Skip to main content
Top

2012 | OriginalPaper | Chapter

33. Biomass Conversion

Authors : Stephen R. Decker, John Sheehan, David C. Dayton, Joseph J. Bozell, William S. Adney, Bonnie Hames, Steven R. Thomas, Richard L. Bain, Stefan Czernik, Min Zhang, Michael E. Himmel

Published in: Handbook of Industrial Chemistry and Biotechnology

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the sun to combine carbon dioxide from the atmosphere with water to produce organic plant matter. More inclusive definitions are possible. For example, animal products and waste can be included in the definition of biomass. Animals, like plants, are renewable; but animals clearly are one step removed from the direct use of sunlight. Using animal rather than plant material thus leads to substantially less efficient use of our planet’s ultimate renewable resource, the sun. So, we emphasize plant matter in our definition of biomass. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a “carbon neutral” fuel, meaning that it does not introduce new carbon into the atmosphere. In reality—as discussed later in the description of life cycle assessments of biomass use—we find that biomass fuels are not quite carbon neutral, because somewhere in the life cycle of their production, conversion, and distribution, some fossil energy carbon is released.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hall DO (1978) Solar energy use through biology—past, present and future. Solar Energy 22:307–328CrossRef Hall DO (1978) Solar energy use through biology—past, present and future. Solar Energy 22:307–328CrossRef
2.
go back to reference USDOE international energy annual 2000, DOE/EIA-0219(2000). U.S. Department of Energy, Energy Information Administration, Washington, DC (2002) USDOE international energy annual 2000, DOE/EIA-0219(2000). U.S. Department of Energy, Energy Information Administration, Washington, DC (2002)
3.
go back to reference Goldemberg J, Monaco L, Macedo I (1993) The Brazilian fuel-alcohol program. In: Johansson T, Kelly H, Reddy A, Williams R (eds) Renewable energy: sources for fuels and electricity. Island Press, Washington, DC Goldemberg J, Monaco L, Macedo I (1993) The Brazilian fuel-alcohol program. In: Johansson T, Kelly H, Reddy A, Williams R (eds) Renewable energy: sources for fuels and electricity. Island Press, Washington, DC
4.
go back to reference Rhodes A, Fletcher D (1966) Principles of industrial microbiology. Pergamon, New York Rhodes A, Fletcher D (1966) Principles of industrial microbiology. Pergamon, New York
5.
go back to reference Grohmann K, Himmel M (1991) Chapter 1: enzymes for fuels and chemical feedstocks. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion, vol 460. American Chemical Society, Washington, DC, pp 2–11CrossRef Grohmann K, Himmel M (1991) Chapter 1: enzymes for fuels and chemical feedstocks. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion, vol 460. American Chemical Society, Washington, DC, pp 2–11CrossRef
6.
go back to reference Sjostrom E (1993) Wood chemistry: fundamentals and applications. Academic, San Diego, pp 13–17 Sjostrom E (1993) Wood chemistry: fundamentals and applications. Academic, San Diego, pp 13–17
7.
go back to reference Fry SC, Miller JG (1989) Toward a working model of the growing plant cell wall. In: Lewis NG, Paice MG (eds) Plant cell wall polymers. American Chemical Society, Washington, DC, pp 33–46CrossRef Fry SC, Miller JG (1989) Toward a working model of the growing plant cell wall. In: Lewis NG, Paice MG (eds) Plant cell wall polymers. American Chemical Society, Washington, DC, pp 33–46CrossRef
8.
go back to reference Chum HL, Overend R (2003) Biomass and bioenergy in the United States. In: Goswami DY (ed) Advances in solar energy: an annual review, vol 15(3). American Solar Energy Society, Boulder, CO, pp 83–148 Chum HL, Overend R (2003) Biomass and bioenergy in the United States. In: Goswami DY (ed) Advances in solar energy: an annual review, vol 15(3). American Solar Energy Society, Boulder, CO, pp 83–148
9.
go back to reference Haq Z (2002) Biomass for electricity. Energy Information Administration, U.S. Department of Energy, Washington, DC Haq Z (2002) Biomass for electricity. Energy Information Administration, U.S. Department of Energy, Washington, DC
11.
go back to reference McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63CrossRef McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63CrossRef
12.
go back to reference Rapagna S, Jand N, Foscolo P (1998) Catalytic gasification of biomass to produce hydrogen rich gas. Int J Hydrogen Energy 23(7):551–557CrossRef Rapagna S, Jand N, Foscolo P (1998) Catalytic gasification of biomass to produce hydrogen rich gas. Int J Hydrogen Energy 23(7):551–557CrossRef
13.
go back to reference USDOE (2000) A biopower triumph—the gasification story, DOE/GO102000-1058. Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, Washington, DC USDOE (2000) A biopower triumph—the gasification story, DOE/GO102000-1058. Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, Washington, DC
14.
go back to reference Sherrard EC, Gauger WH (1923) Effect of salts upon the acid hydrolysis of wood. Ind Eng Chem 15(1):63–64CrossRef Sherrard EC, Gauger WH (1923) Effect of salts upon the acid hydrolysis of wood. Ind Eng Chem 15(1):63–64CrossRef
15.
go back to reference Sherrard EC (1922) Ethyl alcohol from western larch—larix occidentalis, nuttal. Ind Eng Chem 14(10):948–949CrossRef Sherrard EC (1922) Ethyl alcohol from western larch—larix occidentalis, nuttal. Ind Eng Chem 14(10):948–949CrossRef
16.
go back to reference LaForge FB, Hudson CS (1918) The preparation of several useful substances from corn cobs. J Ind Eng Chem 10(11):925–927CrossRef LaForge FB, Hudson CS (1918) The preparation of several useful substances from corn cobs. J Ind Eng Chem 10(11):925–927CrossRef
17.
go back to reference Braconnot H (1819) Verwandlungen des Holzstoffs mittelst Schwefelsaure in Gummi, Zucker und eine eigne Saure, und mittelst Kali in Ulmin. Ann Phys January:547–571 Braconnot H (1819) Verwandlungen des Holzstoffs mittelst Schwefelsaure in Gummi, Zucker und eine eigne Saure, und mittelst Kali in Ulmin. Ann Phys January:547–571
18.
go back to reference Dunning J, Lathrop E (1945) The saccharification of agricultural residues: a continuous process. Ind Eng Chem 37(1):24–29CrossRef Dunning J, Lathrop E (1945) The saccharification of agricultural residues: a continuous process. Ind Eng Chem 37(1):24–29CrossRef
19.
go back to reference Faith W (1945) Development of the Scholler process in the United States. Ind Eng Chem 37(1):9–11CrossRef Faith W (1945) Development of the Scholler process in the United States. Ind Eng Chem 37(1):9–11CrossRef
20.
go back to reference Saeman J (1945) Kinetics of wood saccharification: hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37(1):43–51CrossRef Saeman J (1945) Kinetics of wood saccharification: hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37(1):43–51CrossRef
21.
go back to reference Sherrard E, Kressman F (1945) Review of processess in the United States prior to World War II. Ind Eng Chem 37(1):5–8CrossRef Sherrard E, Kressman F (1945) Review of processess in the United States prior to World War II. Ind Eng Chem 37(1):5–8CrossRef
22.
go back to reference Harris E, Berlinger E (1946) Madison wood-sugar process, R1617. U.S. Forest Product Laboratory, Madison, WI Harris E, Berlinger E (1946) Madison wood-sugar process, R1617. U.S. Forest Product Laboratory, Madison, WI
23.
go back to reference Harris E (1949) Wood saccharification. In: Advances in carbohydrate chemistry. Academic, New York, vol 4, pp 163–188 Harris E (1949) Wood saccharification. In: Advances in carbohydrate chemistry. Academic, New York, vol 4, pp 163–188
24.
go back to reference Gilbert N, Hobbs I, Levine J (1952) Hydrolysis of wood using dilute sulfuric acid. Ind Eng Chem 44(7):1712–1720CrossRef Gilbert N, Hobbs I, Levine J (1952) Hydrolysis of wood using dilute sulfuric acid. Ind Eng Chem 44(7):1712–1720CrossRef
25.
go back to reference Wenzl H (1970) Chapter IV: the acid hydrolysis of wood. In: The chemical technology of wood. Academic, New York, pp 157–252 Wenzl H (1970) Chapter IV: the acid hydrolysis of wood. In: The chemical technology of wood. Academic, New York, pp 157–252
26.
go back to reference Grethlein H (1978) Comparison of the economics of acid and enzymatic hydrolysis of newsprint. Biotechnol Bioeng 20:503–525CrossRef Grethlein H (1978) Comparison of the economics of acid and enzymatic hydrolysis of newsprint. Biotechnol Bioeng 20:503–525CrossRef
27.
go back to reference Wright J (1983) High-temperature acid hydrolysis of cellulose for alcohol fuel production, SERI/TR-231-1714. Solar Energy Research Institute, Golden, CO Wright J (1983) High-temperature acid hydrolysis of cellulose for alcohol fuel production, SERI/TR-231-1714. Solar Energy Research Institute, Golden, CO
28.
go back to reference Grohmann K, Himmel M, Rivard C, Tucker M, Baker J, Torget R, Graboski M (1984) Chemical–mechanical methods for the enhanced utilization of straw. In: Biotechnology and bioengineering symposium. Wiley, New York, pp 137–157 Grohmann K, Himmel M, Rivard C, Tucker M, Baker J, Torget R, Graboski M (1984) Chemical–mechanical methods for the enhanced utilization of straw. In: Biotechnology and bioengineering symposium. Wiley, New York, pp 137–157
29.
go back to reference Church J, Woolbridge D (1981) Continuous high solids acid hydrolysis of biomass in a 1.5 in plug flow reactor. Ind Eng Chem Prod Res Devel 20:371–378CrossRef Church J, Woolbridge D (1981) Continuous high solids acid hydrolysis of biomass in a 1.5 in plug flow reactor. Ind Eng Chem Prod Res Devel 20:371–378CrossRef
30.
go back to reference Wright J, d’Agnicourt C (1984) Evaluation of sulfuric acid hydrolysis for alcohol fuel production. In: Biotechnology and bioengineering symposium. Wiley, New York, pp 105–123 Wright J, d’Agnicourt C (1984) Evaluation of sulfuric acid hydrolysis for alcohol fuel production. In: Biotechnology and bioengineering symposium. Wiley, New York, pp 105–123
31.
go back to reference Harris J, Baker A, Conner A, Jefferies T, Minor J et al (1985) Two-stage dilute sulfuric acid hydrolysis of wood: an investigation of fundamentals. General technical report FPL-45. U.S. Forest Products Laboratory, Madison, WI Harris J, Baker A, Conner A, Jefferies T, Minor J et al (1985) Two-stage dilute sulfuric acid hydrolysis of wood: an investigation of fundamentals. General technical report FPL-45. U.S. Forest Products Laboratory, Madison, WI
32.
go back to reference Wirght J, Power A, Bergeron P (1985) Evaluation of concentrated halogen acid hydrolysis processes for alcohol fuel production, SERI/TR-232-2386. Solar Energy Research Institute, Golden, CO Wirght J, Power A, Bergeron P (1985) Evaluation of concentrated halogen acid hydrolysis processes for alcohol fuel production, SERI/TR-232-2386. Solar Energy Research Institute, Golden, CO
33.
go back to reference Farone WA, Cuzens JE (1996) Methods of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. US Patent 5,562,777, 8 Oct 1996 Farone WA, Cuzens JE (1996) Methods of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. US Patent 5,562,777, 8 Oct 1996
34.
go back to reference Wright JD, D’Agincourt CG (1984) Evaluation of sulfuric acid hydrolysis processes for alcohol fuel production. Biotechnol Bioeng Symp 14:105–121 Wright JD, D’Agincourt CG (1984) Evaluation of sulfuric acid hydrolysis processes for alcohol fuel production. Biotechnol Bioeng Symp 14:105–121
35.
go back to reference Grohmann K, Torget R, Himmel M (1985) Optimization of dilute acid pretreatment of biomass. Biotechnol Bioeng Symp 15:59–80 Grohmann K, Torget R, Himmel M (1985) Optimization of dilute acid pretreatment of biomass. Biotechnol Bioeng Symp 15:59–80
36.
go back to reference Kong F, Engler CR, Soltes EJ (1993) Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34/35:23–35CrossRef Kong F, Engler CR, Soltes EJ (1993) Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34/35:23–35CrossRef
37.
go back to reference Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37CrossRef Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37CrossRef
38.
go back to reference Vinzant TB, Ehrman CI, Himmel ME (1997) SSF of pretreated hardwoods: effect of native lignin content. Appl Biochem Biotechnol 62:97–102CrossRef Vinzant TB, Ehrman CI, Himmel ME (1997) SSF of pretreated hardwoods: effect of native lignin content. Appl Biochem Biotechnol 62:97–102CrossRef
39.
go back to reference Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1:169–196CrossRef Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1:169–196CrossRef
40.
go back to reference Zhang M, Frandan M, Newman J, Finkelstein M, Picataggio S (1995) Promising ethanologens for xylose fermentation scientific note. Appl Biochem Biotechnol 51/52:527–536CrossRef Zhang M, Frandan M, Newman J, Finkelstein M, Picataggio S (1995) Promising ethanologens for xylose fermentation scientific note. Appl Biochem Biotechnol 51/52:527–536CrossRef
41.
go back to reference Zhang M, Deanda K, Finkelstein M, Picataggion S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243CrossRef Zhang M, Deanda K, Finkelstein M, Picataggion S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243CrossRef
42.
go back to reference Zhang M, Chou Y, Piccatagio S, Finkelstein M (1996) Single Zymomonas mobilis strain for xylose and arabinose fermentation, NREL IR#95-51. National Renewable Energy Laboratory, Golden, CO Zhang M, Chou Y, Piccatagio S, Finkelstein M (1996) Single Zymomonas mobilis strain for xylose and arabinose fermentation, NREL IR#95-51. National Renewable Energy Laboratory, Golden, CO
43.
go back to reference Ohta K, Beall D, Mejia J, Ingram L (1991) Genetic improvement of Escherichia for ethanol production: chromosol integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900 Ohta K, Beall D, Mejia J, Ingram L (1991) Genetic improvement of Escherichia for ethanol production: chromosol integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900
44.
go back to reference Lawford H, Rousseau J (1991) Energy from biomass and waste. In: Klass D (ed) Xylose to ethanol: enhanced yield and productivity using genetically engineered Escherichia coli. Chicago, pp 583–623 Lawford H, Rousseau J (1991) Energy from biomass and waste. In: Klass D (ed) Xylose to ethanol: enhanced yield and productivity using genetically engineered Escherichia coli. Chicago, pp 583–623
45.
go back to reference Ingram L, Ohta K, Beall D (1991) Energy from biomass and wastes. In: Klass D (ed) Genetic modification of E. coli for ethanol production. Institute of Gas Technology, Chicago, pp 1105–1125 Ingram L, Ohta K, Beall D (1991) Energy from biomass and wastes. In: Klass D (ed) Genetic modification of E. coli for ethanol production. Institute of Gas Technology, Chicago, pp 1105–1125
46.
go back to reference Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577CrossRef Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577CrossRef
47.
go back to reference ISO (1997) ISO 14040: environmental management—life cycle assessment—principles and framework, ISO 14040: 1997(E). International Standardization Organization, Geneva, 15 June 1997 ISO (1997) ISO 14040: environmental management—life cycle assessment—principles and framework, ISO 14040: 1997(E). International Standardization Organization, Geneva, 15 June 1997
48.
go back to reference ISO (2000) ISO/TR 14049: environmental management—life cycle assessment—examples of application of ISO 14041 to goal and scope definition and inventory analysis, ISO/TR 14049. International Organization for Standardization, Geneva, 15 March 2000 ISO (2000) ISO/TR 14049: environmental management—life cycle assessment—examples of application of ISO 14041 to goal and scope definition and inventory analysis, ISO/TR 14049. International Organization for Standardization, Geneva, 15 March 2000
49.
go back to reference ISO (1998) ISO 14041: environmental management—life cycle assessment—goal and scope definition and inventory analysis, ISO 14041:1998(E). International Organization for Standardization, Geneva, 1 Oct 1998 ISO (1998) ISO 14041: environmental management—life cycle assessment—goal and scope definition and inventory analysis, ISO 14041:1998(E). International Organization for Standardization, Geneva, 1 Oct 1998
50.
