Skip to main content
Top
Published in: Cognitive Computation 4/2009

01-12-2009

Biologically Inspired Tensor Features

Authors: Yang Mu, Dacheng Tao, Xuelong Li, Fionn Murtagh

Published in: Cognitive Computation | Issue 4/2009

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

According to the research results reported in the past decades, it is well acknowledged that face recognition is not a trivial task. With the development of electronic devices, we are gradually revealing the secret of object recognition in the primate’s visual cortex. Therefore, it is time to reconsider face recognition by using biologically inspired features. In this paper, we represent face images by utilizing the C1 units, which correspond to complex cells in the visual cortex, and pool over S1 units by using a maximum operation to reserve only the maximum response of each local area of S1 units. The new representation is termed C1 Face. Because C1 Face is naturally a third-order tensor (or a three dimensional array), we propose three-way discriminative locality alignment (TWDLA), an extension of the discriminative locality alignment, which is a top-level discriminate manifold learning-based subspace learning algorithm. TWDLA has the following advantages: (1) it takes third-order tensors as input directly so the structure information can be well preserved; (2) it models the local geometry over every modality of the input tensors so the spatial relations of input tensors within a class can be preserved; (3) it maximizes the margin between a tensor and tensors from other classes over each modality so it performs well for recognition tasks and (4) it has no under sampling problem. Extensive experiments on YALE and FERET datasets show (1) the proposed C1Face representation can better represent face images than raw pixels and (2) TWDLA can duly preserve both the local geometry and the discriminative information over every modality for recognition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alex OM, Terzopoulos D. Multilinear subspace analysis for image ensembles. Int Conf ComputVis Pattern Recognit. 2003;2:93–9. Alex OM, Terzopoulos D. Multilinear subspace analysis for image ensembles. Int Conf ComputVis Pattern Recognit. 2003;2:93–9.
2.
go back to reference Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):711–20.CrossRef Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):711–20.CrossRef
3.
go back to reference Belkin M, Niyogi P, Sindhwani V. On manifold regularization. In: Proc. Int’l Workshop on Artificial Intelligence and Statistics. 2005. Belkin M, Niyogi P, Sindhwani V. On manifold regularization. In: Proc. Int’l Workshop on Artificial Intelligence and Statistics. 2005.
4.
go back to reference Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Inf Process Syst. 2002;14:585–91. Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Inf Process Syst. 2002;14:585–91.
5.
go back to reference Bian W, Tao D. Harmonic mean for subspace selection. International conference on pattern recognition; 2008. p. 1–4. Bian W, Tao D. Harmonic mean for subspace selection. International conference on pattern recognition; 2008. p. 1–4.
6.
go back to reference Cai D, He X, Han J. Spectral regression for efficient regularized subspace learning. IEEE international conference on computer vision; 2007. p. 1–8. Cai D, He X, Han J. Spectral regression for efficient regularized subspace learning. IEEE international conference on computer vision; 2007. p. 1–8.
7.
go back to reference Cai D, He X, Han J, Zhang H. Orthogonal Laplacian faces for face recognition. IEEE Trans Image Process. 2006;15(11):3608–14.CrossRefPubMed Cai D, He X, Han J, Zhang H. Orthogonal Laplacian faces for face recognition. IEEE Trans Image Process. 2006;15(11):3608–14.CrossRefPubMed
8.
go back to reference Fukushima K. Neocognitron: a self organizing neural network model for a mechanism for pattern recognition unaffected by shift in position. Biol Cybern. 1980;36(4):193–202.CrossRefPubMed Fukushima K. Neocognitron: a self organizing neural network model for a mechanism for pattern recognition unaffected by shift in position. Biol Cybern. 1980;36(4):193–202.CrossRefPubMed
9.
go back to reference Gao X, Yang Y, Tao D, Li X. Discriminative optical flow tensor for video semantic analysis. Comput Vis Image Underst. 2009;113(3):372–83.CrossRef Gao X, Yang Y, Tao D, Li X. Discriminative optical flow tensor for video semantic analysis. Comput Vis Image Underst. 2009;113(3):372–83.CrossRef
10.
go back to reference He X, Niyogi P. Locality preserving projections. Neural information processing systems; 2003. p. 20. He X, Niyogi P. Locality preserving projections. Neural information processing systems; 2003. p. 20.
11.
go back to reference He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition using Laplacian faces. IEEE Trans Patten Anal Mach Intell. 2005;27(3):328–40.CrossRef He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition using Laplacian faces. IEEE Trans Patten Anal Mach Intell. 2005;27(3):328–40.CrossRef
12.
