Skip to main content
Top
Published in: Journal of Materials Science 6/2019

29-11-2018 | Materials for life sciences

Biomacromolecules in bivalve shells with crossed lamellar architecture

Authors: Oluwatoosin B. A. Agbaje, Denise E. Thomas, J. Gabriel Dominguez, Bernie V. Mclnerney, Matthew A. Kosnik, Dorrit E. Jacob

Published in: Journal of Materials Science | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present an in-depth characterisation of shells from two bivalve species with crossed lamellar microstructure, namely Tridacna gigas and Fulvia tenuicostata. High-resolution scanning electron microscopy and confocal microscopy imaging reveal a fine structure of nanogranular particles that are inorganic–bioorganic nanocomposites for both shells. In F. tenuicostata, inorganic–organic components are arranged in a polycrystalline fibre-like fabric. T. gigas consists of up to four hierarchical lamellar structural orders and the second-order lamellae consist of elongated nanometre-sized laths. The inorganic matrix is intimately intergrown with the total amount of organic matter (1.8 and 1.5 wt%), and the composition of the shell macromolecules is variable between the two calcareous biominerals. This work shows for the first time the presence of polysaccharide-based compounds that could be essential for the construction of bio-organics as well as many prominent protein bands, glycoproteins and/or glycosaminoglycans of unknown sizes far above 260 kDa in bivalve shells with crossed lamellar microstructure. Chitosan (deacetylated chitin) with apparent molecular weights from 18 to 110 kDa for T. gigas and from 12 kDa till above 110 kDa for F. tenuicostata are detected in gel electrophoresis after Calcofluor staining. In each of the shell extracts, the infrared spectroscopy shows polysaccharides, proteins and lipids. Our findings from two crossed lamellar shells representing two genera of Mollusca: Cardiidae indicate that chitin–protein complexes and lipid–lipoproteins are not restricted only to bivalves with nacroprismatic shells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Espinosa HD, Rim JE, Barthelat F, Buehler MJ (2009) Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Prog Mater Sci 54(8):1059–1100CrossRef Espinosa HD, Rim JE, Barthelat F, Buehler MJ (2009) Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Prog Mater Sci 54(8):1059–1100CrossRef
2.
go back to reference Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53(1):1–206CrossRef Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53(1):1–206CrossRef
3.
go back to reference Carter JG (1990) Skeletal biomineralization: patterns, processes and evolutionary trends. Wiley Online Library, New York Carter JG (1990) Skeletal biomineralization: patterns, processes and evolutionary trends. Wiley Online Library, New York
4.
go back to reference Marin F, Marie B, Hamada SB, Ramos-Silva P, Le Roy N, Guichard N, Wolf SE, Montagnani C, Joubert C, Piquemal D (2013) Shellome’: proteins involved in mollusk shell biomineralization-diversity, functions. In: Recent Advances in Pearl Research, pp 149–166 Marin F, Marie B, Hamada SB, Ramos-Silva P, Le Roy N, Guichard N, Wolf SE, Montagnani C, Joubert C, Piquemal D (2013) Shellome’: proteins involved in mollusk shell biomineralization-diversity, functions. In: Recent Advances in Pearl Research, pp 149–166
5.
go back to reference Jackson A, Vincent J, Turner R (1988) The mechanical design of nacre. Proc R Soc Lond B Biol Sci 234(1277):415–440CrossRef Jackson A, Vincent J, Turner R (1988) The mechanical design of nacre. Proc R Soc Lond B Biol Sci 234(1277):415–440CrossRef
6.
go back to reference Watabe N (1965) Studies on shell formation: XI. Crystal—matrix relationships in the inner layers of mollusk shells. J Ultrastruct Res 12(3):351–370CrossRef Watabe N (1965) Studies on shell formation: XI. Crystal—matrix relationships in the inner layers of mollusk shells. J Ultrastruct Res 12(3):351–370CrossRef
7.
go back to reference Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392(6679):861–862CrossRef Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392(6679):861–862CrossRef
8.
go back to reference Agbaje OBA, Thomas DE, Mclnerney BV, Molloy MP, Jacob DE (2017) Organic macromolecules in shells of Arctica islandica: comparison with nacroprismatic bivalve shells. Mar Biol 164:208CrossRef Agbaje OBA, Thomas DE, Mclnerney BV, Molloy MP, Jacob DE (2017) Organic macromolecules in shells of Arctica islandica: comparison with nacroprismatic bivalve shells. Mar Biol 164:208CrossRef
9.