go back to reference ISO (1996) ISO 14004: environmental management systems—general guidelines on principles, systems and supporting techniques, ISO 14004:1996(E). International Organization for Standardization, Geneva, 1 Sept 1996 ISO (1996) ISO 14004: environmental management systems—general guidelines on principles, systems and supporting techniques, ISO 14004:1996(E). International Organization for Standardization, Geneva, 1 Sept 1996
51.
go back to reference ISO (2000) ISO 14043: environmental management systems—life cycle assessment—life cycle interpretation, ISO 14043:2000(E). International Organization for Standardization, Geneva, 1 March 2000 ISO (2000) ISO 14043: environmental management systems—life cycle assessment—life cycle interpretation, ISO 14043:2000(E). International Organization for Standardization, Geneva, 1 March 2000
52.
go back to reference ISO (1996) ISO 14001: environmental management systems—specification with guidance for use, ISO 14001:1996(E). International Organization of Standardization, Geneva, 1 Sept 1996 ISO (1996) ISO 14001: environmental management systems—specification with guidance for use, ISO 14001:1996(E). International Organization of Standardization, Geneva, 1 Sept 1996
53.
go back to reference Spath P, Mann M (2004) Biomass power and conventional fossil systems with and without CO2 sequestration—comparing the energy balance, greenhouse gas emissions and economics, NREL/TP-510-32575. National Renewable Energy Laboratory, Golden, CO Spath P, Mann M (2004) Biomass power and conventional fossil systems with and without CO2 sequestration—comparing the energy balance, greenhouse gas emissions and economics, NREL/TP-510-32575. National Renewable Energy Laboratory, Golden, CO
54.
go back to reference Spath P, Dayton D (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, NREL/TP-510-34929. National Renewable Energy Laboratory, Golden, CO Spath P, Dayton D (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, NREL/TP-510-34929. National Renewable Energy Laboratory, Golden, CO
55.
go back to reference U.S. Department of Energy (1997) Energy information administration, annual energy review, vol DOE/EIA-0383. U.S. Department of Energy, Washington, DC U.S. Department of Energy (1997) Energy information administration, annual energy review, vol DOE/EIA-0383. U.S. Department of Energy, Washington, DC
56.
go back to reference Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57/58:741–761CrossRef Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57/58:741–761CrossRef
57.
go back to reference Hoffert M, Caldeira K, Benford G, Crisell D, Green CJ et al (2002) Advanced technology paths to global climate stability: energy for a greenhouse plant. Science 298:981–987CrossRef Hoffert M, Caldeira K, Benford G, Crisell D, Green CJ et al (2002) Advanced technology paths to global climate stability: energy for a greenhouse plant. Science 298:981–987CrossRef
58.
go back to reference NRC (2000) Bio-based industrial products: priorities for research and commercialization. Committee on Bio-Based Industrial Products, National Research Council, Washington, DC NRC (2000) Bio-based industrial products: priorities for research and commercialization. Committee on Bio-Based Industrial Products, National Research Council, Washington, DC
59.
go back to reference Johansson T, Kelly H, Reddy A, Williams R (1996) Renewable fuels and electricity for a growing world economy. In: Johansson T, Kelly H, Reddy A, Williams R (eds) Renewable energy: sources for fuels and electricity. Island Press, Washington, DC Johansson T, Kelly H, Reddy A, Williams R (1996) Renewable fuels and electricity for a growing world economy. In: Johansson T, Kelly H, Reddy A, Williams R (eds) Renewable energy: sources for fuels and electricity. Island Press, Washington, DC
60.
go back to reference Lynd LR, Jin H, Michels JG, Wyman CE, Dale B (2003) Bioenergy: background, potential, and policy: a policy briefing prepared for the Center for Strategic and International Studies. Center for Strategic and International Studies, Washington, DC Lynd LR, Jin H, Michels JG, Wyman CE, Dale B (2003) Bioenergy: background, potential, and policy: a policy briefing prepared for the Center for Strategic and International Studies. Center for Strategic and International Studies, Washington, DC
61.
go back to reference Lovins AB, Datta EK, Bustnes O-E, Koomey JG, Glasgow N (2004) Winning the oil endgame: innovation for profits, jobs and security. Rocky Mountain Institute, Snowmass, CO Lovins AB, Datta EK, Bustnes O-E, Koomey JG, Glasgow N (2004) Winning the oil endgame: innovation for profits, jobs and security. Rocky Mountain Institute, Snowmass, CO
62.
go back to reference Greene N (2004) Growing energy: how biofuels Can help end America’s oil dependence. Natural Resources Defense Council, New York Greene N (2004) Growing energy: how biofuels Can help end America’s oil dependence. Natural Resources Defense Council, New York
63.
go back to reference Helle S, Cameron D et al (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of Saccharomyces cerevisiae. Enzyme Microb Technol 33(6):786–792CrossRef Helle S, Cameron D et al (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of Saccharomyces cerevisiae. Enzyme Microb Technol 33(6):786–792CrossRef
64.
go back to reference Klinke HB, Thomsen AB et al (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26CrossRef Klinke HB, Thomsen AB et al (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26CrossRef
65.
go back to reference Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266CrossRef Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266CrossRef
66.
go back to reference Dupreez JC, Bosch M, Prior BA (1986) The fermentation of hexose and pentose sugars by Candida-shehatae and Pichia-stipitis. Appl Microbiol Biotechnol 23(3–4):228–233 Dupreez JC, Bosch M, Prior BA (1986) The fermentation of hexose and pentose sugars by Candida-shehatae and Pichia-stipitis. Appl Microbiol Biotechnol 23(3–4):228–233
67.
go back to reference Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53(10):2420–2425 Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53(10):2420–2425
68.
go back to reference Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57(10):2810–2815 Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57(10):2810–2815
69.
go back to reference Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900 Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900
70.
go back to reference Lawford HG, Rousseau JD (1992) Effect of acetic acid on xylose conversion to ethanol by genetically engineered E. coli. Appl Biochem Biotechnol 34–35:185–204CrossRef Lawford HG, Rousseau JD (1992) Effect of acetic acid on xylose conversion to ethanol by genetically engineered E. coli. Appl Biochem Biotechnol 34–35:185–204CrossRef
71.
go back to reference Hahn-Hagerdal B, Linden T, Senac T, Skoog K (1991) Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Appl Biochem Biotechnol 28–29:131–144CrossRef Hahn-Hagerdal B, Linden T, Senac T, Skoog K (1991) Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Appl Biochem Biotechnol 28–29:131–144CrossRef
72.
go back to reference Padukone N, Evans KW, McMillan JD, Wyman CE (1995) Characterization of recombinant E. coli ATCC 11303 (pLOI 297) in the conversion of cellulose and xylose to ethanol. Appl Microbiol Biotechnol 43(5):850–855CrossRef Padukone N, Evans KW, McMillan JD, Wyman CE (1995) Characterization of recombinant E. coli ATCC 11303 (pLOI 297) in the conversion of cellulose and xylose to ethanol. Appl Microbiol Biotechnol 43(5):850–855CrossRef
73.
go back to reference Asghari A, Bothast RJ, Doran JB, Ingram LO (1996) Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11. J Ind Microbiol 16(1):42–47CrossRef Asghari A, Bothast RJ, Doran JB, Ingram LO (1996) Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11. J Ind Microbiol 16(1):42–47CrossRef
74.
go back to reference Zhang M, Eddy C, Deanda K, Franden MA, Finkelstein M, Picataggio S (1995) Metabolic engineering of Zymomonas-mobilis for ethanol-production from renewable feedstocks. Abstr Paper Am Chem Soc 209:115-BTEC Zhang M, Eddy C, Deanda K, Franden MA, Finkelstein M, Picataggio S (1995) Metabolic engineering of Zymomonas-mobilis for ethanol-production from renewable feedstocks. Abstr Paper Am Chem Soc 209:115-BTEC
75.
go back to reference Zhang M, Franden MA, Newman M, McMillan J, Finkelstein M, Picataggio S (1995) Promising ethanologens for xylose fermentation—scientific note. Appl Biochem Biotechnol 51–2:527–536CrossRef Zhang M, Franden MA, Newman M, McMillan J, Finkelstein M, Picataggio S (1995) Promising ethanologens for xylose fermentation—scientific note. Appl Biochem Biotechnol 51–2:527–536CrossRef
76.
go back to reference Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas-mobilis. Science 267(5195):240–243CrossRef Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas-mobilis. Science 267(5195):240–243CrossRef
77.
go back to reference Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62(12):4465–4470 Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62(12):4465–4470
78.
go back to reference Ho NWY, Chen ZD, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64(5):1852–1859 Ho NWY, Chen ZD, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64(5):1852–1859
79.
go back to reference Toon ST, Philippidis GP, Ho NWY, Chen ZD, Brainard A et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotechnol 63–5:243–255CrossRef Toon ST, Philippidis GP, Ho NWY, Chen ZD, Brainard A et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotechnol 63–5:243–255CrossRef
80.
go back to reference Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS et al (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69–78CrossRef Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS et al (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69–78CrossRef
81.
go back to reference Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409CrossRef Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409CrossRef
82.
go back to reference Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WT et al (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180(2):134–141CrossRef Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WT et al (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180(2):134–141CrossRef
83.
go back to reference Jeffries TW, Kurtzman CP (1994) Strain selection, taxonomy, and genetics of close-fermenting yeasts. Enzyme Microb Technol 16(11):922–932CrossRef Jeffries TW, Kurtzman CP (1994) Strain selection, taxonomy, and genetics of close-fermenting yeasts. Enzyme Microb Technol 16(11):922–932CrossRef
84.
go back to reference Jeffries TW, Dahn K, Kenealy WR, Pittman P, Sreenath HK, Davis BP (1994) Genetic-engineering of the xylose-fermenting yeast Pichia-stipitis for improved ethanol-production. Abstr Paper Am Chem Soc 207:167-BTEC Jeffries TW, Dahn K, Kenealy WR, Pittman P, Sreenath HK, Davis BP (1994) Genetic-engineering of the xylose-fermenting yeast Pichia-stipitis for improved ethanol-production. Abstr Paper Am Chem Soc 207:167-BTEC
85.
go back to reference Klapatch TR, Guerinot ML, Lynd LR (1996) Electrotransformation of Clostridium thermosaccharolyticum. J Ind Microbiol 16(6):342–347CrossRef Klapatch TR, Guerinot ML, Lynd LR (1996) Electrotransformation of Clostridium thermosaccharolyticum. J Ind Microbiol 16(6):342–347CrossRef
86.
go back to reference Bothast RJ, Saha BC, Flosenzier AV, Ingram LO (1994) Fermentation of L-arabinose, D-xylose and D-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnol Lett 16(4):401–406CrossRef Bothast RJ, Saha BC, Flosenzier AV, Ingram LO (1994) Fermentation of L-arabinose, D-xylose and D-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnol Lett 16(4):401–406CrossRef
87.
go back to reference Sedlak M, Ho NWY (2001) Expression of E. coli araBAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 28(1):16–24CrossRef Sedlak M, Ho NWY (2001) Expression of E. coli araBAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 28(1):16–24CrossRef
88.
go back to reference Himmel ME, Adney WS, Baker JO, Elander R, McMillan JD et al (1997) Advanced bioethanol production technologies: a perspective. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass, vol 666. American Chemical Society, Washington, DC, pp 2–45CrossRef Himmel ME, Adney WS, Baker JO, Elander R, McMillan JD et al (1997) Advanced bioethanol production technologies: a perspective. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass, vol 666. American Chemical Society, Washington, DC, pp 2–45CrossRef
89.
go back to reference Toon ST, Philippidis GP, Ho NWY, Chen ZD, Brainard A et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotechnol 63(5):243–255CrossRef Toon ST, Philippidis GP, Ho NWY, Chen ZD, Brainard A et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotechnol 63(5):243–255CrossRef
90.
go back to reference Zhang Y-HP, Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A 102(20):7321–7325CrossRef Zhang Y-HP, Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A 102(20):7321–7325CrossRef
91.
go back to reference VanRensburg P, Zyl WHV, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14(1):67–76CrossRef VanRensburg P, Zyl WHV, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14(1):67–76CrossRef
92.
go back to reference Godbole S, Decker SR, Nieves RA, Adney WS, Vinzant TB et al (1999) Cloning and expression of Trichoderma reesei CBH I in Pichia pastoris. Biotechnol Prog 15(3):828–833CrossRef Godbole S, Decker SR, Nieves RA, Adney WS, Vinzant TB et al (1999) Cloning and expression of Trichoderma reesei CBH I in Pichia pastoris. Biotechnol Prog 15(3):828–833CrossRef
93.
go back to reference VanRooyen R, Hahn-Hagerdal B, Grange DCL, VanZyl WH (2003) Comparative expression of novel beta-glucosidases in Saccharomyces cerevisiae. Yeast 20:S223 VanRooyen R, Hahn-Hagerdal B, Grange DCL, VanZyl WH (2003) Comparative expression of novel beta-glucosidases in Saccharomyces cerevisiae. Yeast 20:S223
94.
go back to reference ASTM Methods available from American Society for Testing and Materials at http://www.ASTM.org; E1690-01 Determining ethanol extractives in biomass; E1721-01 Determining acid-insoluble residue in biomass; E1755-01 Determining ash in biomass; E1756-01 Determining total solids in biomass; E1757-0101 Preparing biomass for compositional analysis; E1758-0101 Determining carbohydrates in biomass by high performance liquid chromatography (HPLC); E1821-96 Determining carbohydrates in biomass by gas chromatograph (GC). http://www.ASTM.org. April ASTM Methods available from American Society for Testing and Materials at http://​www.​ASTM.​org; E1690-01 Determining ethanol extractives in biomass; E1721-01 Determining acid-insoluble residue in biomass; E1755-01 Determining ash in biomass; E1756-01 Determining total solids in biomass; E1757-0101 Preparing biomass for compositional analysis; E1758-0101 Determining carbohydrates in biomass by high performance liquid chromatography (HPLC); E1821-96 Determining carbohydrates in biomass by gas chromatograph (GC). http://​www.​ASTM.​org. April
96.
go back to reference Ehrman CI (1996) Methods for the chemical analysis of biomass process streams. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC Ehrman CI (1996) Methods for the chemical analysis of biomass process streams. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC
97.
go back to reference DiFoggio R (1995) Examination of some misconceptions about near-infrared analysis. Appl Spectrosc 49(1):67–75CrossRef DiFoggio R (1995) Examination of some misconceptions about near-infrared analysis. Appl Spectrosc 49(1):67–75CrossRef
100.
go back to reference Shull GH (1909) A pure-line method in corn breeding. Am Breed Assoc Rep 5:51–59 Shull GH (1909) A pure-line method in corn breeding. Am Breed Assoc Rep 5:51–59
101.
go back to reference East EM (1936) Heterosis. Genetics 21:375–397 East EM (1936) Heterosis. Genetics 21:375–397
103.
go back to reference Hallauer AR, Russell WA, Lamkey KR (1988) Corn breeding. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. Crop Science Society of America, Madison, WI, pp 463–564 Hallauer AR, Russell WA, Lamkey KR (1988) Corn breeding. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. Crop Science Society of America, Madison, WI, pp 463–564
104.
go back to reference Peterson PA (1993) Transposable elements in maize: their role in creating plant genetic variability. Adv Agron 51:79–124CrossRef Peterson PA (1993) Transposable elements in maize: their role in creating plant genetic variability. Adv Agron 51:79–124CrossRef
105.
go back to reference Alexander DE (1988) Breeding special nutritional and industrial types. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. American Society of Agronomy, Madison, WI, pp 869–880 Alexander DE (1988) Breeding special nutritional and industrial types. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. American Society of Agronomy, Madison, WI, pp 869–880
106.
go back to reference Dudley JW (1977) Seventy-six generations of selection for oil and protein in maize. In: Pollak E et al (eds) Proceedings of the international conference on quantitative genetics. Iowa State University Press, Ames, pp 459–473 Dudley JW (1977) Seventy-six generations of selection for oil and protein in maize. In: Pollak E et al (eds) Proceedings of the international conference on quantitative genetics. Iowa State University Press, Ames, pp 459–473
107.
go back to reference Dudley JW, Lambert RJ (2004) 100 generations of selection for oil and protein content in corn. Plant Breed Rev 24(1):79–110 Dudley JW, Lambert RJ (2004) 100 generations of selection for oil and protein content in corn. Plant Breed Rev 24(1):79–110
108.