go back to reference Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933;24:417–41.CrossRef Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933;24:417–41.CrossRef
13.
go back to reference Huang Y, Huang K, Tao D, Tan T, Li X. Enhanced biologically inspired model. Int Conf Comput Vis Pattern Recognit. 2008;1–8. Huang Y, Huang K, Tao D, Tan T, Li X. Enhanced biologically inspired model. Int Conf Comput Vis Pattern Recognit. 2008;1–8.
14.
go back to reference Li X, Lin S, Yan S, Xu D. Discriminant locally linear embedding with high-order tensor data. IEEE Trans Syst Man Cybern B Cybern. 2008;38(2):342–52.CrossRefPubMed Li X, Lin S, Yan S, Xu D. Discriminant locally linear embedding with high-order tensor data. IEEE Trans Syst Man Cybern B Cybern. 2008;38(2):342–52.CrossRefPubMed
15.
go back to reference Liu C, Wechsler C. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process. 2002;11(4):467–76.CrossRefPubMed Liu C, Wechsler C. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process. 2002;11(4):467–76.CrossRefPubMed
16.
go back to reference Liu W, Tao D, Liu J. Transductive component analysis. IEEE international conference on data mining; 2008. p. 433–42. Liu W, Tao D, Liu J. Transductive component analysis. IEEE international conference on data mining; 2008. p. 433–42.
17.
go back to reference Lowe D. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2003;60(2):91–100.CrossRef Lowe D. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2003;60(2):91–100.CrossRef
18.
go back to reference Meyers E, Wolf L. Using biologically inspired features for face processing. Int J Comput Vis. 2008;76:93–104.CrossRef Meyers E, Wolf L. Using biologically inspired features for face processing. Int J Comput Vis. 2008;76:93–104.CrossRef
19.
go back to reference Mutch J, Lowe D. Multiclass object recognition using sparse, localized features. International conference on computer vision and pattern recognition; 2006. p. 11–8. Mutch J, Lowe D. Multiclass object recognition using sparse, localized features. International conference on computer vision and pattern recognition; 2006. p. 11–8.
20.
go back to reference Ojala T, Pietikäinen M, Mäenpää T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans Patten Anal Mach Intell. 2002;24(7):971–87.CrossRef Ojala T, Pietikäinen M, Mäenpää T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans Patten Anal Mach Intell. 2002;24(7):971–87.CrossRef
21.
go back to reference Phillips PJ, Moon H, Rizvi SA, Rauss PJ. The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell. 2000;22(10):1090–104.CrossRef Phillips PJ, Moon H, Rizvi SA, Rauss PJ. The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell. 2000;22(10):1090–104.CrossRef
22.
go back to reference Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.CrossRefPubMed Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.CrossRefPubMed
23.
24.
go back to reference Riesenhuber M, Poggio T. Neural mechanisms of object recognition. Curr Opin Neurobiol. 2002;12:162–8.CrossRefPubMed Riesenhuber M, Poggio T. Neural mechanisms of object recognition. Curr Opin Neurobiol. 2002;12:162–8.CrossRefPubMed
25.
go back to reference Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290:2323–6.CrossRefPubMed Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290:2323–6.CrossRefPubMed
26.
go back to reference Schneider R, Riesenhuber M. Detailed look at scale and translation invariance in a hierarchical neural model of visual object recognition. AI Memo 2002-011/CBCL Memo218, Massachusetts Institute of Technology, 2002. Schneider R, Riesenhuber M. Detailed look at scale and translation invariance in a hierarchical neural model of visual object recognition. AI Memo 2002-011/CBCL Memo218, Massachusetts Institute of Technology, 2002.
27.
go back to reference Serre T, Riesenhuber M. Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for invariant object recognition in cortex. AI Memo 2004-017/CBCL Memo239, Massachusetts Institute of Technology, 2004. Serre T, Riesenhuber M. Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for invariant object recognition in cortex. AI Memo 2004-017/CBCL Memo239, Massachusetts Institute of Technology, 2004.
28.
go back to reference Serre T, Wolf L, Poggio T. Object recognition with features inspired by visual cortex. Int Conf Comput Vis Pattern Recognit. 2005;2:994–1000. Serre T, Wolf L, Poggio T. Object recognition with features inspired by visual cortex. Int Conf Comput Vis Pattern Recognit. 2005;2:994–1000.
29.
go back to reference Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell. 2007;29(3):411–26.CrossRefPubMed Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell. 2007;29(3):411–26.CrossRefPubMed
30.
go back to reference Song D, Tao D. Biologically inspired feature manifold for scene classification. IEEE Trans Image Process. 2009;18:1–30.CrossRef Song D, Tao D. Biologically inspired feature manifold for scene classification. IEEE Trans Image Process. 2009;18:1–30.CrossRef
31.
