993) Genetics and management of physiologic systems of sorghum for biomass production. Biomass Bioenergy 5(1):41–49CrossRef
6.
go back to reference Tew T, Cobill RM, Richard EP Jr (2008) Evaluation of sweet sorghum and sorghum × sudangrass hybrids as feedstock for ethanol production. Bioenerg Res 1:147–152CrossRef Tew T, Cobill RM, Richard EP Jr (2008) Evaluation of sweet sorghum and sorghum × sudangrass hybrids as feedstock for ethanol production. Bioenerg Res 1:147–152CrossRef
7.
go back to reference Bennett AS, Anex RP (2008) Farm-gate production costs of sweet sorghum as a bioethanol feedstock. Trans ASABE 51(2):603–613 Bennett AS, Anex RP (2008) Farm-gate production costs of sweet sorghum as a bioethanol feedstock. Trans ASABE 51(2):603–613
8.
go back to reference Mamma D, Christakopoulos P, Koullas D, Kekos D, Macris BJ, Koukios E (1995) An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol. Biomass Bioenergy 8(2):99–103CrossRef Mamma D, Christakopoulos P, Koullas D, Kekos D, Macris BJ, Koukios E (1995) An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol. Biomass Bioenergy 8(2):99–103CrossRef
9.
go back to reference Miron J, Zuckerman E, Sadeh D, Adin G, Nikbachat M, Yosef E, Ben-Ghedalia D, Carmi A, Kipnis T, Solomon R (2005) Yield, composition and in vitro digestibility of new forage sorghum varieties and their ensilage characteristics. Anim Feed Sci Technol 120(1–2):17–32CrossRef Miron J, Zuckerman E, Sadeh D, Adin G, Nikbachat M, Yosef E, Ben-Ghedalia D, Carmi A, Kipnis T, Solomon R (2005) Yield, composition and in vitro digestibility of new forage sorghum varieties and their ensilage characteristics. Anim Feed Sci Technol 120(1–2):17–32CrossRef
10.
go back to reference Herrmann C, Heiermann M, Idler C (2011) Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour Technol 102(8):5153–5161CrossRef Herrmann C, Heiermann M, Idler C (2011) Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour Technol 102(8):5153–5161CrossRef
11.
go back to reference Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnel-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolour L. Moench) lines with reduced lignin contents. Bioenerg Res 2:153–164CrossRef Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnel-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolour L. Moench) lines with reduced lignin contents. Bioenerg Res 2:153–164CrossRef
12.
go back to reference Shen F, Saddler JN, Liu R, Lin L, Deng S, Zhang Y, Yang G, Xiao H, Li Y (2011) Evaluation of steam pre-treatment on sweet sorghum bagasse for enzymatic hydrolysis and bioethanol production. Carbohydr Polym 86:1542–1548CrossRef Shen F, Saddler JN, Liu R, Lin L, Deng S, Zhang Y, Yang G, Xiao H, Li Y (2011) Evaluation of steam pre-treatment on sweet sorghum bagasse for enzymatic hydrolysis and bioethanol production. Carbohydr Polym 86:1542–1548CrossRef
13.
go back to reference Corredor DY, Salazar JM, Hohn KL, Bean S, Bean B, Wang D (2009) Evaluation and characterization of forage sorghum as feedstock for fermentable sugar production. Appl Biochem Biotechnol 158(1):164–179CrossRef Corredor DY, Salazar JM, Hohn KL, Bean S, Bean B, Wang D (2009) Evaluation and characterization of forage sorghum as feedstock for fermentable sugar production. Appl Biochem Biotechnol 158(1):164–179CrossRef
14.
go back to reference Bing-Zhi L, Balan V, Ying-Jin Y, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101:1285–1292CrossRef Bing-Zhi L, Balan V, Ying-Jin Y, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101:1285–1292CrossRef
15.
go back to reference Theerattananoon K, Wu X, Staggenborg S, Propheter J, Mald R, Wang D (2010) Evaluation and characterization of sorghum biomass as feedstock for sugar production. Trans ASAE 53(2):509–525 Theerattananoon K, Wu X, Staggenborg S, Propheter J, Mald R, Wang D (2010) Evaluation and characterization of sorghum biomass as feedstock for sugar production. Trans ASAE 53(2):509–525
16.
go back to reference Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457CrossRef Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457CrossRef
17.
go back to reference García-Aparicio MP, Ballesteros M, Manzanares P, Ballesteros I, González A, Oliva JM, Negro MJ (2007) Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol 137–140(1–12):353–365CrossRef García-Aparicio MP, Ballesteros M, Manzanares P, Ballesteros I, González A, Oliva JM, Negro MJ (2007) Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol 137–140(1–12):353–365CrossRef
18.
go back to reference Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98(13):2503–2510CrossRef Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98(13):2503–2510CrossRef
19.