go back to reference Miller RL, Dudley JW, Alexander DE (1981) High intensity selection for percent oil in corn. Crop Sci 21:455–457 Miller RL, Dudley JW, Alexander DE (1981) High intensity selection for percent oil in corn. Crop Sci 21:455–457
109.
go back to reference Dudley JW, Dijkhuizen A, Paul C, Coates ST, Rocheford TR (2004) Effects of random mating on marker-QTL associations in the cross of the Illinois high protein x Illinois low protein maize strains. Crop Sci 44:1419–1428CrossRef Dudley JW, Dijkhuizen A, Paul C, Coates ST, Rocheford TR (2004) Effects of random mating on marker-QTL associations in the cross of the Illinois high protein x Illinois low protein maize strains. Crop Sci 44:1419–1428CrossRef
110.
go back to reference Seki MMN, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M et al (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145CrossRef Seki MMN, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M et al (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145CrossRef
111.
go back to reference Yu JSH, Wang J, Wong GKS, Li S, Liu B et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92CrossRef Yu JSH, Wang J, Wong GKS, Li S, Liu B et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92CrossRef
112.
go back to reference Goff SA, Ricke D, Lan TH, Presting G, Wang R et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100CrossRef Goff SA, Ricke D, Lan TH, Presting G, Wang R et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100CrossRef
115.
go back to reference Carpita NC, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol 47:1–5CrossRef Carpita NC, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol 47:1–5CrossRef
119.
go back to reference Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A 93(22):12637–12642CrossRef Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A 93(22):12637–12642CrossRef
120.
go back to reference Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X et al (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11:287–299CrossRef Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X et al (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11:287–299CrossRef
121.
go back to reference Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U S A 102(6):2221–2226CrossRef Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U S A 102(6):2221–2226CrossRef
122.
go back to reference Reiter WD, Vanzin GF (2001) Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol Biol 47(1–2):95–113CrossRef Reiter WD, Vanzin GF (2001) Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol Biol 47(1–2):95–113CrossRef
123.
go back to reference Gillmor CS, Lukowitz W, Brininstool G, Sedbrook JC, Hamann T et al (2005) Glycosylphosphatidylinositolanchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis. Plant Cell 17(4):1128–1140CrossRef Gillmor CS, Lukowitz W, Brininstool G, Sedbrook JC, Hamann T et al (2005) Glycosylphosphatidylinositolanchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis. Plant Cell 17(4):1128–1140CrossRef
124.
go back to reference Milne TA, Chum HL, Agblevor F, Johnson DK (1992) Standardized analytical methods. Biomass Bioenergy 2(1–6):341–366CrossRef Milne TA, Chum HL, Agblevor F, Johnson DK (1992) Standardized analytical methods. Biomass Bioenergy 2(1–6):341–366CrossRef
125.
go back to reference Milne TA, Brennan AH, Glenn BH (1990) Sourcebook of methods of analysis for biomass and biomass conversion processes. Elsevier, New York, p 341 Milne TA, Brennan AH, Glenn BH (1990) Sourcebook of methods of analysis for biomass and biomass conversion processes. Elsevier, New York, p 341
126.
go back to reference Tkachuk R (1977) Calculation of the nitrogen-to-protein conversion factor. In: Hulse JH, Rachie KO, Billingsley LW (eds) Nutritional standards and methods of evaluation for food legume breeders. Bernan Associates, Lanham, pp 78–82 Tkachuk R (1977) Calculation of the nitrogen-to-protein conversion factor. In: Hulse JH, Rachie KO, Billingsley LW (eds) Nutritional standards and methods of evaluation for food legume breeders. Bernan Associates, Lanham, pp 78–82
127.
go back to reference Mossé J (1990) Nitrogen to protein conversion factor for 10 cereals and 6 legumes or oilseeds—a reappraisal of its definition and determination—variation according to species and to seed protein content. J Agric Food Chem 38(1):18–24CrossRef Mossé J (1990) Nitrogen to protein conversion factor for 10 cereals and 6 legumes or oilseeds—a reappraisal of its definition and determination—variation according to species and to seed protein content. J Agric Food Chem 38(1):18–24CrossRef
128.
go back to reference Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis: new tools for the compositional analysis of corn stover feedstocks and process intermediates from ethanol production. Appl Biochem Biotechnol 105–108, Proceedings of the 24th international symposium for the biotechnology of fuels and chemicals, pp 1–12 Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis: new tools for the compositional analysis of corn stover feedstocks and process intermediates from ethanol production. Appl Biochem Biotechnol 105–108, Proceedings of the 24th international symposium for the biotechnology of fuels and chemicals, pp 1–12
129.
go back to reference Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis. New tools for compositional analysis of corn stover feedstocks and process intermediates from ethanol production. Appl Biochem Biotechnol 105–108:5–16CrossRef Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis. New tools for compositional analysis of corn stover feedstocks and process intermediates from ethanol production. Appl Biochem Biotechnol 105–108:5–16CrossRef
130.
go back to reference Aden A, Ruth M, Ibsen K, Jechura J, Neeves K et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL report no. TP-510-32438 available online at URL http://www.nrel.gov/publications/. National Renewable Energy Laboratory, Golden, CO, June 2002, p 154 Aden A, Ruth M, Ibsen K, Jechura J, Neeves K et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL report no. TP-510-32438 available online at URL http://​www.​nrel.​gov/​publications/​. National Renewable Energy Laboratory, Golden, CO, June 2002, p 154
132.
go back to reference Satoh H, Nishi A, Fujita N, Kubo A, Nakamura Y, Kawasaki T, Okita TW (2003) Isolation and characterization of starch mutants in rice. J Appl Glycosci 50(2):225–230CrossRef Satoh H, Nishi A, Fujita N, Kubo A, Nakamura Y, Kawasaki T, Okita TW (2003) Isolation and characterization of starch mutants in rice. J Appl Glycosci 50(2):225–230CrossRef
133.
go back to reference Nelson OE (1966) Mutant genes that change the composition of maize endosperm proteins. Fed Proc 25(6):1676–1678 Nelson OE (1966) Mutant genes that change the composition of maize endosperm proteins. Fed Proc 25(6):1676–1678
134.
go back to reference Ohlrogge JB, Browse J, Somerville CR (1991) The genetics of plant lipids. Biochim Biophys Acta 1082(1):1–26CrossRef Ohlrogge JB, Browse J, Somerville CR (1991) The genetics of plant lipids. Biochim Biophys Acta 1082(1):1–26CrossRef
135.
go back to reference Reiter W-D, Chappie C, Somerville CR (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 12(2):335–345CrossRef Reiter W-D, Chappie C, Somerville CR (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 12(2):335–345CrossRef
136.
go back to reference Mouille G, Robin S, Lecomte M, Pagant S, Hofte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-transform infrared (FT-IR) microspectroscopy. Plant J 35(3):393–404CrossRef Mouille G, Robin S, Lecomte M, Pagant S, Hofte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-transform infrared (FT-IR) microspectroscopy. Plant J 35(3):393–404CrossRef
137.
go back to reference Yong WD, Link B, O’Malley R, Tewari J, Hunter CT III et al (2005) Genomics of plant cell wall biogenesis. Planta 221:747–751CrossRef Yong WD, Link B, O’Malley R, Tewari J, Hunter CT III et al (2005) Genomics of plant cell wall biogenesis. Planta 221:747–751CrossRef
138.
go back to reference Baker JO, Thomas SR, Adney WS, Nieves RA, Himmel ME (1994) The cellulase synergistic effect—binary and ternary-systems. Abstr Paper Am Chem Soc 207:50-AGFD Baker JO, Thomas SR, Adney WS, Nieves RA, Himmel ME (1994) The cellulase synergistic effect—binary and ternary-systems. Abstr Paper Am Chem Soc 207:50-AGFD
139.
go back to reference Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298(pt 3):705–710 Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298(pt 3):705–710
140.
go back to reference Gatenholm P, Tenkanen M (2004) Hemicelluloses: science and technology, vol 864. American Chemical Society, Washington, DC, p 388 Gatenholm P, Tenkanen M (2004) Hemicelluloses: science and technology, vol 864. American Chemical Society, Washington, DC, p 388
141.
go back to reference Galante Y, Formantici C (2003) Enzyme applications in detergency and in manufacturing industries. Curr Org Chem 7(13):1399–1422CrossRef Galante Y, Formantici C (2003) Enzyme applications in detergency and in manufacturing industries. Curr Org Chem 7(13):1399–1422CrossRef
142.
go back to reference Hoondal G, Tiwari R, Tewari R, Dahiya N, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59(4–5):409–418 Hoondal G, Tiwari R, Tewari R, Dahiya N, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59(4–5):409–418
143.
go back to reference Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77(3):215–227CrossRef Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77(3):215–227CrossRef
144.
go back to reference Lebeda A, Luhova L, Sedlarova M, Jancova D (2001) The role of enzymes in plant-fungal pathogens interactions—review. Z Pflanzenk Pflanzen 108(1):89–111 Lebeda A, Luhova L, Sedlarova M, Jancova D (2001) The role of enzymes in plant-fungal pathogens interactions—review. Z Pflanzenk Pflanzen 108(1):89–111
145.
go back to reference Naidu G, Panda T (1998) Production of pectolytic enzymes—a review. Bioprocess Eng 19(5):355–361CrossRef Naidu G, Panda T (1998) Production of pectolytic enzymes—a review. Bioprocess Eng 19(5):355–361CrossRef
146.
go back to reference Burke R, Cairney J (2002) Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12(3):105–116CrossRef Burke R, Cairney J (2002) Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12(3):105–116CrossRef
147.
go back to reference Shah V, Nerud F (2002) Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Canad J Microbiol 48(10):857–870CrossRef Shah V, Nerud F (2002) Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Canad J Microbiol 48(10):857–870CrossRef
148.
go back to reference Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183CrossRef Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183CrossRef
149.
go back to reference Garg S, Modi D (1999) Decolorization of pulp-paper mill effluents by white-rot fungi. Crit Rev Biotechnol 19(2):85–112CrossRef Garg S, Modi D (1999) Decolorization of pulp-paper mill effluents by white-rot fungi. Crit Rev Biotechnol 19(2):85–112CrossRef
150.
go back to reference Cairney J, Burke R (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205(2):181–192CrossRef Cairney J, Burke R (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205(2):181–192CrossRef
151.
go back to reference Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53(2–3):273–289CrossRef Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53(2–3):273–289CrossRef
152.
go back to reference Zadrazil F, Kamra D, Isikhuemhen O, Schuchardt F, Flachowsky G (1996) Bioconversion of lignocellulose into ruminant feed with white rot fungi—review of work done at the FAL, Braunschweig. J Appl Animal Res 10(2):105–124CrossRef Zadrazil F, Kamra D, Isikhuemhen O, Schuchardt F, Flachowsky G (1996) Bioconversion of lignocellulose into ruminant feed with white rot fungi—review of work done at the FAL, Braunschweig. J Appl Animal Res 10(2):105–124CrossRef
154.
go back to reference Eriksson K-EL, Cavaco-Paulo A (1998) Enzyme applications in fiber processing. In: ACS symposium series, vol 687. American Chemical Society, Washington, DC Eriksson K-EL, Cavaco-Paulo A (1998) Enzyme applications in fiber processing. In: ACS symposium series, vol 687. American Chemical Society, Washington, DC
155.
go back to reference Saddler JN, Penner MH (1994) Enzymatic degradation of insoluble carbohydrates. In: ACS symposium series, vol 618. American Chemical Society, Washington, DC Saddler JN, Penner MH (1994) Enzymatic degradation of insoluble carbohydrates. In: ACS symposium series, vol 618. American Chemical Society, Washington, DC
156.
go back to reference Mansfield SD, Saddler JN (2003) Applications of enzymes to lignocellulosics. In: ACS symposium series, vol 855. American Chemical Society, Washington, DC Mansfield SD, Saddler JN (2003) Applications of enzymes to lignocellulosics. In: ACS symposium series, vol 855. American Chemical Society, Washington, DC
157.
go back to reference Leatham GF, Himmel ME (1991) Enzymes in biomass conversion. In: ACS symposium series, vol 460. American Chemical Society, Washington, DC Leatham GF, Himmel ME (1991) Enzymes in biomass conversion. In: ACS symposium series, vol 460. American Chemical Society, Washington, DC
158.
go back to reference Jeffries TW, Viikari L (1996) Enzymes for pulp and paper processing. In: ACS symposium series, vol 655. American Chemical Society, Washington, DC Jeffries TW, Viikari L (1996) Enzymes for pulp and paper processing. In: ACS symposium series, vol 655. American Chemical Society, Washington, DC
159.
go back to reference Himmel ME, Baker JO, Saddler JN (2001) Glycosyl hydrolases for biomass conversion. In: ACS symposium series, vol 769. American Chemical Society, Washington, DC Himmel ME, Baker JO, Saddler JN (2001) Glycosyl hydrolases for biomass conversion. In: ACS symposium series, vol 769. American Chemical Society, Washington, DC
160.
go back to reference Himmel ME, Baker JO, Overend RP (1994) Enzymatic conversion of biomass for fuels production. In: ACS symposium series, vol 566. American Chemical Society, Washington, DC Himmel ME, Baker JO, Overend RP (1994) Enzymatic conversion of biomass for fuels production. In: ACS symposium series, vol 566. American Chemical Society, Washington, DC
161.
go back to reference Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C et al (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32(Database issue):D431–D433CrossRef Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C et al (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32(Database issue):D431–D433CrossRef
162.
go back to reference Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A et al (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31(1):365–370CrossRef Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A et al (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31(1):365–370CrossRef
164.
go back to reference Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305CrossRef Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305CrossRef
165.
go back to reference Mandels M, Miller GL, Slater RW (1961) Separation of fungal carbohydrases by starch block zone electrophoresis. Arch Biochem Biophys 93:115–121CrossRef Mandels M, Miller GL, Slater RW (1961) Separation of fungal carbohydrases by starch block zone electrophoresis. Arch Biochem Biophys 93:115–121CrossRef
166.
go back to reference Pere J, Puolakka A, Nousiainen P, Buchert J (2001) Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J Biotechnol 89(2–3):247–255CrossRef Pere J, Puolakka A, Nousiainen P, Buchert J (2001) Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J Biotechnol 89(2–3):247–255CrossRef
167.
go back to reference Samejima M, Sugiyama J, Igarashi K, Eriksson K-EL (1997) Enzymatic hydrolysis of bacterial cellulose. Carbohydr Res 305(2):281–288CrossRef Samejima M, Sugiyama J, Igarashi K, Eriksson K-EL (1997) Enzymatic hydrolysis of bacterial cellulose. Carbohydr Res 305(2):281–288CrossRef
168.
go back to reference Helbert W, Sugiyama J, Ishihara M, Yamanaka S (1997) Characterization of native crystalline cellulose in the cell walls of Oomycota. J Biotechnol 57(1–3):29–37CrossRef Helbert W, Sugiyama J, Ishihara M, Yamanaka S (1997) Characterization of native crystalline cellulose in the cell walls of Oomycota. J Biotechnol 57(1–3):29–37CrossRef
169.
go back to reference Zauscher S, Klingenberg DJ (2000) Normal forces between cellulose surfaces measured with colloidal probe microscopy. J Colloid Interface Sci 229(2):497–510CrossRef Zauscher S, Klingenberg DJ (2000) Normal forces between cellulose surfaces measured with colloidal probe microscopy. J Colloid Interface Sci 229(2):497–510CrossRef
170.
go back to reference Lee I, Evans BR, Woodward J (2000) The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. Ultramicroscopy 82(1–4):213–221CrossRef Lee I, Evans BR, Woodward J (2000) The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. Ultramicroscopy 82(1–4):213–221CrossRef
171.
go back to reference Rutland MW, Carambassis A, Willing GA, Neuman RD (1997) Surface force measurements between cellulose surfaces using scanning probe microscopy. Colloids Surf A Physicochem Eng Asp 123–124:369–374CrossRef Rutland MW, Carambassis A, Willing GA, Neuman RD (1997) Surface force measurements between cellulose surfaces using scanning probe microscopy. Colloids Surf A Physicochem Eng Asp 123–124:369–374CrossRef
172.
go back to reference Gustafsson J, Ciovica L, Peltonen J (2003) The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer 44(3):661–670CrossRef Gustafsson J, Ciovica L, Peltonen J (2003) The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer 44(3):661–670CrossRef
173.