go back to reference Böhm CF, Demmert B, Harris J, Fey T, Marin F, Wolf SE (2016) Structural commonalities and deviations in the hierarchical organization of crossed-lamellar shells: a case study on the shell of the bivalve Glycymeris glycymeris. J Mater Res 31(5):536–546CrossRef Böhm CF, Demmert B, Harris J, Fey T, Marin F, Wolf SE (2016) Structural commonalities and deviations in the hierarchical organization of crossed-lamellar shells: a case study on the shell of the bivalve Glycymeris glycymeris. J Mater Res 31(5):536–546CrossRef
10.
go back to reference Agbaje OBA, Wirth R, Morales LFG, Shirai K, Kosnik M, Watanabe T, Jacob DE (2017) Architecture of crossed-lamellar bivalve shells: the southern giant clam (Tridacna derasa, Röding, 1798). R Soc Open Sci 4(9):170622CrossRef Agbaje OBA, Wirth R, Morales LFG, Shirai K, Kosnik M, Watanabe T, Jacob DE (2017) Architecture of crossed-lamellar bivalve shells: the southern giant clam (Tridacna derasa, Röding, 1798). R Soc Open Sci 4(9):170622CrossRef
11.
go back to reference Boggild OB (1930) The shell structure of the mollusks. Det Kongelige Danske Videnskabernes Selskabs Skrifter, Natruvidenskabelig og Mathematisk, Afdeling, Ser 9(2):231–326 Boggild OB (1930) The shell structure of the mollusks. Det Kongelige Danske Videnskabernes Selskabs Skrifter, Natruvidenskabelig og Mathematisk, Afdeling, Ser 9(2):231–326
12.
go back to reference Wilmot N, Barber D, Taylor J, Graham A (1992) Electron microscopy of molluscan crossed-lamellar microstructure. Philos Trans R Soc Lond B Biol Sci 337(1279):21–35CrossRef Wilmot N, Barber D, Taylor J, Graham A (1992) Electron microscopy of molluscan crossed-lamellar microstructure. Philos Trans R Soc Lond B Biol Sci 337(1279):21–35CrossRef
13.
go back to reference Dauphin Y, Denis A (2000) Structure and composition of the aragonitic crossed lamellar layers in six species of Bivalvia and Gastropoda. Comp Biochem Physiol A Mol Integr Physiol 126(3):367–377CrossRef Dauphin Y, Denis A (2000) Structure and composition of the aragonitic crossed lamellar layers in six species of Bivalvia and Gastropoda. Comp Biochem Physiol A Mol Integr Physiol 126(3):367–377CrossRef
14.
go back to reference MacClintock C (1967) Shell structure of patelloid and bellerophontoid gastropods (Mollusca). Yale Univ Peabody Mus Nat Hist Bull 22:1–32 MacClintock C (1967) Shell structure of patelloid and bellerophontoid gastropods (Mollusca). Yale Univ Peabody Mus Nat Hist Bull 22:1–32
15.
go back to reference Li X, Ji H, Yang W, Zhang G, Chen D (2017) Mechanical properties of crossed-lamellar structures in biological shells: a review. J Mech Behav Biomed Mater 74:54–71CrossRef Li X, Ji H, Yang W, Zhang G, Chen D (2017) Mechanical properties of crossed-lamellar structures in biological shells: a review. J Mech Behav Biomed Mater 74:54–71CrossRef
16.
go back to reference Almagro I, Drzymała P, Berent K, Saínz-Díaz CI, Willinger MG, Bonarski J, Checa AG (2016) New crystallographic relationships in biogenic aragonite: the crossed-lamellar microstructures of mollusks. Cryst Growth Des 16(4):2083–2093CrossRef Almagro I, Drzymała P, Berent K, Saínz-Díaz CI, Willinger MG, Bonarski J, Checa AG (2016) New crystallographic relationships in biogenic aragonite: the crossed-lamellar microstructures of mollusks. Cryst Growth Des 16(4):2083–2093CrossRef
17.
