Skip to main content
Top

2021 | OriginalPaper | Chapter

Biolubricants Based on Non-edible Oil: A Review

Authors : Sagar Galgat, Ankit Kotia

Published in: Recent Advances in Sustainable Technologies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The petroleum-based lubricants cause harmful effect on environment because they are non-degradable and highly toxic. The shortage of mineral oil reserves leads to finding an alternative for petroleum and its product. Existing studies include the development of a biolubricant from non-edible plant. The main purpose of this current study is to provide the collective summary of the recent use of inedible plant for the production of biolubricant. This study includes the review of latest published research literatures on use of different inedible plant oil for the production of biolubricant. These studies did not conclude that biolubricant obtained with the application of nanoparticles and modification has greater tribological properties together with thermal stability and oxidation stability. There is a need of production of a flexible environmental-friendly nanolubricant having excellent rheological, tribological properties and antioxidant properties which will be suitable in automotive application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Crouse (2007) Automotive mechanics Tata McGraw-Hill Education, Motor vehicles Crouse (2007) Automotive mechanics Tata McGraw-Hill Education, Motor vehicles
2.
go back to reference Cecilia JA, Plata DB, Saboya RMA (2020) An overview of the biolubricant production process: challenges and future perspectives. Processes 8(3):257 Cecilia JA, Plata DB, Saboya RMA (2020) An overview of the biolubricant production process: challenges and future perspectives. Processes 8(3):257
3.
go back to reference Singh Y, Sharma A, Singla A (2019) Non-edible vegetable oil–basedfeedstocks capable of bio-lubricant production for automotive sector application—a review. Environ Sci Pollut J: Res 26:14867–14882CrossRef Singh Y, Sharma A, Singla A (2019) Non-edible vegetable oil–basedfeedstocks capable of bio-lubricant production for automotive sector application—a review. Environ Sci Pollut J: Res 26:14867–14882CrossRef
4.
go back to reference Uflyand IE, Zhinzhilo VA, Burlakova VE (2018) Metal-containing nanomaterialsas lubricant additives: state-of-the-art and future development. Friction 7(2):93–116 Uflyand IE, Zhinzhilo VA, Burlakova VE (2018) Metal-containing nanomaterialsas lubricant additives: state-of-the-art and future development. Friction 7(2):93–116
5.
go back to reference Ozioko FU (2014) Synthesis and study of properties of biolubricant based on Moringa oleifera for industrial application. A U J T 17(3):137–142 Ozioko FU (2014) Synthesis and study of properties of biolubricant based on Moringa oleifera for industrial application. A U J T 17(3):137–142
6.
go back to reference Nwokocha LM, Aremu TB (2017) Studies on the biolubricant properties ofmoringaoleifera seed oil: correlating viscosity and fatty acid composition. Malaysian J Sci 36(2):116–131CrossRef Nwokocha LM, Aremu TB (2017) Studies on the biolubricant properties ofmoringaoleifera seed oil: correlating viscosity and fatty acid composition. Malaysian J Sci 36(2):116–131CrossRef
7.
go back to reference Singh Y, Sharma A, Singh NK, Noor MM (2020) Effect of SiC nanoparticles concentration on novel feedstock Moringa Oleifera chemically treated with neopentylglycol and their trobological behavior. Fuel 280:118630 Singh Y, Sharma A, Singh NK, Noor MM (2020) Effect of SiC nanoparticles concentration on novel feedstock Moringa Oleifera chemically treated with neopentylglycol and their trobological behavior. Fuel 280:118630
8.
go back to reference Habibullah M, Masjuki HH, Kalam MA (2015) Tribological characteristics of Calophyllum inophyllum based TMP (trimethylolpropane) ester as energy saving and biodegradable lubricant. Tribol Trans J 58(6), 1002–1011 Habibullah M, Masjuki HH, Kalam MA (2015) Tribological characteristics of Calophyllum inophyllum based TMP (trimethylolpropane) ester as energy saving and biodegradable lubricant. Tribol Trans J 58(6), 1002–1011