go back to reference Li H, Rief M, Oesterhelt R, Gaub HE, Zhang X, Shen J (1999) Single-molecule force spectroscopy on polysaccharides by AFM—nanomechanical fingerprint of α-(1,4)-linked polysaccharides. Chem Phys Lett 305(3–4):197–201CrossRef Li H, Rief M, Oesterhelt R, Gaub HE, Zhang X, Shen J (1999) Single-molecule force spectroscopy on polysaccharides by AFM—nanomechanical fingerprint of α-(1,4)-linked polysaccharides. Chem Phys Lett 305(3–4):197–201CrossRef
174.
go back to reference Ramos LP, Zandon A, Filho A, Deschamps FC, Saddler JN (1999) The effect of Trichoderma cellulases on the fine structure of a bleached softwood kraft pulp. Enzyme Microb Technol 24(7):371–380CrossRef Ramos LP, Zandon A, Filho A, Deschamps FC, Saddler JN (1999) The effect of Trichoderma cellulases on the fine structure of a bleached softwood kraft pulp. Enzyme Microb Technol 24(7):371–380CrossRef
175.
go back to reference Decker SR, Adney WS, Jennings E, Vinzant TB, Himmel ME (2003) An automated filter paper assay for determination of cellulase activity. Appl Biochem Biotechnol 105:689–703CrossRef Decker SR, Adney WS, Jennings E, Vinzant TB, Himmel ME (2003) An automated filter paper assay for determination of cellulase activity. Appl Biochem Biotechnol 105:689–703CrossRef
176.
go back to reference Kong F, Engler CR, Soltes EJ (1992) Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34/35:23–35CrossRef Kong F, Engler CR, Soltes EJ (1992) Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34/35:23–35CrossRef
177.
go back to reference Tenkanen M, Poutanen K (1992) Significance of esterases in the degradation of xylans. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Elsevier, New York, pp 203–212 Tenkanen M, Poutanen K (1992) Significance of esterases in the degradation of xylans. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Elsevier, New York, pp 203–212
178.
go back to reference Poutanen K, Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl Microbiol Biotechnol 28:419–424CrossRef Poutanen K, Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl Microbiol Biotechnol 28:419–424CrossRef
179.
go back to reference Poutanen K, Sundberg M, Korte H, Puls J (1990) Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl Microbiol Biotechnol 33:506–510CrossRef Poutanen K, Sundberg M, Korte H, Puls J (1990) Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl Microbiol Biotechnol 33:506–510CrossRef
180.
go back to reference Biely P, Vrsanska M, Kremnicky L, Alfoldi J, Tenkanen M et al (1994) Family F and G endo-beta-1,4-xylanases—differences in their performance on glucuronoxylan and rhodymenan. Abstr Paper Am Chem Soc 207:148-BTEC Biely P, Vrsanska M, Kremnicky L, Alfoldi J, Tenkanen M et al (1994) Family F and G endo-beta-1,4-xylanases—differences in their performance on glucuronoxylan and rhodymenan. Abstr Paper Am Chem Soc 207:148-BTEC
181.
go back to reference Coughlan MP, Hazlewood GP (1993) Hemicellulose and hemicellulases. Portland, London, UK Coughlan MP, Hazlewood GP (1993) Hemicellulose and hemicellulases. Portland, London, UK
182.
go back to reference Reese ET, Siu RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497 Reese ET, Siu RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497
183.
go back to reference Ryu D, Mandels M (1980) Cellulases: biosynthesis and applications. In: Reviews, pp 1–12 Ryu D, Mandels M (1980) Cellulases: biosynthesis and applications. In: Reviews, pp 1–12
184.
go back to reference Himmel ME, Decker SR, Adney WS, Baker JO (2000) Cellulase animation. Copyright DOE/MRIPAU2-568-354, p 11 Himmel ME, Decker SR, Adney WS, Baker JO (2000) Cellulase animation. Copyright DOE/MRIPAU2-568-354, p 11
185.
go back to reference Miller GL (1959) Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRef Miller GL (1959) Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRef
186.
go back to reference Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268CrossRef Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268CrossRef
187.
go back to reference Philippidis GP (1994) Cellulase production technology—evaluation of current status. Enzym Convers Biomass Fuel Prod 566:188–217CrossRef Philippidis GP (1994) Cellulase production technology—evaluation of current status. Enzym Convers Biomass Fuel Prod 566:188–217CrossRef
188.
go back to reference Esterbauer H, Steiner W, Kreiner W, Sattler W, Hayn M (1992) Comparison of enzymatic hydrolysis in a worldwide round robin assay. Bioresour Technol 39:117–123CrossRef Esterbauer H, Steiner W, Kreiner W, Sattler W, Hayn M (1992) Comparison of enzymatic hydrolysis in a worldwide round robin assay. Bioresour Technol 39:117–123CrossRef
189.
go back to reference Adney WS, Mohagheghi A, Thomas SR, Himmel ME (1995) Comparison of protein contents of cellulase preparations in a worldwide round-robin assay. In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates. American Chemical Society, Washington, DC, pp 256–271 Adney WS, Mohagheghi A, Thomas SR, Himmel ME (1995) Comparison of protein contents of cellulase preparations in a worldwide round-robin assay. In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates. American Chemical Society, Washington, DC, pp 256–271
190.
go back to reference Esterbauer H, Steiner LI, Hermann A, Hayn M (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 36:51–65CrossRef Esterbauer H, Steiner LI, Hermann A, Hayn M (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 36:51–65CrossRef
191.
go back to reference Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of 8 purified cellulases—specificity, synergism, and binding domain effects. Biotechnol Bioeng 42(8):1002–1013CrossRef Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of 8 purified cellulases—specificity, synergism, and binding domain effects. Biotechnol Bioeng 42(8):1002–1013CrossRef
192.
go back to reference Ghose TK, Bisaria VS (1987) Measurement of hemicellulase activities. 1. Xylanases. Pure Appl Chem 59(12):1739–1751CrossRef Ghose TK, Bisaria VS (1987) Measurement of hemicellulase activities. 1. Xylanases. Pure Appl Chem 59(12):1739–1751CrossRef
193.
go back to reference Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 6:21–33 Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 6:21–33
194.
go back to reference Wood TM, McCrae SI (1977) Cellulase from Fusarium solani purification and properties of the C-1 component. Carbohydr Res 57:117–133CrossRef Wood TM, McCrae SI (1977) Cellulase from Fusarium solani purification and properties of the C-1 component. Carbohydr Res 57:117–133CrossRef
195.
go back to reference Ghose TK, Pathak AN, Bisaria VS (1975) In: Bailey M, Enari T-M, Linko M (eds) Proceedings of the symposium on enzymatic hydrolysis of cellulose. VTT, Aulanko, Finland, p 111 Ghose TK, Pathak AN, Bisaria VS (1975) In: Bailey M, Enari T-M, Linko M (eds) Proceedings of the symposium on enzymatic hydrolysis of cellulose. VTT, Aulanko, Finland, p 111
196.
go back to reference Shoemaker SP, Brown RD Jr (1978) Characterization of endo-1,4-b-D-glucanases purified from Trichoderma viride. Biochim Biophys Acta 523:147–161CrossRef Shoemaker SP, Brown RD Jr (1978) Characterization of endo-1,4-b-D-glucanases purified from Trichoderma viride. Biochim Biophys Acta 523:147–161CrossRef
197.
go back to reference Sheir-Neiss G, Montenecourt BS (1984) Characterization of the secreted cellulases of Trichoderma reesei wild type and mutants during controlled fermentations. Appl Microbiol Biotechnol 20:46–53CrossRef Sheir-Neiss G, Montenecourt BS (1984) Characterization of the secreted cellulases of Trichoderma reesei wild type and mutants during controlled fermentations. Appl Microbiol Biotechnol 20:46–53CrossRef
198.
go back to reference Johnson EA, Sakajoh M, Halliwell G, Madia A, Demain AL (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiol 43:1125–1132 Johnson EA, Sakajoh M, Halliwell G, Madia A, Demain AL (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiol 43:1125–1132
199.
go back to reference Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23 Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23
200.
go back to reference Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380 Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380
201.
go back to reference Johnston DB, Shoemaker SP, Smith GM, Whitaker JR (1998) Kinetic measurements of cellulase activity on insoluble substrates using disodium 2,2′ bicinchoninate. J Food Biochem 22:301–319CrossRef Johnston DB, Shoemaker SP, Smith GM, Whitaker JR (1998) Kinetic measurements of cellulase activity on insoluble substrates using disodium 2,2′ bicinchoninate. J Food Biochem 22:301–319CrossRef
202.
go back to reference Vlasenko EY, Ryan AI, Shoemaker CF, Shoemaker SP (1998) The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-1,4-beta-D-glucanases on carboxymethylcellulose: a comparative evaluation of the three methods. Enzyme Microb Technol 23:350–359CrossRef Vlasenko EY, Ryan AI, Shoemaker CF, Shoemaker SP (1998) The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-1,4-beta-D-glucanases on carboxymethylcellulose: a comparative evaluation of the three methods. Enzyme Microb Technol 23:350–359CrossRef
203.
go back to reference Baker JO, Vinzant TB, Ehrman CI, Adney WS, Himmel ME (1997) Use of a new membrane-reactor saccharification assay to evaluate the performance of cellulases under simulated SSF conditions—effect on enzyme quality of growing Trichoderma reesei in the presence of targeted lignocellulosic substrate. Appl Biochem Biotechnol 63–5:585–595CrossRef Baker JO, Vinzant TB, Ehrman CI, Adney WS, Himmel ME (1997) Use of a new membrane-reactor saccharification assay to evaluate the performance of cellulases under simulated SSF conditions—effect on enzyme quality of growing Trichoderma reesei in the presence of targeted lignocellulosic substrate. Appl Biochem Biotechnol 63–5:585–595CrossRef
204.
go back to reference Rescigno A, Rinaldi AC, Curreli N, Olianas A, Sanjust E (1994) A dyed substrate for the assay of endo-1,4-beta-glucanases. J Biochem Biophys Methods 28(2):123–129CrossRef Rescigno A, Rinaldi AC, Curreli N, Olianas A, Sanjust E (1994) A dyed substrate for the assay of endo-1,4-beta-glucanases. J Biochem Biophys Methods 28(2):123–129CrossRef
205.
go back to reference Sharrock KR (1988) Cellulase assay methods: a review. J Biochem Biophys Methods 17:81–106CrossRef Sharrock KR (1988) Cellulase assay methods: a review. J Biochem Biophys Methods 17:81–106CrossRef
206.
go back to reference Bartley TD, Murphy-Holland K, Eveleigh DE (1984) A method for the detection and differentiation of cellulase components in polyacrylamide gels. Anal Biochem 140(1):157–161CrossRef Bartley TD, Murphy-Holland K, Eveleigh DE (1984) A method for the detection and differentiation of cellulase components in polyacrylamide gels. Anal Biochem 140(1):157–161CrossRef
207.
go back to reference Carder JH (1986) Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Anal Biochem 153(1):75–79CrossRef Carder JH (1986) Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Anal Biochem 153(1):75–79CrossRef
208.
go back to reference Sattler W, Esterbauer H, Glatter O, Steiner W (1989) The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotechnol Bioeng Symp 33:1221–1234CrossRef Sattler W, Esterbauer H, Glatter O, Steiner W (1989) The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotechnol Bioeng Symp 33:1221–1234CrossRef
209.
go back to reference Adney WS, Ehrman CI, Baker JO, Thomas SR, Himmel ME (1994) Cellulase assays—methods from empirical mathematical-models. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production, vol 566. ACS, Washington, DC, pp 218–235CrossRef Adney WS, Ehrman CI, Baker JO, Thomas SR, Himmel ME (1994) Cellulase assays—methods from empirical mathematical-models. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production, vol 566. ACS, Washington, DC, pp 218–235CrossRef
210.
go back to reference Sieben A (1975) Cellulase and other hydrolytic enzyme assays using an oscillating tube viscometer. Anal Biochem 63(1):214–219CrossRef Sieben A (1975) Cellulase and other hydrolytic enzyme assays using an oscillating tube viscometer. Anal Biochem 63(1):214–219CrossRef
211.
go back to reference Kim CH (1995) Characterization and substrate specificity of an endo-beta-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Appl Environ Microbiol 61(3):959–965 Kim CH (1995) Characterization and substrate specificity of an endo-beta-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Appl Environ Microbiol 61(3):959–965
212.
go back to reference Chee KK (1990) Kinetic study of random chain scission by viscometry. J Appl Polymer Sci 41:985–994CrossRef Chee KK (1990) Kinetic study of random chain scission by viscometry. J Appl Polymer Sci 41:985–994CrossRef
213.
go back to reference Demeester J, Bracke M, Lauwers A (1979) Absolute viscometric method for the determination of endocellulase (Cx) activities based upon light-scattering interpretations of gel chromatographic fractionation data. Adv Chem Sen 181:91–125CrossRef Demeester J, Bracke M, Lauwers A (1979) Absolute viscometric method for the determination of endocellulase (Cx) activities based upon light-scattering interpretations of gel chromatographic fractionation data. Adv Chem Sen 181:91–125CrossRef
214.
go back to reference Manning K (1981) Improved viscometric assay for cellulase methods. J Biochem Biotechnol 5:189–202 Manning K (1981) Improved viscometric assay for cellulase methods. J Biochem Biotechnol 5:189–202
215.
go back to reference Gilkes NR, Kwan E, Kilburn DG, Miller RC, Warren RAJ (1997) Attack of carboxymethylcellulose at opposite ends by two cellobiohydrolases from Cellulomonas fimi. J Biotechnol 57(1–3):83–90CrossRef Gilkes NR, Kwan E, Kilburn DG, Miller RC, Warren RAJ (1997) Attack of carboxymethylcellulose at opposite ends by two cellobiohydrolases from Cellulomonas fimi. J Biotechnol 57(1–3):83–90CrossRef
216.
go back to reference Limam F, Chaabouni SE, Ghrir R, Marzouki N (1995) Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: purification and properties. Enzyme Microb Technol 17(4):340–346CrossRef Limam F, Chaabouni SE, Ghrir R, Marzouki N (1995) Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: purification and properties. Enzyme Microb Technol 17(4):340–346CrossRef
217.
go back to reference Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T (1997) Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J Ferment Bioeng 84(4):300–306CrossRef Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T (1997) Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J Ferment Bioeng 84(4):300–306CrossRef
218.
go back to reference Sadana JC, Patil RV (1985) Synergism between enzymes of Sclerotium rolfsii involved in the solubilization of crystalline cellulose. Carbohydr Res 140(1):111–120CrossRef Sadana JC, Patil RV (1985) Synergism between enzymes of Sclerotium rolfsii involved in the solubilization of crystalline cellulose. Carbohydr Res 140(1):111–120CrossRef
219.
go back to reference van Tilbeurgh H, Claeyssens M, DeBruyne CK (1982) The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett 149:152–156CrossRef van Tilbeurgh H, Claeyssens M, DeBruyne CK (1982) The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett 149:152–156CrossRef
220.
go back to reference Vrsanska M, Biely P (1992) The cellobiohydrolase I from Trichoderma reesei QM 9414: action on cello-oligosaccharides. Carbohydr Res 227:19–27CrossRef Vrsanska M, Biely P (1992) The cellobiohydrolase I from Trichoderma reesei QM 9414: action on cello-oligosaccharides. Carbohydr Res 227:19–27CrossRef
221.
go back to reference Konstantinidis AK, Marsden I, Sinnott ML (1993) Hydrolyses of alpha- and beta-cellobiosyl fluorides by cellobiohydrolases of Trichoderma reesei. Biochem J 291(pt 3):883–888 Konstantinidis AK, Marsden I, Sinnott ML (1993) Hydrolyses of alpha- and beta-cellobiosyl fluorides by cellobiohydrolases of Trichoderma reesei. Biochem J 291(pt 3):883–888
222.
go back to reference Claeyssens M, van Tilbeurgh H, Tomme P, Wood TM, McCrae SI (1989) Fungal cellulase systems: comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem J 261:819–826 Claeyssens M, van Tilbeurgh H, Tomme P, Wood TM, McCrae SI (1989) Fungal cellulase systems: comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem J 261:819–826
223.
go back to reference Beldman G, Searle-Van Leeuwen M, Rombouts F, Voragen F (1985) The cellulase of Trichoderma viride; purification, characterization and comparison of all detectable endoglucanases, exoglucanases and B-glucosidases. Eur J Biochem 146:301–308CrossRef Beldman G, Searle-Van Leeuwen M, Rombouts F, Voragen F (1985) The cellulase of Trichoderma viride; purification, characterization and comparison of all detectable endoglucanases, exoglucanases and B-glucosidases. Eur J Biochem 146:301–308CrossRef
224.