go back to reference Ji HM, Jiang Y, Yang W, Zhang GP, Li XW (2015) Biological self-arrangement of fiber like aragonite and its effect on mechanical behavior of Veined rapa whelk shell. J Am Ceram Soc 98(10):3319–3325CrossRef Ji HM, Jiang Y, Yang W, Zhang GP, Li XW (2015) Biological self-arrangement of fiber like aragonite and its effect on mechanical behavior of Veined rapa whelk shell. J Am Ceram Soc 98(10):3319–3325CrossRef
18.
go back to reference Yang W, Zhang G, Zhu X, Li X, Meyers M (2011) Structure and mechanical properties of Saxidomus purpuratus biological shells. J Mech Behav Biomed Mater 4(7):1514–1530CrossRef Yang W, Zhang G, Zhu X, Li X, Meyers M (2011) Structure and mechanical properties of Saxidomus purpuratus biological shells. J Mech Behav Biomed Mater 4(7):1514–1530CrossRef
19.
go back to reference Suzuki M, Kogure T, Weiner S, Addadi L (2011) Formation of aragonite crystals in the crossed lamellar microstructure of limpet shells. Cryst Growth Des 11(11):4850–4859CrossRef Suzuki M, Kogure T, Weiner S, Addadi L (2011) Formation of aragonite crystals in the crossed lamellar microstructure of limpet shells. Cryst Growth Des 11(11):4850–4859CrossRef
21.
go back to reference Farre B, Dauphin Y (2009) Lipids from the nacreous and prismatic layers of two Pteriomorphia Mollusc shells. Comp Biochem Physiol B Biochem Mol Biol 152(2):103–109CrossRef Farre B, Dauphin Y (2009) Lipids from the nacreous and prismatic layers of two Pteriomorphia Mollusc shells. Comp Biochem Physiol B Biochem Mol Biol 152(2):103–109CrossRef
22.
go back to reference Samata T, Ogura M (1997) First finding of lipid component in the nacreous layer of Pinctada fucata. J Fossil Res 30:66 Samata T, Ogura M (1997) First finding of lipid component in the nacreous layer of Pinctada fucata. J Fossil Res 30:66
23.
go back to reference Fu G, Valiyaveettil S, Wopenka B, Morse DE (2005) CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. Biomacromol 6(3):1289–1298CrossRef Fu G, Valiyaveettil S, Wopenka B, Morse DE (2005) CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. Biomacromol 6(3):1289–1298CrossRef
24.
go back to reference Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. ChemBioChem 4(6):522–529CrossRef Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. ChemBioChem 4(6):522–529CrossRef
25.
go back to reference Gotliv BA, Kessler N, Sumerel JL, Morse DE, Tuross N, Addadi L, Weiner S (2005) Asprich: a novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. ChemBioChem 6(2):304–314CrossRef Gotliv BA, Kessler N, Sumerel JL, Morse DE, Tuross N, Addadi L, Weiner S (2005) Asprich: a novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. ChemBioChem 6(2):304–314CrossRef
26.
go back to reference Marin F, Luquet G (2005) Molluscan biomineralization: the proteinaceous shell constituents of Pinna nobilis L. Mater Sci Eng, C 25(2):105–111CrossRef Marin F, Luquet G (2005) Molluscan biomineralization: the proteinaceous shell constituents of Pinna nobilis L. Mater Sci Eng, C 25(2):105–111CrossRef
27.
go back to reference Samata T (1990) Ca-binding glycoproteins in molluscan shells with different types of ultrastructure. Veliger 33(2):190–201 Samata T (1990) Ca-binding glycoproteins in molluscan shells with different types of ultrastructure. Veliger 33(2):190–201
28.
go back to reference Cusack M, Freer A (2008) Biomineralization: elemental and organic influence in carbonate systems. Chem Rev 108(11):4433–4454CrossRef Cusack M, Freer A (2008) Biomineralization: elemental and organic influence in carbonate systems. Chem Rev 108(11):4433–4454CrossRef
29.
go back to reference Dauphin Y (2003) Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves Pinna nobilis and Pinctada margaritifera. J Biol Chem 278(17):15168–15177CrossRef Dauphin Y (2003) Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves Pinna nobilis and Pinctada margaritifera. J Biol Chem 278(17):15168–15177CrossRef
30.