go back to reference Alvira P, Negro MJ, Ballesteros M (2011) Effect of endoxylanase and a-l-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol 102:4552–4558CrossRef Alvira P, Negro MJ, Ballesteros M (2011) Effect of endoxylanase and a-l-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol 102:4552–4558CrossRef
20.
go back to reference Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117CrossRef Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117CrossRef
21.
go back to reference Tomás-Pejó E, Oliva JM, González A, Ballesteros I, Ballesteros M (2009) Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel 88:2142–2147CrossRef Tomás-Pejó E, Oliva JM, González A, Ballesteros I, Ballesteros M (2009) Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel 88:2142–2147CrossRef
22.
go back to reference Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96(5):862–870CrossRef Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96(5):862–870CrossRef
23.
go back to reference Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabañas A, Ballesteros M (2003) Hydrothermal prereatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105–108:87–100CrossRef Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabañas A, Ballesteros M (2003) Hydrothermal prereatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105–108:87–100CrossRef
24.
go back to reference Pérez JA, González A, Oliva JM, Ballesteros I, Manzanares P (2007) Effect of process variables on liquid hot water pre-treatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor. J Chem Technol Biotechnol 82:929–938CrossRef Pérez JA, González A, Oliva JM, Ballesteros I, Manzanares P (2007) Effect of process variables on liquid hot water pre-treatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor. J Chem Technol Biotechnol 82:929–938CrossRef
26.
go back to reference Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 129–132:496–508CrossRef Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 129–132:496–508CrossRef
27.
go back to reference Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretratment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretratment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
28.
go back to reference Oliva JM, Saez F, Ballesteros I, González A, Negro MJ, Manzanares P, Ballesteros M (2003) Effect of lignocellulosic degradation compounds in the steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 105–108:141–153CrossRef Oliva JM, Saez F, Ballesteros I, González A, Negro MJ, Manzanares P, Ballesteros M (2003) Effect of lignocellulosic degradation compounds in the steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 105–108:141–153CrossRef
29.
go back to reference Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93 Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93
30.
go back to reference Kabe MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042CrossRef Kabe MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042CrossRef
31.
go back to reference Ishizawa CI, Davis MF, Schell DF, Johnson DK (2007) Porosity and its effect on the digestibility of dilute sulphuric acid pretreated corn stover. J Agric Food Chem 55:2575–2581CrossRef Ishizawa CI, Davis MF, Schell DF, Johnson DK (2007) Porosity and its effect on the digestibility of dilute sulphuric acid pretreated corn stover. J Agric Food Chem 55:2575–2581CrossRef
32.
go back to reference Varga E, Klinke H, Réczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574CrossRef Varga E, Klinke H, Réczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574CrossRef
33.
go back to reference Stenberg K, Bollók M, Réczey K, Galbe M, Zacchi G (2000) Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnol Bioeng 68:205–210CrossRef Stenberg K, Bollók M, Réczey K, Galbe M, Zacchi G (2000) Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnol Bioeng 68:205–210CrossRef
34.
go back to reference Jorgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870CrossRef Jorgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870CrossRef
35.
go back to reference Manzanares P, Negro MJ, Oliva JM, Saez F, Ballesteros I, Ballesteros M, Cara C, Castro E, Ruiz E (2011) Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol 86(6):881–887CrossRef Manzanares P, Negro MJ, Oliva JM, Saez F, Ballesteros I, Ballesteros M, Cara C, Castro E, Ruiz E (2011) Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol 86(6):881–887CrossRef
36.
go back to reference Varnai A, Siika-aho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Technol 46:185–193CrossRef Varnai A, Siika-aho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Technol 46:185–193CrossRef
37.
go back to reference Selig MJ, Knoshaug EP, Adaney WS, Himmel ME, Decker SR (2008) Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol 99:4997–5005CrossRef Selig MJ, Knoshaug EP, Adaney WS, Himmel ME, Decker SR (2008) Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol 99:4997–5005CrossRef
38.
go back to reference García-Aparicio MP, Oliva JM, Manzanares P, Ballesteros M, Ballesteros I, González A, Negro MJ (2011) Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel 90:1624–1630CrossRef García-Aparicio MP, Oliva JM, Manzanares P, Ballesteros M, Ballesteros I, González A, Negro MJ (2011) Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel 90:1624–1630CrossRef
39.
go back to reference Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630CrossRef Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630CrossRef
Metadata
Title
Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content
Authors
Paloma Manzanares
Ignacio Ballesteros
María José Negro
José Miguel Oliva
Alberto Gonzalez
Mercedes Ballesteros
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
Biomass Conversion and Biorefinery / Issue 2/2012
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-012-0040-8

Other articles of this Issue 2/2012

Biomass Conversion and Biorefinery 2/2012 Go to the issue