go back to reference Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F (2002) Enzymatic properties of the low molecular mass endoglucanases Cell2A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 99(1):63–78CrossRef Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F (2002) Enzymatic properties of the low molecular mass endoglucanases Cell2A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 99(1):63–78CrossRef
225.
go back to reference Tuohy MG, Walsh DJ, Murray PG, Claeyssens M, Cuffe MM et al (2002) Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta 1596(2):366–380CrossRef Tuohy MG, Walsh DJ, Murray PG, Claeyssens M, Cuffe MM et al (2002) Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta 1596(2):366–380CrossRef
226.
go back to reference Lemos MA, Teixeira JA, Domingues MRM, Mota M, Gama FM (2003) The enhancement of the cellulolytic activity of cellobiohydrolase I and endoglucanase by the addition of cellulose binding domains derived from Trichoderma reesei. Enzyme Microb Technol 32(1):35–40CrossRef Lemos MA, Teixeira JA, Domingues MRM, Mota M, Gama FM (2003) The enhancement of the cellulolytic activity of cellobiohydrolase I and endoglucanase by the addition of cellulose binding domains derived from Trichoderma reesei. Enzyme Microb Technol 32(1):35–40CrossRef
227.
go back to reference Levy I, Shoseyov O (2002) Cellulose-binding domains: biotechnological applications. Biotechnol Adv 20(3–4):191–213CrossRef Levy I, Shoseyov O (2002) Cellulose-binding domains: biotechnological applications. Biotechnol Adv 20(3–4):191–213CrossRef
228.
go back to reference Linder M, Teeri TT (1997) The roles and function of cellulose-binding domains. J Biotechnol 57(1–3):15–28CrossRef Linder M, Teeri TT (1997) The roles and function of cellulose-binding domains. J Biotechnol 57(1–3):15–28CrossRef
229.
go back to reference Wood TM (1971) The cellulase of Fusarium solani: purification and specificity of the b-(164)-glucanase and the β-D-glucosidase components. Biochem J 121:353–362 Wood TM (1971) The cellulase of Fusarium solani: purification and specificity of the b-(164)-glucanase and the β-D-glucosidase components. Biochem J 121:353–362
230.
go back to reference Deshpande MV, Eriksson K-E, Pettersson LG (1984) β-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138:481–487CrossRef Deshpande MV, Eriksson K-E, Pettersson LG (1984) β-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138:481–487CrossRef
231.
go back to reference Adney WS, Baker JO, Vinzant TB, Thomas SR, Himmel ME (1995) Kinetic comparison of beta-D-glucosidases of industrial importance. Abstr Paper Am Chem Soc 209:119-BTEC Adney WS, Baker JO, Vinzant TB, Thomas SR, Himmel ME (1995) Kinetic comparison of beta-D-glucosidases of industrial importance. Abstr Paper Am Chem Soc 209:119-BTEC
232.
go back to reference Biely P, Mislovicova D, Toman R (1985) Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases. Anal Biochem 144(1):142–146CrossRef Biely P, Mislovicova D, Toman R (1985) Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases. Anal Biochem 144(1):142–146CrossRef
233.
go back to reference Biely P (1988) Detection and differentiation of cellulases and xylanases. Abstr Paper Am Chem Soc 195:202-CELL Biely P (1988) Detection and differentiation of cellulases and xylanases. Abstr Paper Am Chem Soc 195:202-CELL
234.
go back to reference Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–131 Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–131
235.
go back to reference Gielkens MM, Visser J, de Graaff LH (1997) Arabinoxylan degradation by fungi: characterization of the arabinoxylan-arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis. Curr Genet 31(1):22–29CrossRef Gielkens MM, Visser J, de Graaff LH (1997) Arabinoxylan degradation by fungi: characterization of the arabinoxylan-arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis. Curr Genet 31(1):22–29CrossRef
236.
go back to reference Tenkanen M (1998) Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem 27:19–24CrossRef Tenkanen M (1998) Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem 27:19–24CrossRef
237.
go back to reference Fillingham IJ, Kroon PA, Williamson G, Gilbert HJ, Hazlewood GP (1999) A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multi-protein cellulose-binding cellulase-hemicellulase complex. Biochem J 343(pt 1):215–224CrossRef Fillingham IJ, Kroon PA, Williamson G, Gilbert HJ, Hazlewood GP (1999) A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multi-protein cellulose-binding cellulase-hemicellulase complex. Biochem J 343(pt 1):215–224CrossRef
238.
go back to reference Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1991) Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 57(8):2337–2344 Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1991) Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 57(8):2337–2344
239.
go back to reference Cybinski DH, Layton I, Lowry JB, Dalrymple BP (1999) An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Appl Microbiol Biotechnol 52(2):221–225CrossRef Cybinski DH, Layton I, Lowry JB, Dalrymple BP (1999) An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Appl Microbiol Biotechnol 52(2):221–225CrossRef
240.
go back to reference de Vries RP, Kester HC, Poulsen CH, Benen JA, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327(4):401–410CrossRef de Vries RP, Kester HC, Poulsen CH, Benen JA, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327(4):401–410CrossRef
241.
go back to reference Saha BC (2000) α-1-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18(5):403–423CrossRef Saha BC (2000) α-1-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18(5):403–423CrossRef
242.
go back to reference Christov LP, Prior BA (1993) Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microb Technol 15(6):460–475CrossRef Christov LP, Prior BA (1993) Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microb Technol 15(6):460–475CrossRef
243.
go back to reference Wood TM, McCrae SI (1996) Arabinoxylan-degrading enzyme system of the fungus Aspergillus awamori: purification and properties of an alpha-L-arabinofuranosidase. Appl Microbiol Biotechnol 45(4):538–545 Wood TM, McCrae SI (1996) Arabinoxylan-degrading enzyme system of the fungus Aspergillus awamori: purification and properties of an alpha-L-arabinofuranosidase. Appl Microbiol Biotechnol 45(4):538–545
244.
go back to reference Sakamoto T, Sakai T (1995) Analysis of structure of sugar-beet pectin by enzymatic methods. Phytochemistry 39(4):821–823CrossRef Sakamoto T, Sakai T (1995) Analysis of structure of sugar-beet pectin by enzymatic methods. Phytochemistry 39(4):821–823CrossRef
245.
go back to reference McKie VA, Black GW, Millward-Sadler SJ, Hazlewood GP, Laurie JI, Gilbert HJ (1997) Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo- and an exo-mode of action. Biochem J 323(pt 2):547–555 McKie VA, Black GW, Millward-Sadler SJ, Hazlewood GP, Laurie JI, Gilbert HJ (1997) Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo- and an exo-mode of action. Biochem J 323(pt 2):547–555
246.
go back to reference Matsuo N, Kaneko S, Kuno A, Kobayashi H, Kusakabe I (2000) Purification, characterization and gene cloning of two alpha-L-arabinofuranosidases from Streptomyces chartreusis GS901. Biochem J 346(pt 1):9–15CrossRef Matsuo N, Kaneko S, Kuno A, Kobayashi H, Kusakabe I (2000) Purification, characterization and gene cloning of two alpha-L-arabinofuranosidases from Streptomyces chartreusis GS901. Biochem J 346(pt 1):9–15CrossRef
247.
go back to reference Yanai T, Sato M (2000) Purification and characterization of a novel alpha-L-arabinofuranosidase from Pichia capsulata X91. Biosci Biotechnol Biochem 64(6):1181–1188CrossRef Yanai T, Sato M (2000) Purification and characterization of a novel alpha-L-arabinofuranosidase from Pichia capsulata X91. Biosci Biotechnol Biochem 64(6):1181–1188CrossRef
248.
go back to reference Degrassi G, Vindigni A, Venturi V (2003) A thermostable α-arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterisation. J Biotechnol 101(1):69–79CrossRef Degrassi G, Vindigni A, Venturi V (2003) A thermostable α-arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterisation. J Biotechnol 101(1):69–79CrossRef
249.
go back to reference Gomes J, Gomes I, Terler K, Gubala N, Ditzelm AG, Steiner W (2000) Optimisation of culture medium and conditions for α-1-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb Technol 27(6):414–422CrossRef Gomes J, Gomes I, Terler K, Gubala N, Ditzelm AG, Steiner W (2000) Optimisation of culture medium and conditions for α-1-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb Technol 27(6):414–422CrossRef
250.
go back to reference Lee RC, Burton RA, Hrmova M, Fincher GB (2001) Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. Biochem J 356(pt 1):181–189CrossRef Lee RC, Burton RA, Hrmova M, Fincher GB (2001) Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. Biochem J 356(pt 1):181–189CrossRef
251.
go back to reference Blum DL, Li XL, Chen H, Ljungdahl LG (1999) Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 65(9):3990–3995 Blum DL, Li XL, Chen H, Ljungdahl LG (1999) Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 65(9):3990–3995
252.
go back to reference Castanares A, Wood TM (1992) Purification and characterization of a feruloyl/p-coumaroyl esterase from solid-state cultures of the aerobic fungus Penicillium pinophilum. Biochem Soc Trans 20(3):275S Castanares A, Wood TM (1992) Purification and characterization of a feruloyl/p-coumaroyl esterase from solid-state cultures of the aerobic fungus Penicillium pinophilum. Biochem Soc Trans 20(3):275S
253.
go back to reference McDermid KP, Forsberg CW, MacKenzie CR (1990) Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol 56(12):3805–3810 McDermid KP, Forsberg CW, MacKenzie CR (1990) Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol 56(12):3805–3810
254.
go back to reference Khandke KM, Vithayathil PJ, Murthy SK (1989) Purification and characterization of an alpha-D-glucuronidase from a thermophilic fungus, Thermoascus aurantiacus. Arch Biochem Biophys 274(2):511–517CrossRef Khandke KM, Vithayathil PJ, Murthy SK (1989) Purification and characterization of an alpha-D-glucuronidase from a thermophilic fungus, Thermoascus aurantiacus. Arch Biochem Biophys 274(2):511–517CrossRef
255.
go back to reference Tenkanen M, Siika-aho M (2000) An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 78(2):149–161CrossRef Tenkanen M, Siika-aho M (2000) An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 78(2):149–161CrossRef
256.
go back to reference Nagy T, Nurizzo D, Davies GJ, Biely P, Lakey JH, Bolam DN, Gilbert HJ (2003) The α-glucuronidase, GlcA67A, of Cellvibrio japonicus utilises the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants. J Biol Chem 278(22):286–292CrossRef Nagy T, Nurizzo D, Davies GJ, Biely P, Lakey JH, Bolam DN, Gilbert HJ (2003) The α-glucuronidase, GlcA67A, of Cellvibrio japonicus utilises the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants. J Biol Chem 278(22):286–292CrossRef
257.
go back to reference Jeffries TW (1996) Biochemistry and genetics of microbial xylanases. Curr Opin Biotechnol 7(3):337–342CrossRef Jeffries TW (1996) Biochemistry and genetics of microbial xylanases. Curr Opin Biotechnol 7(3):337–342CrossRef
258.
go back to reference Choi ID, Kim HY, Choi YJ (2000) Gene cloning and characterization of alpha-glucuronidase of Bacillus stearothermophilus no. 236. Biosci Biotechnol Biochem 64(12):2530–2537CrossRef Choi ID, Kim HY, Choi YJ (2000) Gene cloning and characterization of alpha-glucuronidase of Bacillus stearothermophilus no. 236. Biosci Biotechnol Biochem 64(12):2530–2537CrossRef
259.
go back to reference Saraswat V, Bisaria VS (1997) Biosynthesis of xylanolytic and xylan-debranching enzymes in Melanocarpus albomyces IIS 68. J Ferment Bioeng 83(4):352–357CrossRef Saraswat V, Bisaria VS (1997) Biosynthesis of xylanolytic and xylan-debranching enzymes in Melanocarpus albomyces IIS 68. J Ferment Bioeng 83(4):352–357CrossRef
260.
go back to reference Nagy T, Emami K, Fontes CM, Ferreira LM, Humphry DR, Gilbert HJ (2002) The membrane-bound alpha-glucuronidase from Pseudomonas cellulosa hydrolyzes 4-O-methyl-D-glucuronoxylooligosaccharides but not 4-O-methyl-D-glucuronoxylan. J Bacteriol 184(17):4925–4929CrossRef Nagy T, Emami K, Fontes CM, Ferreira LM, Humphry DR, Gilbert HJ (2002) The membrane-bound alpha-glucuronidase from Pseudomonas cellulosa hydrolyzes 4-O-methyl-D-glucuronoxylooligosaccharides but not 4-O-methyl-D-glucuronoxylan. J Bacteriol 184(17):4925–4929CrossRef
261.
go back to reference de Vries RP, Poulsen CH, Madrid S, Visser J (1998) aguA, the gene encoding an extracellular alpha-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. J Bacteriol 180(2):243–249 de Vries RP, Poulsen CH, Madrid S, Visser J (1998) aguA, the gene encoding an extracellular alpha-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. J Bacteriol 180(2):243–249
262.
go back to reference Castanares A, Hay AJ, Gordon AH, McCrae SI, Wood TM (1995) D-xylan-degrading enzyme system from the fungus Phanerochaete chrysosporium: isolation and partial characterisation of an alpha-(4-O-methyl)-D-glucuronidase. J Biotechnol 43(3):183–194CrossRef Castanares A, Hay AJ, Gordon AH, McCrae SI, Wood TM (1995) D-xylan-degrading enzyme system from the fungus Phanerochaete chrysosporium: isolation and partial characterisation of an alpha-(4-O-methyl)-D-glucuronidase. J Biotechnol 43(3):183–194CrossRef
263.
go back to reference Nishitani K, Nevins DJ (1991) Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units. J Biol Chem 266(10):6539–6543 Nishitani K, Nevins DJ (1991) Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units. J Biol Chem 266(10):6539–6543
264.
go back to reference Christov L, Biely P, Kalogeris E, Christakopoulos P, Prior BA, Bhat MK (2000) Effects of purified endo-β-1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. J Biotechnol 83(3):231–244CrossRef Christov L, Biely P, Kalogeris E, Christakopoulos P, Prior BA, Bhat MK (2000) Effects of purified endo-β-1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. J Biotechnol 83(3):231–244CrossRef
265.
go back to reference Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57(1–3):151–166CrossRef Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57(1–3):151–166CrossRef
266.
go back to reference Schwarz WH, Bronnenmeier K, Krause B, Lottspeich F, Staudenbauer WL (1995) Debranching of arabinoxylan: properties of the thermoactive recombinant alpha-L-arabinofuranosidase from Clostridium stercorarium (ArfB). Appl Microbiol Biotechnol 43(5):856–860CrossRef Schwarz WH, Bronnenmeier K, Krause B, Lottspeich F, Staudenbauer WL (1995) Debranching of arabinoxylan: properties of the thermoactive recombinant alpha-L-arabinofuranosidase from Clostridium stercorarium (ArfB). Appl Microbiol Biotechnol 43(5):856–860CrossRef
267.
go back to reference Bailey MJ, Poutanen K (1989) Production of xylanolytic enzymes by strains of Aspergillus. Appl Microbiol Biotechnol 30(1):5–10CrossRef Bailey MJ, Poutanen K (1989) Production of xylanolytic enzymes by strains of Aspergillus. Appl Microbiol Biotechnol 30(1):5–10CrossRef
268.
go back to reference Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61(4):1399–1407 Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61(4):1399–1407
269.
go back to reference Dupont C, Daigneault N, Shareck F, Morosoli R, Kluepfel D (1996) Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans. Biochem J 319(pt 3):881–886 Dupont C, Daigneault N, Shareck F, Morosoli R, Kluepfel D (1996) Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans. Biochem J 319(pt 3):881–886
270.
go back to reference Green F III, Clausen CA, Highley TL (1989) Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates. Anal Biochem 182(2):197–199CrossRef Green F III, Clausen CA, Highley TL (1989) Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates. Anal Biochem 182(2):197–199CrossRef
271.
go back to reference Lin J, Ndlovu LM, Singh S, Pillay B (1999) Purification and biochemical characteristics of beta-D-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem 30(pt 1):73–79 Lin J, Ndlovu LM, Singh S, Pillay B (1999) Purification and biochemical characteristics of beta-D-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem 30(pt 1):73–79
272.