go back to reference Marxen JC, Becker W (1997) The organic shell matrix of the freshwater snail, Biomphalaria glabrata. Comp Biochem Physiol B Biochem Mol Biol 118(1):23–33CrossRef Marxen JC, Becker W (1997) The organic shell matrix of the freshwater snail, Biomphalaria glabrata. Comp Biochem Physiol B Biochem Mol Biol 118(1):23–33CrossRef
31.
go back to reference Marxen JC, Hammer M, Gehrke T, Becker W (1998) Carbohydrates of the organic shell matrix and the shell-forming tissue of the snail Biomphalaria glabrata (Say). Biol Bull 194(2):231–240CrossRef Marxen JC, Hammer M, Gehrke T, Becker W (1998) Carbohydrates of the organic shell matrix and the shell-forming tissue of the snail Biomphalaria glabrata (Say). Biol Bull 194(2):231–240CrossRef
32.
go back to reference Osuna-Mascaró A, Cruz-Bustos T, Benhamada S, Guichard N, Marie B, Plasseraud L, Corneillat M, Alcaraz G, Checa A, Marin F (2014) The shell organic matrix of the crossed lamellar queen conch shell (Strombus gigas). Comp Biochem Physiol B Biochem Mol Biol 168:76–85CrossRef Osuna-Mascaró A, Cruz-Bustos T, Benhamada S, Guichard N, Marie B, Plasseraud L, Corneillat M, Alcaraz G, Checa A, Marin F (2014) The shell organic matrix of the crossed lamellar queen conch shell (Strombus gigas). Comp Biochem Physiol B Biochem Mol Biol 168:76–85CrossRef
33.
go back to reference Giuffre AJ, Hamm LM, Han N, De Yoreo JJ, Dove PM (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci USA 110(23):9261–9266CrossRef Giuffre AJ, Hamm LM, Han N, De Yoreo JJ, Dove PM (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci USA 110(23):9261–9266CrossRef
34.
go back to reference Nudelman F (2015) Nacre biomineralisation: A review on the mechanisms of crystal nucleation. Seminars in Cell & Developmental Biology. Elsevier, New York, pp 2–10 Nudelman F (2015) Nacre biomineralisation: A review on the mechanisms of crystal nucleation. Seminars in Cell & Developmental Biology. Elsevier, New York, pp 2–10
35.
go back to reference Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325(5946):1388–1390CrossRef Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325(5946):1388–1390CrossRef
36.
go back to reference Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271(5245):67–69CrossRef Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271(5245):67–69CrossRef
37.
go back to reference Kamat S, Su X, Ballarini R, Heuer A (2000) Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405(6790):1036–1040CrossRef Kamat S, Su X, Ballarini R, Heuer A (2000) Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405(6790):1036–1040CrossRef
38.
go back to reference Neves N, Mano J (2005) Structure/mechanical behavior relationships in crossed-lamellar sea shells. Mater Sci Eng C 25(2):113–118CrossRef Neves N, Mano J (2005) Structure/mechanical behavior relationships in crossed-lamellar sea shells. Mater Sci Eng C 25(2):113–118CrossRef
39.
go back to reference Li H, Jin D, Li R, Li X (2015) Structural and mechanical characterization of thermally treated conch shells. JOM 67(4):720–725CrossRef Li H, Jin D, Li R, Li X (2015) Structural and mechanical characterization of thermally treated conch shells. JOM 67(4):720–725CrossRef
40.
go back to reference Lamprell K, Whitehead T, Healy J (1992) Bivalves of Australia. Crawford House Press, Goolwa Lamprell K, Whitehead T, Healy J (1992) Bivalves of Australia. Crawford House Press, Goolwa
41.
go back to reference Benzie J, Williams S (1992) No genetic differentiation of giant clam (Tridacna gigas) populations in the Great Barrier Reef, Australia. Mar Biol 113(3):373–377CrossRef Benzie J, Williams S (1992) No genetic differentiation of giant clam (Tridacna gigas) populations in the Great Barrier Reef, Australia. Mar Biol 113(3):373–377CrossRef
42.