go back to reference Song D, Tao D. C1 units for scene classification. International conference on pattern recognition; 2008. p. 1–4. Song D, Tao D. C1 units for scene classification. International conference on pattern recognition; 2008. p. 1–4.
32.
go back to reference Sun J, Tao D, Papadimitriou S, Yu P, Faloutsos C. Incremental tensor analysis: theory and applications. ACM Trans Knowl Discov Data. 2008;2(3):11.1–11.37. Sun J, Tao D, Papadimitriou S, Yu P, Faloutsos C. Incremental tensor analysis: theory and applications. ACM Trans Knowl Discov Data. 2008;2(3):11.1–11.37.
33.
go back to reference Tao D, Sun J, Shen J, Wu X, Li X, Maybank S, Faloutsos S. Probabilistic tensor analysis with Akaike and Bayesian information criteria. In: Ishikawa M, et al. editors. The 14th international conference on neural information processing. 2008;791–801. Tao D, Sun J, Shen J, Wu X, Li X, Maybank S, Faloutsos S. Probabilistic tensor analysis with Akaike and Bayesian information criteria. In: Ishikawa M, et al. editors. The 14th international conference on neural information processing. 2008;791–801.
34.
go back to reference Tao D, Li X, Wu X, Maybank S. Human carrying status in visual surveillance. Int Conf Comput Vis Pattern Recognit. 2006;2:1670–7. Tao D, Li X, Wu X, Maybank S. Human carrying status in visual surveillance. Int Conf Comput Vis Pattern Recognit. 2006;2:1670–7.
35.
go back to reference Tao D, Li X, Wu X, Maybank S. General tensor discriminant analysis and Gabor feature for gait recognition. IEEE Trans Pattern Anal Mach Intell. 2007;29(10):1700–15.CrossRefPubMed Tao D, Li X, Wu X, Maybank S. General tensor discriminant analysis and Gabor feature for gait recognition. IEEE Trans Pattern Anal Mach Intell. 2007;29(10):1700–15.CrossRefPubMed
36.
go back to reference Tao D, Li X, Wu X, Hu W, Maybank S. Supervised tensor learning. Knowl Inf Syst. 2007;13:1–42.CrossRef Tao D, Li X, Wu X, Hu W, Maybank S. Supervised tensor learning. Knowl Inf Syst. 2007;13:1–42.CrossRef
37.
go back to reference Tao D, Sun J, Shen J, Wu X, Li X, Maybank S, Faloutsos C. Bayesian tensor analysis. IEEE international joint conference on neural networks; 2008. p. 1403–10. Tao D, Sun J, Shen J, Wu X, Li X, Maybank S, Faloutsos C. Bayesian tensor analysis. IEEE international joint conference on neural networks; 2008. p. 1403–10.
38.
go back to reference Tao D, Song M, Li X, Shen J, Sun J, Wu X, et al. Bayesian tensor approach for 3-D Face modeling. IEEE Trans Circuits Syst Video Technol. 2008;18(10):1397–410.CrossRef Tao D, Song M, Li X, Shen J, Sun J, Wu X, et al. Bayesian tensor approach for 3-D Face modeling. IEEE Trans Circuits Syst Video Technol. 2008;18(10):1397–410.CrossRef
39.
go back to reference Tao D, Li X, Wu X, Maybank S. Tensor rank one discriminant analysis–a convergent method for discriminative multilinear subspace selection. Neurocomputing. 2008;71(10–12):1866–82.CrossRef Tao D, Li X, Wu X, Maybank S. Tensor rank one discriminant analysis–a convergent method for discriminative multilinear subspace selection. Neurocomputing. 2008;71(10–12):1866–82.CrossRef
40.
go back to reference Tao D, Li X, Wu X, Maybank S. Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):260–74.CrossRefPubMed Tao D, Li X, Wu X, Maybank S. Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell. 2009;31(2):260–74.CrossRefPubMed
41.
go back to reference Turk M, Pentlanbd A. Eigenfaces for recognition. J Cogn Neurosci. 1991;3:71–86.CrossRef Turk M, Pentlanbd A. Eigenfaces for recognition. J Cogn Neurosci. 1991;3:71–86.CrossRef
42.
go back to reference Ye J, Janardan R, Li Q. Two-dimensional linear discriminant analysis. Neural information processing systems; 2005. p. 1569–76. Ye J, Janardan R, Li Q. Two-dimensional linear discriminant analysis. Neural information processing systems; 2005. p. 1569–76.
43.
go back to reference Zhang T, Tao D, Li X, Yang J. A unifying framework for spectral analysis based dimensionality reduction. IEEE international joint conference on neural networks; 2008. p. 1671–8. Zhang T, Tao D, Li X, Yang J. A unifying framework for spectral analysis based dimensionality reduction. IEEE international joint conference on neural networks; 2008. p. 1671–8.
44.
go back to reference Zhang T, Tao D, Yang J. Discriminative locality alignment. European conference on computer vision; 2008. p. 725–38. Zhang T, Tao D, Yang J. Discriminative locality alignment. European conference on computer vision; 2008. p. 725–38.
45.
go back to reference Zhang T, Tao D, Li X, Yang J. Patch alignment for dimensionality reduction. IEEE Trans Knowl Data Eng. 2009;21(9):1299–313.CrossRef Zhang T, Tao D, Li X, Yang J. Patch alignment for dimensionality reduction. IEEE Trans Knowl Data Eng. 2009;21(9):1299–313.CrossRef
Metadata
Title
Biologically Inspired Tensor Features
Authors
Yang Mu
Dacheng Tao
Xuelong Li
Fionn Murtagh
Publication date
01-12-2009
Publisher
Springer-Verlag
Published in
Cognitive Computation / Issue 4/2009
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-009-9028-5

Other articles of this Issue 4/2009

Cognitive Computation 4/2009 Go to the issue

BriefCommunication

Sub-Symbols and Icons

Premium Partner