9.
go back to reference Kotturu CMV, Srinivas V, Vandana V, Chebattina KRR, Seetha Rama Rao Y (2020) Investigation of tribological propertiesand engine performance of polyolester–based bio-lubricant: commercial motorbike engine oil blends. Sage 234(5):1304–1317 Kotturu CMV, Srinivas V, Vandana V, Chebattina KRR, Seetha Rama Rao Y (2020) Investigation of tribological propertiesand engine performance of polyolester–based bio-lubricant: commercial motorbike engine oil blends. Sage 234(5):1304–1317
10.
go back to reference Zaid M, Singh Y, Kumar A, Gupta S (2020) Development of the Calophyllum inophyllum based biolubricant and their tribological analysis at differentconditions. Mater Today: Proc 26(Part 2):2582–2585 Zaid M, Singh Y, Kumar A, Gupta S (2020) Development of the Calophyllum inophyllum based biolubricant and their tribological analysis at differentconditions. Mater Today: Proc 26(Part 2):2582–2585
11.
go back to reference Kamalakar K, SaiManoj GNVT, Prasad RBN, Karuna MSL (2015) Thumba (Citrullus colocynthis L.) seed oil: a potential bio-lubricant base-stock. Int J Fats oil 66(1) Kamalakar K, SaiManoj GNVT, Prasad RBN, Karuna MSL (2015) Thumba (Citrullus colocynthis L.) seed oil: a potential bio-lubricant base-stock. Int J Fats oil 66(1)
12.
go back to reference Singh Y, Sharma A, Singh NK, Chen W-H (2020) Development of biobased lubricant from modified desert date oil (Balanites aegyptiaca) with copper nanoparticles addition and their tribological analysis. Fuel 259:11625 (2020) Singh Y, Sharma A, Singh NK, Chen W-H (2020) Development of biobased lubricant from modified desert date oil (Balanites aegyptiaca) with copper nanoparticles addition and their tribological analysis. Fuel 259:11625 (2020)
13.
go back to reference Singh Y, Abd Rahim E (2020) Michelia champaca: sustainable novel non-edible oil as nano based biolubricant with tribological investigation. Fuel 282:118830 Singh Y, Abd Rahim E (2020) Michelia champaca: sustainable novel non-edible oil as nano based biolubricant with tribological investigation. Fuel 282:118830
14.
go back to reference Chaurasia SK, Singh NK, Singh LK (2020) Friction and wear behavior of chemically modified Sal (Shorea robusta) oil for bio based lubricant application with effect of CuO nanoparticles. Fuel 282:118762 Chaurasia SK, Singh NK, Singh LK (2020) Friction and wear behavior of chemically modified Sal (Shorea robusta) oil for bio based lubricant application with effect of CuO nanoparticles. Fuel 282:118762
15.
go back to reference Singh Y, Singh D, Singla A, Sharma A, Singh NK (2020) Chemical modification of juliflora oil with trimethylolpropane (TMP) and effect of TiO2 nanoparticles concentration during tribological investigation. Fuel 280:118704 Singh Y, Singh D, Singla A, Sharma A, Singh NK (2020) Chemical modification of juliflora oil with trimethylolpropane (TMP) and effect of TiO2 nanoparticles concentration during tribological investigation. Fuel 280:118704
16.
go back to reference Sadriwala M, Singh Y, Sharma A, Singla A, Mishra S (2020) Friction and wear behavior of jojoba oil based biolubricant-Taguchi method approach. Mater Today Proc 25(Part 4):704–709 Sadriwala M, Singh Y, Sharma A, Singla A, Mishra S (2020) Friction and wear behavior of jojoba oil based biolubricant-Taguchi method approach. Mater Today Proc 25(Part 4):704–709
17.
go back to reference Gupta S, Zaid M, Kumar A, Singh Y (2020) Effect of Jojoba oil based biolubricant additive on the friction and wear characteristics of the Al-7Si alloy. Mater Today Proc 26(Part 2):2681–2684 Gupta S, Zaid M, Kumar A, Singh Y (2020) Effect of Jojoba oil based biolubricant additive on the friction and wear characteristics of the Al-7Si alloy. Mater Today Proc 26(Part 2):2681–2684
Metadata
Title
Biolubricants Based on Non-edible Oil: A Review
Authors
Sagar Galgat
Ankit Kotia
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-0976-3_26

Premium Partner