go back to reference Dominguez JG, Kosnik MA, Allen AP, Hua Q, Jacob DE, Kaufman DS, Whitacre K (2016) Time averaging and stratigraphic resolution in death assemblages and Holocene deposits: Sydney Harbour’s molluscan record. Palaios 31(11):564–575CrossRef Dominguez JG, Kosnik MA, Allen AP, Hua Q, Jacob DE, Kaufman DS, Whitacre K (2016) Time averaging and stratigraphic resolution in death assemblages and Holocene deposits: Sydney Harbour’s molluscan record. Palaios 31(11):564–575CrossRef
43.
go back to reference Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRef Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRef
44.
go back to reference Goldberg HA, Warner KJ (1997) The staining of acidic proteins on polyacrylamide gels: enhanced sensitivity and stability of “Stains-all” staining in combination with silver nitrate. Anal Biochem 251(2):227–233CrossRef Goldberg HA, Warner KJ (1997) The staining of acidic proteins on polyacrylamide gels: enhanced sensitivity and stability of “Stains-all” staining in combination with silver nitrate. Anal Biochem 251(2):227–233CrossRef
45.
go back to reference Myers JM, Veis A, Sabsay B, Wheeler A (1996) A method for enhancing the sensitivity and stability of Stains-all for phosphoproteins separated in sodium dodecyl sulfate–polyacrylamide gels. Anal Biochem 240(2):300–302CrossRef Myers JM, Veis A, Sabsay B, Wheeler A (1996) A method for enhancing the sensitivity and stability of Stains-all for phosphoproteins separated in sodium dodecyl sulfate–polyacrylamide gels. Anal Biochem 240(2):300–302CrossRef
46.
go back to reference Wall RS, Gyi TJ (1988) Alcian blue staining of proteoglycans in polyacrylamide gels using the “critical electrolyte concentration” approach. Anal Biochem 175(1):298–299CrossRef Wall RS, Gyi TJ (1988) Alcian blue staining of proteoglycans in polyacrylamide gels using the “critical electrolyte concentration” approach. Anal Biochem 175(1):298–299CrossRef
47.
go back to reference Trudel J, Asselin A (1990) Detection of chitin deacetylase activity after polyacrylamide gel electrophoresis. Anal Biochem 189(2):249–253CrossRef Trudel J, Asselin A (1990) Detection of chitin deacetylase activity after polyacrylamide gel electrophoresis. Anal Biochem 189(2):249–253CrossRef
48.
go back to reference Neo ML, Eckman W, Vicentuan K, Teo SL-M, Todd PA (2015) The ecological significance of giant clams in coral reef ecosystems. Biol Conserv 181:111–123CrossRef Neo ML, Eckman W, Vicentuan K, Teo SL-M, Todd PA (2015) The ecological significance of giant clams in coral reef ecosystems. Biol Conserv 181:111–123CrossRef
49.
go back to reference Su Y, Hung J-H, Kubo H, Liu L-L (2014) Tridacna noae (Röding, 1798)–a valid giant clam species separated from T. maxima (Röding, 1798) by morphological and genetic data. Raffles Bull Zool 19:62 Su Y, Hung J-H, Kubo H, Liu L-L (2014) Tridacna noae (Röding, 1798)–a valid giant clam species separated from T. maxima (Röding, 1798) by morphological and genetic data. Raffles Bull Zool 19:62
50.
go back to reference Kobayashi I, Akai J (1994) Twinned aragonite crystals found in the bivalvian crossed lamellar shell structure. J Geol Soc Jpn 100(2):177–180CrossRef Kobayashi I, Akai J (1994) Twinned aragonite crystals found in the bivalvian crossed lamellar shell structure. J Geol Soc Jpn 100(2):177–180CrossRef
51.
go back to reference Bonham K (1965) Growth rate of giant clam Tridacna gigas at Bikini Atoll as revealed by radioautography. Science 149(3681):300–302CrossRef Bonham K (1965) Growth rate of giant clam Tridacna gigas at Bikini Atoll as revealed by radioautography. Science 149(3681):300–302CrossRef
52.
go back to reference Popov SV (1986) Composite prismatic structure in bivalve shell. Acta Palaeontol Pol 31(1–2):3–26 Popov SV (1986) Composite prismatic structure in bivalve shell. Acta Palaeontol Pol 31(1–2):3–26
53.