go back to reference Ruiz-Arribas A, Fernandez-Abalos JM, Sanchez P, Garda AL, Santamaria RI (1995) Overproduction, purification, and biochemical characterization of a xylanase (Xysl) from Streptomyces halstedii JM8. Appl Environ Microbiol 61(6):2414–2419 Ruiz-Arribas A, Fernandez-Abalos JM, Sanchez P, Garda AL, Santamaria RI (1995) Overproduction, purification, and biochemical characterization of a xylanase (Xysl) from Streptomyces halstedii JM8. Appl Environ Microbiol 61(6):2414–2419
273.
go back to reference Taguchi H, Hamasaki T, Akamatsu T, Okada H (1996) A simple assay for xylanase using o-nitrophenyl-beta-D-xylobioside. Biosci Biotechnol Biochem 60(6):983–985CrossRef Taguchi H, Hamasaki T, Akamatsu T, Okada H (1996) A simple assay for xylanase using o-nitrophenyl-beta-D-xylobioside. Biosci Biotechnol Biochem 60(6):983–985CrossRef
274.
go back to reference Milagres AMF, Sales RM (2001) Evaluating the basidiomycetes Poria medula-panis and Wolfiporia cocos for xylanase production. Enzyme Microb Technol 28(6):522–526CrossRef Milagres AMF, Sales RM (2001) Evaluating the basidiomycetes Poria medula-panis and Wolfiporia cocos for xylanase production. Enzyme Microb Technol 28(6):522–526CrossRef
275.
go back to reference Lin LL, Thomson JA (1991) An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol Lett 68(2):197–203CrossRef Lin LL, Thomson JA (1991) An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol Lett 68(2):197–203CrossRef
276.
go back to reference Bray MR, Clarke AJ (1992) Action pattern of xylo-oligosaccharide hydrolysis by Schizophyllum commune xylanase A. Eur J Biochem 204(1):191–196CrossRef Bray MR, Clarke AJ (1992) Action pattern of xylo-oligosaccharide hydrolysis by Schizophyllum commune xylanase A. Eur J Biochem 204(1):191–196CrossRef
277.
go back to reference Christakopoulos P, Nerinckx W, Kekos D, Macris B, Claeyssens M (1997) The alkaline xylanase III from Fusarium oxysporum F3 belongs to family F/10. Carbohydr Res 302(3–4):191–195CrossRef Christakopoulos P, Nerinckx W, Kekos D, Macris B, Claeyssens M (1997) The alkaline xylanase III from Fusarium oxysporum F3 belongs to family F/10. Carbohydr Res 302(3–4):191–195CrossRef
278.
go back to reference Debeire P, Priem B, Strecker G, Vignon M (1990) Purification and properties of an endo-1,4-xylanase excreted by a hydrolytic thermophilic anaerobe, Clostridium thermolacticum. A proposal for its action mechanism on larchwood 4-O-methylglucuronoxylan. Eur J Biochem 187(3):573–580CrossRef Debeire P, Priem B, Strecker G, Vignon M (1990) Purification and properties of an endo-1,4-xylanase excreted by a hydrolytic thermophilic anaerobe, Clostridium thermolacticum. A proposal for its action mechanism on larchwood 4-O-methylglucuronoxylan. Eur J Biochem 187(3):573–580CrossRef
279.
go back to reference Suzuki T, Kitagawa E, Sakakibara F, Ibata K, Usui K, Kawai K (2001) Cloning, expression, and characterization of a family 52 beta-xylosidase gene (xysB) of a multiple-xylanase-producing bacterium, Aeromonas caviae ME-1. Biosci Biotechnol Biochem 65(3):487–494CrossRef Suzuki T, Kitagawa E, Sakakibara F, Ibata K, Usui K, Kawai K (2001) Cloning, expression, and characterization of a family 52 beta-xylosidase gene (xysB) of a multiple-xylanase-producing bacterium, Aeromonas caviae ME-1. Biosci Biotechnol Biochem 65(3):487–494CrossRef
280.
go back to reference Saluzzi L, Flint HJ, Stewart CS (2001) Adaptation of Ruminococcus flavefaciens resulting in increased degradation of ryegrass cell walls. FEMS Microbiol Ecol 36(2–3):131–137CrossRef Saluzzi L, Flint HJ, Stewart CS (2001) Adaptation of Ruminococcus flavefaciens resulting in increased degradation of ryegrass cell walls. FEMS Microbiol Ecol 36(2–3):131–137CrossRef
281.
go back to reference La Grange DC, Pretorius IS, Claeyssens M, van Zyl WH (2001) Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67(12):5512–5519CrossRef La Grange DC, Pretorius IS, Claeyssens M, van Zyl WH (2001) Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67(12):5512–5519CrossRef
282.
go back to reference Ratanakhanokchai K, Kyu KL, Tanticharoen M (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilic bacillus sp. Strain K-1. Appl Environ Microbiol 65(2):694–697 Ratanakhanokchai K, Kyu KL, Tanticharoen M (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilic bacillus sp. Strain K-1. Appl Environ Microbiol 65(2):694–697
283.
go back to reference York WS, Kumar Kolli VS, Orlando R, Albersheim P, Darvill AG (1996) The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydr Res 285:99–128 York WS, Kumar Kolli VS, Orlando R, Albersheim P, Darvill AG (1996) The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydr Res 285:99–128
284.
go back to reference Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci U S A 99(5):3340–3345CrossRef Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci U S A 99(5):3340–3345CrossRef
285.
go back to reference Dunand C, Gautier C, Chambat G, Lienart Y (2000) Characterization of the binding of alpha-L-Fuc (1–>2)-beta-D-Gal (1–>), a xyloglucan signal, in blackberry protoplasts. Plant Sci 151(2):183–192CrossRef Dunand C, Gautier C, Chambat G, Lienart Y (2000) Characterization of the binding of alpha-L-Fuc (1–>2)-beta-D-Gal (1–>), a xyloglucan signal, in blackberry protoplasts. Plant Sci 151(2):183–192CrossRef
286.
go back to reference Watt DK, Brasch DJ, Larsen DS, Melton LD, Simpson J (1996) Oligosaccharides related to xyloglucan: synthesis and X-ray crystal structure of methyl 2-0-(alpha-L-fucopyranosyl)-beta-D-galactopyranoside. Carbohydr Res 285:1–15 Watt DK, Brasch DJ, Larsen DS, Melton LD, Simpson J (1996) Oligosaccharides related to xyloglucan: synthesis and X-ray crystal structure of methyl 2-0-(alpha-L-fucopyranosyl)-beta-D-galactopyranoside. Carbohydr Res 285:1–15
287.
go back to reference Watt DK, Brasch DJ, Larsen DS, Melton LD, Simpson J (2000) Oligosaccharides related to xyloglucan: synthesis and X-ray crystal structure of methyl alpha-L-fucopyranosyl-(1–>2)-beta-D-galactopyranosyl-(1–>2)-alpha-D-xylopyranoside and the synthesis of methyl alpha-L-fucopyranosyl-(1–>2)-beta-D-galactopyranosyl-(1–>2)-beta-D-xylopyranoside. Carbohydr Res 325(4):300–312CrossRef Watt DK, Brasch DJ, Larsen DS, Melton LD, Simpson J (2000) Oligosaccharides related to xyloglucan: synthesis and X-ray crystal structure of methyl alpha-L-fucopyranosyl-(1–>2)-beta-D-galactopyranosyl-(1–>2)-alpha-D-xylopyranoside and the synthesis of methyl alpha-L-fucopyranosyl-(1–>2)-beta-D-galactopyranosyl-(1–>2)-beta-D-xylopyranoside. Carbohydr Res 325(4):300–312CrossRef
288.
go back to reference Busato AP, Vargas-Rechia CG, Reicher F (2001) Xyloglucan from the leaves of Hymenaea courbaril. Phytochemistry 58(3):525–531CrossRef Busato AP, Vargas-Rechia CG, Reicher F (2001) Xyloglucan from the leaves of Hymenaea courbaril. Phytochemistry 58(3):525–531CrossRef
289.
go back to reference Vierhuis E, York WS, Kolli VS, Vincken J, Schols HA, Van Alebeek GW, Voragen AG (2001) Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydr Res 332(3):285–297CrossRef Vierhuis E, York WS, Kolli VS, Vincken J, Schols HA, Van Alebeek GW, Voragen AG (2001) Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydr Res 332(3):285–297CrossRef
290.
go back to reference Maruyama K, Goto C, Numata M, Suzuki T, Nakagawa Y et al (1996) O-acetylated xyloglucan in extracellular polysaccharides from cell-suspension cultures of Mentha. Phytochemistry 41(5):1309–1314CrossRef Maruyama K, Goto C, Numata M, Suzuki T, Nakagawa Y et al (1996) O-acetylated xyloglucan in extracellular polysaccharides from cell-suspension cultures of Mentha. Phytochemistry 41(5):1309–1314CrossRef
291.
go back to reference Wu CT, Leubner-Metzger G, Meins F Jr, Bradford KJ (2001) Class I beta-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol 126(3):1299–1313CrossRef Wu CT, Leubner-Metzger G, Meins F Jr, Bradford KJ (2001) Class I beta-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol 126(3):1299–1313CrossRef
292.
go back to reference Hrmova M, Fincher GB (2001) Structure-function relationships of beta-D-glucan endo- and exohydrolases from higher plants. Plant Mol Biol 47(1–2):73–91CrossRef Hrmova M, Fincher GB (2001) Structure-function relationships of beta-D-glucan endo- and exohydrolases from higher plants. Plant Mol Biol 47(1–2):73–91CrossRef
293.
go back to reference Hu G, Rijkenberg FH (1998) Subcellular localization of beta-1,3-glucanase in Puccinia recondita f.sp. tritici-infected wheat leaves. Planta 204(3):324–334CrossRef Hu G, Rijkenberg FH (1998) Subcellular localization of beta-1,3-glucanase in Puccinia recondita f.sp. tritici-infected wheat leaves. Planta 204(3):324–334CrossRef
294.
go back to reference Kotake T, Nakagawa N, Takeda K, Sakurai N (1997) Purification and characterization of wall-bound exo-1,3-beta-D-glucanase from barley (Hordeum vulgare L.) seedlings. Plant Cell Physiol 38(2):194–200CrossRef Kotake T, Nakagawa N, Takeda K, Sakurai N (1997) Purification and characterization of wall-bound exo-1,3-beta-D-glucanase from barley (Hordeum vulgare L.) seedlings. Plant Cell Physiol 38(2):194–200CrossRef
295.
go back to reference Brummell DA, Catala C, Lashbrook CC, Bennett AB (1997) A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants. Proc Natl Acad Sci U S A 94(9):4794–4799CrossRef Brummell DA, Catala C, Lashbrook CC, Bennett AB (1997) A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants. Proc Natl Acad Sci U S A 94(9):4794–4799CrossRef
296.
go back to reference Keitel T, Thomsen KK, Heinemann U (1993) Crystallization of barley (1-3,1-4)-beta-glucanase, isoenzyme II. J Mol Biol 232(3):1003–1004CrossRef Keitel T, Thomsen KK, Heinemann U (1993) Crystallization of barley (1-3,1-4)-beta-glucanase, isoenzyme II. J Mol Biol 232(3):1003–1004CrossRef
297.
go back to reference Wang G, Marquardt RR, Xiao H, Zhang Z (1999) Development of a 96-well enzyme-linked solid-phase assay for beta- glucanase and xylanase. J Agric Food Chem 47(3):1262–1267CrossRef Wang G, Marquardt RR, Xiao H, Zhang Z (1999) Development of a 96-well enzyme-linked solid-phase assay for beta- glucanase and xylanase. J Agric Food Chem 47(3):1262–1267CrossRef
298.
go back to reference Mestechkina NM, Anulov OV, Smirnova NI, Shcherbukhin VD (2000) Composition and structure of a galactomannan macromolecule from seeds of Astragalus lehmannianus Bunge. Appl Biochem Microbiol 36(5):502–506CrossRef Mestechkina NM, Anulov OV, Smirnova NI, Shcherbukhin VD (2000) Composition and structure of a galactomannan macromolecule from seeds of Astragalus lehmannianus Bunge. Appl Biochem Microbiol 36(5):502–506CrossRef
299.
go back to reference Chaubey M, Kapoor VP (2001) Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydr Res 332(4):439–444CrossRef Chaubey M, Kapoor VP (2001) Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydr Res 332(4):439–444CrossRef
300.
go back to reference Teramoto A, Fuchigami M (2000) Changes in temperature, texture, and structure of konnyaku (konjac glucomannan gel) during high-pressure-freezing. J Food Sci 65(3):491–497CrossRef Teramoto A, Fuchigami M (2000) Changes in temperature, texture, and structure of konnyaku (konjac glucomannan gel) during high-pressure-freezing. J Food Sci 65(3):491–497CrossRef
301.
go back to reference Zhang H, Yoshimura M, Nishinari K, Williams MAK, Foster TJ, Norton IT (2001) Gelation behaviour of konjac glucomannan with different molecular weights. Biopolymers 59(1):38–50CrossRef Zhang H, Yoshimura M, Nishinari K, Williams MAK, Foster TJ, Norton IT (2001) Gelation behaviour of konjac glucomannan with different molecular weights. Biopolymers 59(1):38–50CrossRef
302.
go back to reference Zhang HS, Yang JG, Zhao Y (2002) The glucomannan from ramie. Carbohydr Polym 47(1):83–86CrossRef Zhang HS, Yang JG, Zhao Y (2002) The glucomannan from ramie. Carbohydr Polym 47(1):83–86CrossRef
303.
go back to reference Smirnova NI, Mestechkina NM, Shcherbukhin VD (2001) The structure and characteristics of glucomannans from Eremurus iae and E-zangezuricus: assignment of acetyl group localization in macromolecules. Appl Biochem Microbiol 37(3):287–291CrossRef Smirnova NI, Mestechkina NM, Shcherbukhin VD (2001) The structure and characteristics of glucomannans from Eremurus iae and E-zangezuricus: assignment of acetyl group localization in macromolecules. Appl Biochem Microbiol 37(3):287–291CrossRef
304.
go back to reference Petkowicz CLD, Reicher F, Chanzy H, Taravel FR, Vuong R (2001) Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydr Polym 44(2):107–112CrossRef Petkowicz CLD, Reicher F, Chanzy H, Taravel FR, Vuong R (2001) Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydr Polym 44(2):107–112CrossRef
305.
go back to reference Parker KN, Chhabra SR, Lam D, Callen W, Duffaud GD et al (2001) Galactomannanases Man2 and Man5 from Thermotoga species: growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnol Bioeng 75(3):322–333CrossRef Parker KN, Chhabra SR, Lam D, Callen W, Duffaud GD et al (2001) Galactomannanases Man2 and Man5 from Thermotoga species: growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnol Bioeng 75(3):322–333CrossRef
306.
go back to reference Parker KN, Chhabra S, Lam D, Snead MA, Mathur EJ, Kelly RM (2001) Beta-mannosidase from Thermotoga species. Methods Enzymol 330:238–246CrossRef Parker KN, Chhabra S, Lam D, Snead MA, Mathur EJ, Kelly RM (2001) Beta-mannosidase from Thermotoga species. Methods Enzymol 330:238–246CrossRef
307.
go back to reference Chhabra S, Parker KN, Lam D, Callen W, Snead MA, Mathur EJ et al (2001) Beta-mannanases from Thermotoga species. Methods Enzymol 330:224–238CrossRef Chhabra S, Parker KN, Lam D, Callen W, Snead MA, Mathur EJ et al (2001) Beta-mannanases from Thermotoga species. Methods Enzymol 330:224–238CrossRef
308.
go back to reference Ganter JL, Sabbi JC, Reed WF (2001) Real-time monitoring of enzymatic hydrolysis of galactomannans. Biopolymers 59(4):226–242CrossRef Ganter JL, Sabbi JC, Reed WF (2001) Real-time monitoring of enzymatic hydrolysis of galactomannans. Biopolymers 59(4):226–242CrossRef
309.
go back to reference Ademark P, de Vries RP, Hagglund P, Stalbrand H, Visser J (2001) Cloning and characterization of Aspergillus niger genes encoding an alpha-galactosidase and a beta-mannosidase involved in galactomannan degradation. Eur J Biochem 268(10):2982–2990CrossRef Ademark P, de Vries RP, Hagglund P, Stalbrand H, Visser J (2001) Cloning and characterization of Aspergillus niger genes encoding an alpha-galactosidase and a beta-mannosidase involved in galactomannan degradation. Eur J Biochem 268(10):2982–2990CrossRef
310.