go back to reference Albani JR (2003) Förster energy-transfer studies between Trp residues of α 1-acid glycoprotein (orosomucoid) and the glycosylation site of the protein. Carbohydr Res 338(21):2233–2236CrossRef Albani JR (2003) Förster energy-transfer studies between Trp residues of α 1-acid glycoprotein (orosomucoid) and the glycosylation site of the protein. Carbohydr Res 338(21):2233–2236CrossRef
54.
go back to reference Bezares J, Asaro RJ, Hawley M (2008) Macromolecular structure of the organic framework of nacre in Haliotis rufescens: implications for growth and mechanical behavior. J Struct Biol 163(1):61–75CrossRef Bezares J, Asaro RJ, Hawley M (2008) Macromolecular structure of the organic framework of nacre in Haliotis rufescens: implications for growth and mechanical behavior. J Struct Biol 163(1):61–75CrossRef
55.
go back to reference Suzuki M, Sakuda S, Nagasawa H (2007) Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci Biotechnol Biochem 71(7):1735–1744CrossRef Suzuki M, Sakuda S, Nagasawa H (2007) Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci Biotechnol Biochem 71(7):1735–1744CrossRef
56.
go back to reference Ehrlich H, Maldonado M, Spindler KD, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S, Worch H (2007) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). J Exp Zool Part B Mol Dev Evol 308(4):347–356CrossRef Ehrlich H, Maldonado M, Spindler KD, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S, Worch H (2007) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). J Exp Zool Part B Mol Dev Evol 308(4):347–356CrossRef
57.
go back to reference Younis S, Kauffmann Y, Pokroy B, Zolotoyabko E (2012) Atomic structure and ultrastructure of the Murex troscheli shell. J Struct Biol 180(3):539–545CrossRef Younis S, Kauffmann Y, Pokroy B, Zolotoyabko E (2012) Atomic structure and ultrastructure of the Murex troscheli shell. J Struct Biol 180(3):539–545CrossRef
58.
go back to reference Venyaminov SY, Kalnin N (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30(13–14):1243–1257CrossRef Venyaminov SY, Kalnin N (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30(13–14):1243–1257CrossRef
59.
go back to reference Marie B, Luquet G, Pais De Barros JP, Guichard N, Morel S, Alcaraz G, Bollache L, Marin F (2007) The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). FEBS J 274(11):2933–2945CrossRef Marie B, Luquet G, Pais De Barros JP, Guichard N, Morel S, Alcaraz G, Bollache L, Marin F (2007) The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). FEBS J 274(11):2933–2945CrossRef
60.
go back to reference Van Kuik J, Van Halbeek H, Kamerling J, Vliegenthart J (1985) Primary structure of the low molecular-weight carbohydrate chains of Helix pomatia alpha-hemocyanin. Xylose as a constituent of N-linked oligosaccharides in an animal glycoprotein. J Biol Chem 260(26):13984–13988 Van Kuik J, Van Halbeek H, Kamerling J, Vliegenthart J (1985) Primary structure of the low molecular-weight carbohydrate chains of Helix pomatia alpha-hemocyanin. Xylose as a constituent of N-linked oligosaccharides in an animal glycoprotein. J Biol Chem 260(26):13984–13988
61.
go back to reference Idakieva K, Parvanova K, Nicholson G, Voelter W, Genov N (2001) Carbohydrate content and monosaccharide composition of dioxygen-binding functional units from Rapana thomasiana Hemocyaninlsoform RtH2. C R Acad Bulg Sci 54(10):73 Idakieva K, Parvanova K, Nicholson G, Voelter W, Genov N (2001) Carbohydrate content and monosaccharide composition of dioxygen-binding functional units from Rapana thomasiana Hemocyaninlsoform RtH2. C R Acad Bulg Sci 54(10):73
62.
go back to reference Maverakis E, Kim K, Shimoda M, Gershwin ME, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015) Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun 57:1–13CrossRef Maverakis E, Kim K, Shimoda M, Gershwin ME, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015) Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun 57:1–13CrossRef
63.
go back to reference Nollet LM, Toldrá F (2008) Handbook of muscle foods analysis. CRC Press, Boca RatonCrossRef Nollet LM, Toldrá F (2008) Handbook of muscle foods analysis. CRC Press, Boca RatonCrossRef
64.
65.
go back to reference Merry T, Astrautsova S (1996) Glycoproteins. In: Encyclopedia of life sciences (ELS). Wiley: Chichester Merry T, Astrautsova S (1996) Glycoproteins. In: Encyclopedia of life sciences (ELS). Wiley: Chichester
66.
go back to reference Arias JL, Fernández MS (2008) Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem Rev 108(11):4475–4482CrossRef Arias JL, Fernández MS (2008) Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem Rev 108(11):4475–4482CrossRef
67.
go back to reference Campbell K, MacLennan D, Jorgensen A (1983) Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye” Stains-all”. J Biol Chem 258(18):11267–11273 Campbell K, MacLennan D, Jorgensen A (1983) Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye” Stains-all”. J Biol Chem 258(18):11267–11273
68.
go back to reference Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T (1997) Structures of mollusc shell framework proteins. Nature 387(6633):563–564CrossRef Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T (1997) Structures of mollusc shell framework proteins. Nature 387(6633):563–564CrossRef
69.
go back to reference Marie B, Zanella-Cléon I, Corneillat M, Becchi M, Alcaraz G, Plasseraud L, Luquet G, Marin F (2011) Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus. FEBS J 278(12):2117–2130CrossRef Marie B, Zanella-Cléon I, Corneillat M, Becchi M, Alcaraz G, Plasseraud L, Luquet G, Marin F (2011) Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus. FEBS J 278(12):2117–2130CrossRef
70.
go back to reference Kafetzopoulos D, Martinou A, Bouriotis V (1993) Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci USA 90(7):2564–2568CrossRef Kafetzopoulos D, Martinou A, Bouriotis V (1993) Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci USA 90(7):2564–2568CrossRef
71.
go back to reference Weiss IM, Schönitzer V (2006) The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. J Struct Biol 153(3):264–277CrossRef Weiss IM, Schönitzer V (2006) The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. J Struct Biol 153(3):264–277CrossRef
72.
go back to reference Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135(1):8–17CrossRef Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135(1):8–17CrossRef
73.
go back to reference Osuna-Mascaró AJ, Cruz-Bustos T, Marin F, Checa AG (2015) Ultrastructure of the interlamellar membranes of the nacre of the Bivalve pteria hirundo, determined by immunolabelling. PLoS ONE 10(4):e0122934CrossRef Osuna-Mascaró AJ, Cruz-Bustos T, Marin F, Checa AG (2015) Ultrastructure of the interlamellar membranes of the nacre of the Bivalve pteria hirundo, determined by immunolabelling. PLoS ONE 10(4):e0122934CrossRef
74.
go back to reference Bezares J, Asaro RJ, Lubarda VA (2012) Core structure of aligned chitin fibers within the interlamellar framework extracted from Haliotis rufescens nacre. Part I: implications for growth and mechanical response. Theoret Appl Mech 39(4):343–363CrossRef Bezares J, Asaro RJ, Lubarda VA (2012) Core structure of aligned chitin fibers within the interlamellar framework extracted from Haliotis rufescens nacre. Part I: implications for growth and mechanical response. Theoret Appl Mech 39(4):343–363CrossRef
75.
go back to reference Dauphin Y, Marin F (1995) The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulsed amperometric detection. Experientia 51(3):278–283CrossRef Dauphin Y, Marin F (1995) The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulsed amperometric detection. Experientia 51(3):278–283CrossRef
76.
go back to reference Agbaje OBA, Ben Shir I, Zax DB, Schmidt A, Jacob DE (2018) Biomacromolecules within bivalve shells: is chitin abundant? Acta Biomater 80:176–187CrossRef Agbaje OBA, Ben Shir I, Zax DB, Schmidt A, Jacob DE (2018) Biomacromolecules within bivalve shells: is chitin abundant? Acta Biomater 80:176–187CrossRef
77.
go back to reference Wolf SE, Böhm CF, Harris J, Demmert B, Jacob DE, Mondeshki M, Ruiz-Agudo E, Rodríguez-Navarro C (2016) Nonclassical crystallization in vivo et in vitro (I): process-structure-property relationships of nanogranular biominerals. J Struct Biol 196(2):244–259CrossRef Wolf SE, Böhm CF, Harris J, Demmert B, Jacob DE, Mondeshki M, Ruiz-Agudo E, Rodríguez-Navarro C (2016) Nonclassical crystallization in vivo et in vitro (I): process-structure-property relationships of nanogranular biominerals. J Struct Biol 196(2):244–259CrossRef
78.