go back to reference Tenkanen M, Puls J, Ratto M, Viikari L (1993) Enzymatic deacetylation of galactoglucomannans. Appl Microbiol Biotechnol 39(2):159–165CrossRef Tenkanen M, Puls J, Ratto M, Viikari L (1993) Enzymatic deacetylation of galactoglucomannans. Appl Microbiol Biotechnol 39(2):159–165CrossRef
311.
go back to reference Tenkanen M, Thornton J, Viikari L (1995) An acetylglucomannan esterase of Aspergillus-oryzae-purification, characterization and role in the hydrolysis of O-acetyl-galactoglucomannan. J Biotechnol 42(3):197–206CrossRef Tenkanen M, Thornton J, Viikari L (1995) An acetylglucomannan esterase of Aspergillus-oryzae-purification, characterization and role in the hydrolysis of O-acetyl-galactoglucomannan. J Biotechnol 42(3):197–206CrossRef
312.
go back to reference Berens S, Kaspari H, Klemme JH (1996) Purification and characterization of two different xylanases from the thermophilic actinomycete Microtetraspora flexuosa SIIX. Antonie Van Leeuwenhoek 69(3):235–241CrossRef Berens S, Kaspari H, Klemme JH (1996) Purification and characterization of two different xylanases from the thermophilic actinomycete Microtetraspora flexuosa SIIX. Antonie Van Leeuwenhoek 69(3):235–241CrossRef
313.
go back to reference Bolam DN, Hughes N, Virden R, Lakey JH, Hazlewood GP et al (1996) Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 35(50):16195–16204CrossRef Bolam DN, Hughes N, Virden R, Lakey JH, Hazlewood GP et al (1996) Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 35(50):16195–16204CrossRef
314.
go back to reference Ghangas GS, Hu YJ, Wilson DB (1989) Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J Bacteriol 171(6):2963–2969 Ghangas GS, Hu YJ, Wilson DB (1989) Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J Bacteriol 171(6):2963–2969
315.
go back to reference McKie VA, Vincken JP, Voragen AG, van den Broek LA, Stimson E, Gilbert HJ (2001) A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochem J 355(pt 1):167–177 McKie VA, Vincken JP, Voragen AG, van den Broek LA, Stimson E, Gilbert HJ (2001) A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochem J 355(pt 1):167–177
316.
go back to reference Braithwaite KL, Black GW, Hazlewood GP, Ali BR, Gilbert HJ (1995) A non-modular endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J 305(pt 3):1005–1010 Braithwaite KL, Black GW, Hazlewood GP, Ali BR, Gilbert HJ (1995) A non-modular endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J 305(pt 3):1005–1010
317.
go back to reference Sipat A, Taylor KA, Lo RY, Forsberg CW, Krell PJ (1987) Molecular cloning of a xylanase gene from Bacteroides succinogenes and its expression in Escherichia coli. Appl Environ Microbiol 53(3):477–481 Sipat A, Taylor KA, Lo RY, Forsberg CW, Krell PJ (1987) Molecular cloning of a xylanase gene from Bacteroides succinogenes and its expression in Escherichia coli. Appl Environ Microbiol 53(3):477–481
318.
go back to reference Takahashi R, Mizumoto K, Tajika K, Takano R (1992) Production of oligosaccharides from hemicellulose of woody biomass by enzymatic-hydrolysis.1. A simple method for isolating beta-D-mannanase-producing microorganisms. Mokuzai Gakkaishi 38(12):1126–1135 Takahashi R, Mizumoto K, Tajika K, Takano R (1992) Production of oligosaccharides from hemicellulose of woody biomass by enzymatic-hydrolysis.1. A simple method for isolating beta-D-mannanase-producing microorganisms. Mokuzai Gakkaishi 38(12):1126–1135
319.
go back to reference Whitehead TR, Hespell RB (1989) Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23. Appl Environ Microbiol 55(4):893–896 Whitehead TR, Hespell RB (1989) Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23. Appl Environ Microbiol 55(4):893–896
320.
go back to reference Markovic O, Mislovicov AD, Biely P, Heinrichov K (1992) Chromogenic substrate for endo-polygalacturonase detection in gels. J Chromatogr A 603(1–2):243–246 Markovic O, Mislovicov AD, Biely P, Heinrichov K (1992) Chromogenic substrate for endo-polygalacturonase detection in gels. J Chromatogr A 603(1–2):243–246
321.
go back to reference Zantinge JL, Huang HC, Cheng KJ (2002) Microplate diffusion assay for screening of beta-glucanase-producing microorganisms. Biotechniques 33(4):798–ff Zantinge JL, Huang HC, Cheng KJ (2002) Microplate diffusion assay for screening of beta-glucanase-producing microorganisms. Biotechniques 33(4):798–ff
322.
go back to reference Skjot M, Kauppinen S, Kofod LV, Fuglsang C, Pauly M et al (2001) Functional cloning of an endo-arabinanase from Aspergillus aculeatus and its heterologous expression in A-oryzae and tobacco. Mol Genet Genomics 265(5):913–921CrossRef Skjot M, Kauppinen S, Kofod LV, Fuglsang C, Pauly M et al (2001) Functional cloning of an endo-arabinanase from Aspergillus aculeatus and its heterologous expression in A-oryzae and tobacco. Mol Genet Genomics 265(5):913–921CrossRef
323.
go back to reference Zantinge JL, Huang HC, Cheng KJ (2002) Microplate diffusion assay for screening of beta-glucanase-producing microorganisms. Biotechniques 33(4):798, 800, 802 passim Zantinge JL, Huang HC, Cheng KJ (2002) Microplate diffusion assay for screening of beta-glucanase-producing microorganisms. Biotechniques 33(4):798, 800, 802 passim
324.
go back to reference Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57(6):929–967CrossRef Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57(6):929–967CrossRef
325.
go back to reference de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65(4):497–522, table of contents de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65(4):497–522, table of contents
326.
go back to reference Cardoso SM, Silva AM, Coimbra MA (2002) Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains. Carbohydr Res 337(10):917–924CrossRef Cardoso SM, Silva AM, Coimbra MA (2002) Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains. Carbohydr Res 337(10):917–924CrossRef
327.
go back to reference McCartney L, Ormerod AP, Gidley MJ, Knox JP (2000) Temporal and spatial regulation of pectic (1–>4)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J 22(2):105–113CrossRef McCartney L, Ormerod AP, Gidley MJ, Knox JP (2000) Temporal and spatial regulation of pectic (1–>4)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J 22(2):105–113CrossRef
328.
go back to reference Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ et al (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276(22):19404–19413CrossRef Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ et al (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276(22):19404–19413CrossRef
329.
go back to reference Fransen CT, Haseley SR, Huisman MM, Schols HA, Voragen AG et al (2000) Studies on the structure of a lithium-treated soybean pectin: characteristics of the fragments and determination of the carbohydrate substituents of galacturonic acid. Carbohydr Res 328(4):539–547CrossRef Fransen CT, Haseley SR, Huisman MM, Schols HA, Voragen AG et al (2000) Studies on the structure of a lithium-treated soybean pectin: characteristics of the fragments and determination of the carbohydrate substituents of galacturonic acid. Carbohydr Res 328(4):539–547CrossRef
330.
go back to reference Mazeau K, Perez S (1998) The preferred conformations of the four oligomeric fragments of Rhamnogalacturonan II. Carbohydr Res 311(4):203–217CrossRef Mazeau K, Perez S (1998) The preferred conformations of the four oligomeric fragments of Rhamnogalacturonan II. Carbohydr Res 311(4):203–217CrossRef
331.
go back to reference Gainvors A, Nedjaoum N, Gognies S, Muzart M, Nedjma M, Belarbi A (2000) Purification and characterization of acidic endo-polygalacturonase encoded by the PGLI-1 gene from Saccharomyces cerevisiae. FEMS Microbiol Lett 183(1):131–135CrossRef Gainvors A, Nedjaoum N, Gognies S, Muzart M, Nedjma M, Belarbi A (2000) Purification and characterization of acidic endo-polygalacturonase encoded by the PGLI-1 gene from Saccharomyces cerevisiae. FEMS Microbiol Lett 183(1):131–135CrossRef
332.
go back to reference Kennedy JF, Methacanon P (1999) Enzymes for carbohydrate engineering. In: Park K-H, Robyt JF, Choi Y-D (eds) Carbohydrate polymers, vol 39(3), p 292. Elsevier, Amsterdam, The Netherlands, 1996, pp Vii + 215 Kennedy JF, Methacanon P (1999) Enzymes for carbohydrate engineering. In: Park K-H, Robyt JF, Choi Y-D (eds) Carbohydrate polymers, vol 39(3), p 292. Elsevier, Amsterdam, The Netherlands, 1996, pp Vii + 215
333.
go back to reference Mutter M, Renard CM, Beldman G, Schols HA, Voragen AG (1998) Mode of action of RG-hydrolase and RG-lyase toward rhamnogalacturonan oligomers. Characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase. Carbohydr Res 311(3):155–164CrossRef Mutter M, Renard CM, Beldman G, Schols HA, Voragen AG (1998) Mode of action of RG-hydrolase and RG-lyase toward rhamnogalacturonan oligomers. Characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase. Carbohydr Res 311(3):155–164CrossRef
334.
go back to reference Antov MG, Pericin DM, Dimic GR (2001) Cultivation of Polyporus squamosus for pectinase production in aqueous two-phase system containing sugar beet extraction waste. J Biotechnol 91(1):83–87CrossRef Antov MG, Pericin DM, Dimic GR (2001) Cultivation of Polyporus squamosus for pectinase production in aqueous two-phase system containing sugar beet extraction waste. J Biotechnol 91(1):83–87CrossRef
335.
go back to reference Bhattacharya S, Rastogi NK (1998) Rheological properties of enzyme-treated mango pulp. J Food Eng 36(3):249–262CrossRef Bhattacharya S, Rastogi NK (1998) Rheological properties of enzyme-treated mango pulp. J Food Eng 36(3):249–262CrossRef
336.
go back to reference Castilho LR, Alves TLM, Medronho RA (1999) Recovery of pectolytic enzymes produced by solid state culture of Aspergillus niger. Process Biochem 34(2):181–186CrossRef Castilho LR, Alves TLM, Medronho RA (1999) Recovery of pectolytic enzymes produced by solid state culture of Aspergillus niger. Process Biochem 34(2):181–186CrossRef
337.
go back to reference Fanta N, Quaas A, Zulueta P, Rez LM (1992) Release of reducing sugars from Citrus seedlings, leaves and fruits. Effect of treatment with pectinase and cellulase from Alternaria and Trichoderma. Phytochemistry 31(10):3359–3364CrossRef Fanta N, Quaas A, Zulueta P, Rez LM (1992) Release of reducing sugars from Citrus seedlings, leaves and fruits. Effect of treatment with pectinase and cellulase from Alternaria and Trichoderma. Phytochemistry 31(10):3359–3364CrossRef
338.
go back to reference Kapoor M, Khalil Beg Q, Bhushan B et al (2000) Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochem 36(5):467–473CrossRef Kapoor M, Khalil Beg Q, Bhushan B et al (2000) Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochem 36(5):467–473CrossRef
339.
go back to reference Hadj-Taieb N, Ayadi M, Trigui S, Bouabdallah F, Gargouri A (2002) Hyperproduction of pectinase activities by a fully constitutive mutant (CT1) of Penicillium occitanis. Enzyme Microb Technol 30(5):662–666CrossRef Hadj-Taieb N, Ayadi M, Trigui S, Bouabdallah F, Gargouri A (2002) Hyperproduction of pectinase activities by a fully constitutive mutant (CT1) of Penicillium occitanis. Enzyme Microb Technol 30(5):662–666CrossRef
340.
go back to reference Weissermel K, Arpe H-J (1997) Industrial organic chemistry, 3rd edn. VCH, New YorkCrossRef Weissermel K, Arpe H-J (1997) Industrial organic chemistry, 3rd edn. VCH, New YorkCrossRef
341.
go back to reference Murphy DJ (1994) Designer oil crops: breeding, processing and biotechnology. VCH, Weinheim Murphy DJ (1994) Designer oil crops: breeding, processing and biotechnology. VCH, Weinheim
342.
go back to reference Robbelen G, Downey RK, Ashri A (1989) Oil crops of the world: their breeding and utilization. McGraw-Hill, New York Robbelen G, Downey RK, Ashri A (1989) Oil crops of the world: their breeding and utilization. McGraw-Hill, New York
343.
go back to reference Scott DS, Piskorz J, Radlein D (1994) Production of levoglucosan as an industrial chemical. In: Witczak ZJ (ed) Levoglucosenone and levoglucosans. Chemistry and applications. ATL Press Science Publishers, Mt. Prospect, IL, pp 179–188 Scott DS, Piskorz J, Radlein D (1994) Production of levoglucosan as an industrial chemical. In: Witczak ZJ (ed) Levoglucosenone and levoglucosans. Chemistry and applications. ATL Press Science Publishers, Mt. Prospect, IL, pp 179–188
344.
go back to reference Eggersdorfer M, Meyer J, Eckes P (1992) Use of renewable resources for nonfood materials. FEMS Microbiol Rev 103(2–4):355–364 Eggersdorfer M, Meyer J, Eckes P (1992) Use of renewable resources for nonfood materials. FEMS Microbiol Rev 103(2–4):355–364
345.
go back to reference Donaldson TL, Culberson OL (1984) An industry model of commodity chemicals from renewable resources. Energy 9(8):693–707CrossRef Donaldson TL, Culberson OL (1984) An industry model of commodity chemicals from renewable resources. Energy 9(8):693–707CrossRef
346.
347.
go back to reference Lipinsky ES (1981) Chemicals from biomass—petrochemical substitution options. Science 212(4502):1465–1471CrossRef Lipinsky ES (1981) Chemicals from biomass—petrochemical substitution options. Science 212(4502):1465–1471CrossRef
348.
go back to reference Indergaard M, Johansson A, Crawford B (1989) Biomass technologies. Chimia 43(7–8):230–232 Indergaard M, Johansson A, Crawford B (1989) Biomass technologies. Chimia 43(7–8):230–232
349.
go back to reference Kirk–Othmer encyclopedia of chemical technology, vol 12, 4th edn. Wiley, New York, 1994 Kirk–Othmer encyclopedia of chemical technology, vol 12, 4th edn. Wiley, New York, 1994
350.
go back to reference Goldstein IS (1981) Chemicals from biomass—present status. Forest Prod 31(10):63–68 Goldstein IS (1981) Chemicals from biomass—present status. Forest Prod 31(10):63–68
351.
go back to reference Goldstein IS (1981) Organic chemicals from biomass. CRC Press, Boca Raton, FL Goldstein IS (1981) Organic chemicals from biomass. CRC Press, Boca Raton, FL
352.
go back to reference Kuhad RC, Singh A (1993) Lignocellulose biotechnology—current and future-prospects. Crit Rev Biotechnol 13(2):151–172CrossRef Kuhad RC, Singh A (1993) Lignocellulose biotechnology—current and future-prospects. Crit Rev Biotechnol 13(2):151–172CrossRef
353.
go back to reference Kerr RA (1998) The next oil crisis looms large—and perhaps close. Science 281(5380):1128–1131CrossRef Kerr RA (1998) The next oil crisis looms large—and perhaps close. Science 281(5380):1128–1131CrossRef
354.
go back to reference Campbell CJ, Laherrere JH (1998) Preventing the next oil crunch—the end of cheap oil. Sci Am 278(3):77–83CrossRef Campbell CJ, Laherrere JH (1998) Preventing the next oil crunch—the end of cheap oil. Sci Am 278(3):77–83CrossRef
355.
go back to reference U. S. Department of Energy (1997) Energy information administration, annual energy review, vol DOE/EIA-0384(97). U. S. Department of Energy, Washington, DC U. S. Department of Energy (1997) Energy information administration, annual energy review, vol DOE/EIA-0384(97). U. S. Department of Energy, Washington, DC
356.
go back to reference Holderich WF, Roseler J, Heitmann G, Liebens AT (1997) The use of zeolites in the synthesis of fine and intermediate chemicals. Catal Today 37(4):353–366CrossRef Holderich WF, Roseler J, Heitmann G, Liebens AT (1997) The use of zeolites in the synthesis of fine and intermediate chemicals. Catal Today 37(4):353–366CrossRef
357.