go back to reference Currey J, Taylor J (1974) The mechanical behaviour of some molluscan hard tissues. J Zool 173(3):395–406CrossRef Currey J, Taylor J (1974) The mechanical behaviour of some molluscan hard tissues. J Zool 173(3):395–406CrossRef
79.
go back to reference Wittig I, Schägger H (2009) Native electrophoretic techniques to identify protein–protein interactions. Proteomics 9(23):5214–5223CrossRef Wittig I, Schägger H (2009) Native electrophoretic techniques to identify protein–protein interactions. Proteomics 9(23):5214–5223CrossRef
80.
go back to reference Krause F (2006) Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis:(membrane) protein complexes and supercomplexes. Electrophoresis 27(13):2759–2781CrossRef Krause F (2006) Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis:(membrane) protein complexes and supercomplexes. Electrophoresis 27(13):2759–2781CrossRef
81.
go back to reference Weiner S, Lowenstam H, Hood L (1977) Discrete molecular weight components of the organic matrices of mollusc shells. J Exp Mar Bio Ecol 30(1):45–51CrossRef Weiner S, Lowenstam H, Hood L (1977) Discrete molecular weight components of the organic matrices of mollusc shells. J Exp Mar Bio Ecol 30(1):45–51CrossRef
82.
go back to reference Manchenko GP (2002) Handbook of detection of enzymes on electrophoretic gels. CRC Press, Florida, pp 352–353CrossRef Manchenko GP (2002) Handbook of detection of enzymes on electrophoretic gels. CRC Press, Florida, pp 352–353CrossRef
83.
go back to reference Butzloff PR (2011) Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies. PLoS ONE 6(11):e27448CrossRef Butzloff PR (2011) Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies. PLoS ONE 6(11):e27448CrossRef
84.
go back to reference Suzuki M, Nagasawa H (2013) Mollusk shell structures and their formation mechanism 1. Can J Zool 91(6):349–366CrossRef Suzuki M, Nagasawa H (2013) Mollusk shell structures and their formation mechanism 1. Can J Zool 91(6):349–366CrossRef
85.
go back to reference Carré M, Bentaleb I, Bruguier O, Ordinola E, Barrett NT, Fontugne M (2006) Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim Cosmochim Acta 70(19):4906–4920CrossRef Carré M, Bentaleb I, Bruguier O, Ordinola E, Barrett NT, Fontugne M (2006) Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim Cosmochim Acta 70(19):4906–4920CrossRef
86.
go back to reference Weiner S, Lowenstam H, Taborek B, Hood L (1979) Fossil mollusk shell organic matrix components preserved for 80 million years. Paleobiology 5(2):144–150CrossRef Weiner S, Lowenstam H, Taborek B, Hood L (1979) Fossil mollusk shell organic matrix components preserved for 80 million years. Paleobiology 5(2):144–150CrossRef
87.
go back to reference Ehrlich H, Rigby JK, Botting J, Tsurkan M, Werner C, Schwille P, Petrášek Z, Pisera A, Simon P, Sivkov V (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497CrossRef Ehrlich H, Rigby JK, Botting J, Tsurkan M, Werner C, Schwille P, Petrášek Z, Pisera A, Simon P, Sivkov V (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497CrossRef
88.
89.
go back to reference Hackman R (1960) Studies on chitin IV. The occurrence of complexes in which chitin and protein are covalently linked. J Aust Biol Sci 13(4):568–577CrossRef Hackman R (1960) Studies on chitin IV. The occurrence of complexes in which chitin and protein are covalently linked. J Aust Biol Sci 13(4):568–577CrossRef
Metadata
Title
Biomacromolecules in bivalve shells with crossed lamellar architecture
Authors
Oluwatoosin B. A. Agbaje
Denise E. Thomas
J. Gabriel Dominguez
Bernie V. Mclnerney
Matthew A. Kosnik
Dorrit E. Jacob
Publication date
29-11-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3165-8

Other articles of this Issue 6/2019

Journal of Materials Science 6/2019 Go to the issue

Premium Partners