go back to reference Donnini GP, Blain TJ, Holton HH, Kutney GW (1983) 300 Alkaline pulping additives—structure-activity-relationships. Pulp Pap Canada 84(11):R134–R140 Donnini GP, Blain TJ, Holton HH, Kutney GW (1983) 300 Alkaline pulping additives—structure-activity-relationships. Pulp Pap Canada 84(11):R134–R140
358.
go back to reference McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production, vol 566. ACS, Washington, DC, pp 292–324CrossRef McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production, vol 566. ACS, Washington, DC, pp 292–324CrossRef
359.
go back to reference Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef
360.
go back to reference Torget R, Walter P, Himmel M, Grohmann K (1991) Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl Biochem Biotechnol 28–9:75–86CrossRef Torget R, Walter P, Himmel M, Grohmann K (1991) Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl Biochem Biotechnol 28–9:75–86CrossRef
361.
go back to reference Torget R, Werdene P, Himmel M, Grohmann K (1990) Dilute acid pretreatment of short rotation woody and herbaceous crops. Appl Biochem Biotechnol 24–5:115–126CrossRef Torget R, Werdene P, Himmel M, Grohmann K (1990) Dilute acid pretreatment of short rotation woody and herbaceous crops. Appl Biochem Biotechnol 24–5:115–126CrossRef
362.
go back to reference Singh A, Das K, Sharma DK (1984) Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues. J Chem Technol Biotechnol A Chem Technol 34(2):51–61CrossRef Singh A, Das K, Sharma DK (1984) Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues. J Chem Technol Biotechnol A Chem Technol 34(2):51–61CrossRef
363.
go back to reference Singh A, Das K, Sharma DK (1984) Integrated process for production of xylose, furfural, and glucose from bagasse by 2-step acid-hydrolysis. Ind Eng Chem Prod Res Dev 23(2):257–262CrossRef Singh A, Das K, Sharma DK (1984) Integrated process for production of xylose, furfural, and glucose from bagasse by 2-step acid-hydrolysis. Ind Eng Chem Prod Res Dev 23(2):257–262CrossRef
364.
go back to reference Vila C, Santos V, Parajo JC (2003) Recovery of lignin and furfural from acetic acid-water-HCl pulping liquors. Bioresour Technol 90(3):339–344CrossRef Vila C, Santos V, Parajo JC (2003) Recovery of lignin and furfural from acetic acid-water-HCl pulping liquors. Bioresour Technol 90(3):339–344CrossRef
365.
go back to reference Lehnen R, Saake B, Nimz HH (2001) Furfural and hydroxymethyl furfural as by-products of FORMACELL pulping. Holzforschung 55(2):199–204CrossRef Lehnen R, Saake B, Nimz HH (2001) Furfural and hydroxymethyl furfural as by-products of FORMACELL pulping. Holzforschung 55(2):199–204CrossRef
366.
go back to reference Lignosulfonates. In: Chemical economics handbook. SRI Consulting, Menlo Park, CA Lignosulfonates. In: Chemical economics handbook. SRI Consulting, Menlo Park, CA
367.
go back to reference Ward OP, Singh A (2002) Bioethanol technology: developments and perspectives. In: Laskin AI, Bennett JW, Gadd GM (eds) Advances in applied microbiology, vol 51. Academic, Amsterdam, pp 53–80 Ward OP, Singh A (2002) Bioethanol technology: developments and perspectives. In: Laskin AI, Bennett JW, Gadd GM (eds) Advances in applied microbiology, vol 51. Academic, Amsterdam, pp 53–80
368.
go back to reference Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRef Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRef
369.
go back to reference Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628CrossRef Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628CrossRef
370.
go back to reference Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–6:561–576CrossRef Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–6:561–576CrossRef
371.
go back to reference Nguyen QA, Tucker MP, Keller FA, Beaty DA, Connors KM, Eddy FP (1999) Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol 77–9:133–142CrossRef Nguyen QA, Tucker MP, Keller FA, Beaty DA, Connors KM, Eddy FP (1999) Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol 77–9:133–142CrossRef
372.
go back to reference Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57(3):191–202CrossRef Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57(3):191–202CrossRef
373.
go back to reference Schell DJ, Torget R, Power A, Walter PJ, Grohmann K, Hinman ND (1991) A technical and economic-analysis of acid-catalyzed steam explosion and dilute sulfuric-acid pretreatments using wheat straw or aspen wood chips. Appl Biochem Biotechnol 28–9:87–97CrossRef Schell DJ, Torget R, Power A, Walter PJ, Grohmann K, Hinman ND (1991) A technical and economic-analysis of acid-catalyzed steam explosion and dilute sulfuric-acid pretreatments using wheat straw or aspen wood chips. Appl Biochem Biotechnol 28–9:87–97CrossRef
374.
go back to reference Aziz S, Sarkanen K (1989) Organosolv pulping—a review. Tappi J 72(3):169–175 Aziz S, Sarkanen K (1989) Organosolv pulping—a review. Tappi J 72(3):169–175
375.
go back to reference Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping—methods and pulp properties. Biomass 13(1):45–65CrossRef Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping—methods and pulp properties. Biomass 13(1):45–65CrossRef
376.
go back to reference Kleinert TN (1974) Organosolvent pulping with aqueous alcohol. Tappi 57(8):99–102 Kleinert TN (1974) Organosolvent pulping with aqueous alcohol. Tappi 57(8):99–102
377.
go back to reference Lora JH, Aziz S (1985) Organosolv pulping—a versatile approach to wood refining. Tappi J 68(8):94–97 Lora JH, Aziz S (1985) Organosolv pulping—a versatile approach to wood refining. Tappi J 68(8):94–97
378.
go back to reference McDonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76(8):186–193 McDonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76(8):186–193
379.
go back to reference Sarkanen KV (1990) Chemistry of solvent pulping. Tappi J 73(10):215–219 Sarkanen KV (1990) Chemistry of solvent pulping. Tappi J 73(10):215–219
380.
go back to reference Stockburger P (1993) An overview of near-commercial and commercial solvent-based pulping processes. Tappi J 76(6):71–74 Stockburger P (1993) An overview of near-commercial and commercial solvent-based pulping processes. Tappi J 76(6):71–74
381.
go back to reference Kishimoto T, Sano Y (2001) Delignification mechanism during high-boiling solvent pulping Part 1. Reaction of guaiacylglycerol-beta-guaiacyl ether. Holzforschung 55(6):611–616CrossRef Kishimoto T, Sano Y (2001) Delignification mechanism during high-boiling solvent pulping Part 1. Reaction of guaiacylglycerol-beta-guaiacyl ether. Holzforschung 55(6):611–616CrossRef
382.
go back to reference Thring RW, Chornet E, Overend RP (1993) Thermolysis of glycol lignin in the presence of tetralin. Canad J Chem Eng 71(1):107–115CrossRef Thring RW, Chornet E, Overend RP (1993) Thermolysis of glycol lignin in the presence of tetralin. Canad J Chem Eng 71(1):107–115CrossRef
383.
go back to reference Demirbas A (1998) Aqueous glycerol delignification of wood chips and ground wood. Bioresour Technol 63(2):179–185CrossRef Demirbas A (1998) Aqueous glycerol delignification of wood chips and ground wood. Bioresour Technol 63(2):179–185CrossRef
384.
go back to reference Jimenez L, de la Torre MJ, Maestre F, Ferrer JL, Perez I (1997) Organosolv pulping of wheat straw by use of phenol. Bioresour Technol 60(3):199–205CrossRef Jimenez L, de la Torre MJ, Maestre F, Ferrer JL, Perez I (1997) Organosolv pulping of wheat straw by use of phenol. Bioresour Technol 60(3):199–205CrossRef
385.
go back to reference Nimz HH, Berg A, Granzow C, Casten R, Muladi S (1989) Pulping and bleaching by the acetosolv process. Papier 43(10A):V102–V108 Nimz HH, Berg A, Granzow C, Casten R, Muladi S (1989) Pulping and bleaching by the acetosolv process. Papier 43(10A):V102–V108
386.
go back to reference Nimz HH, Granzow C, Berg A (1986) Acetosolv pulping. Holz Roh Werkst 44(9):362CrossRef Nimz HH, Granzow C, Berg A (1986) Acetosolv pulping. Holz Roh Werkst 44(9):362CrossRef
387.
go back to reference Parajo JC, Alonso JL, Vazquez D, Santos V (1993) Optimization of catalyzed acetosolv fractionation of pine wood. Holzforschung 47(3):188–196CrossRef Parajo JC, Alonso JL, Vazquez D, Santos V (1993) Optimization of catalyzed acetosolv fractionation of pine wood. Holzforschung 47(3):188–196CrossRef
388.
go back to reference Saake B, Lummitsch S, Mormanee R, Lehnen R, Nimz HH (1995) production of pulps using the Formacell process. Papier 49(10A):V1–V7 Saake B, Lummitsch S, Mormanee R, Lehnen R, Nimz HH (1995) production of pulps using the Formacell process. Papier 49(10A):V1–V7
389.
go back to reference Sundquist J (1996) Chemical pulping based on formic acid—summary of Milox research. Pap Puu Paper Tim 78(3):92–95 Sundquist J (1996) Chemical pulping based on formic acid—summary of Milox research. Pap Puu Paper Tim 78(3):92–95
390.
go back to reference Poppius-Levlin K, Mustonen R, Huovila T, Sundquist J (1991) Milox pulping with acetic-acid peroxyacetic acid. Pap Puu Paper Tim 73(2):154–158 Poppius-Levlin K, Mustonen R, Huovila T, Sundquist J (1991) Milox pulping with acetic-acid peroxyacetic acid. Pap Puu Paper Tim 73(2):154–158
391.
go back to reference Dahlmann G, Schroeter MC (1990) The organocell process—pulping with the environment in mind. Tappi J 73(4):237–240 Dahlmann G, Schroeter MC (1990) The organocell process—pulping with the environment in mind. Tappi J 73(4):237–240
392.
go back to reference Pye EK, Lora JH (1991) The Alcell process—a proven alternative to kraft pulping. Tappi J 74(3):113–118 Pye EK, Lora JH (1991) The Alcell process—a proven alternative to kraft pulping. Tappi J 74(3):113–118
393.
go back to reference Schroeter MC (1991) Possible lignin reactions in the organocell pulping process. Tappi J 74(10):197–200 Schroeter MC (1991) Possible lignin reactions in the organocell pulping process. Tappi J 74(10):197–200
394.
go back to reference Black NP (1991) ASAM alkaline sulfite pulping process shows potential for large-scale application. Tappi J 74(4):87–93 Black NP (1991) ASAM alkaline sulfite pulping process shows potential for large-scale application. Tappi J 74(4):87–93
395.
go back to reference Kirci H, Bostanci S, Yalinkilic MK (1994) A new modified pulping process alternative to sulfate method alkali-sulfite-antraquinone-ethanol (ASAE). Wood Sci Technol 28(2):89–99CrossRef Kirci H, Bostanci S, Yalinkilic MK (1994) A new modified pulping process alternative to sulfate method alkali-sulfite-antraquinone-ethanol (ASAE). Wood Sci Technol 28(2):89–99CrossRef
396.
go back to reference Patt R, Knoblauch J, Faix O, Kordsachia O, Puls J (1991) Lignin and carbohydrate reactions in alkaline sulfite, anthraquinone, methanol (ASAM) pulping. Papier 45(7):389–396 Patt R, Knoblauch J, Faix O, Kordsachia O, Puls J (1991) Lignin and carbohydrate reactions in alkaline sulfite, anthraquinone, methanol (ASAM) pulping. Papier 45(7):389–396
397.
go back to reference Schubert HL, Fuchs K, Patt R, Kordsachia O, Bobik M (1993) The ASAM-process—a pulp technology ready for industry—experiences gained through 3 years operation of the pilot-plant. Papier 47(10A):V6–V15 Schubert HL, Fuchs K, Patt R, Kordsachia O, Bobik M (1993) The ASAM-process—a pulp technology ready for industry—experiences gained through 3 years operation of the pilot-plant. Papier 47(10A):V6–V15
398.
go back to reference Yawalata D, Paszner L (2004) Cationic effect in high concentration alcohol organosolv pulping: the next generation biorefinery. Holzforschung 58(1):7–13 Yawalata D, Paszner L (2004) Cationic effect in high concentration alcohol organosolv pulping: the next generation biorefinery. Holzforschung 58(1):7–13
399.
go back to reference Oliet M, Garcia J, Rodriguez F, Gilarrranz MA (2002) Solvent effects in autocatalyzed alcohol-water pulping comparative study between ethanol and methanol as delignifying agents. Chem Eng J 87(2):157–162CrossRef Oliet M, Garcia J, Rodriguez F, Gilarrranz MA (2002) Solvent effects in autocatalyzed alcohol-water pulping comparative study between ethanol and methanol as delignifying agents. Chem Eng J 87(2):157–162CrossRef
400.
go back to reference Goyal GC, Lora JH, Pye EK (1992) Autocatalyzed organosolv pulping of hardwoods—effect of pulping conditions on pulp properties and characteristics of soluble and residual lignin. Tappi J 75(2):110–116 Goyal GC, Lora JH, Pye EK (1992) Autocatalyzed organosolv pulping of hardwoods—effect of pulping conditions on pulp properties and characteristics of soluble and residual lignin. Tappi J 75(2):110–116
401.
go back to reference Oliet M, Rodriguez F, Garcia J, Gilarranz MA (2001) The effect of autocatalyzed ethanol pulping on lignin characteristics. J Wood Chem Technol 21(1):81–95CrossRef Oliet M, Rodriguez F, Garcia J, Gilarranz MA (2001) The effect of autocatalyzed ethanol pulping on lignin characteristics. J Wood Chem Technol 21(1):81–95CrossRef
402.
go back to reference Yawalata D, Paszner L (2004) Anionic effect in high concentration alcohol organosolv pulping. Holzforschung 58(1):1–6CrossRef Yawalata D, Paszner L (2004) Anionic effect in high concentration alcohol organosolv pulping. Holzforschung 58(1):1–6CrossRef
403.
go back to reference Paszner L, Cho HJ (1989) Organosolv pulping—acidic catalysis options and their effect on fiber quality and delignification. Tappi J 72(2):135–142 Paszner L, Cho HJ (1989) Organosolv pulping—acidic catalysis options and their effect on fiber quality and delignification. Tappi J 72(2):135–142
404.
go back to reference Paszner L, Behera NC (1989) Topochemistry of softwood delignification by alkali earth metal salt catalyzed organosolv pulping. Holzforschung 43(3):159–168CrossRef Paszner L, Behera NC (1989) Topochemistry of softwood delignification by alkali earth metal salt catalyzed organosolv pulping. Holzforschung 43(3):159–168CrossRef
405.
go back to reference Black SK, Hames BR, Myers MD (1998) US 5,730,837 Black SK, Hames BR, Myers MD (1998) US 5,730,837
406.
go back to reference Ibrahim M, Glasser WG (1999) Steam-assisted biomass fractionation. Part III: a quantitative evaluation of the “clean fractionation” concept. Bioresour Technol 70(2):181–192CrossRef Ibrahim M, Glasser WG (1999) Steam-assisted biomass fractionation. Part III: a quantitative evaluation of the “clean fractionation” concept. Bioresour Technol 70(2):181–192CrossRef
407.
go back to reference Avellar BK, Glasser WG (1998) Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenergy 14(3):205–218CrossRef Avellar BK, Glasser WG (1998) Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenergy 14(3):205–218CrossRef
408.
go back to reference Heitz M, Capekmenard E, Koeberle PG, Gagne J, Chornet E et al (1991) Fractionation of populus-tremuloides at the pilot-plant scale—optimization of steam pretreatment conditions using the stake-Ii technology. Bioresour Technol 35(1):23–32CrossRef Heitz M, Capekmenard E, Koeberle PG, Gagne J, Chornet E et al (1991) Fractionation of populus-tremuloides at the pilot-plant scale—optimization of steam pretreatment conditions using the stake-Ii technology. Bioresour Technol 35(1):23–32CrossRef
409.
go back to reference Schultz TP, Blermann CJ, McGinnis GD (1983) Steam explosion of mixed hardwood chips as a biomass pretreatment. Ind Eng Chem Product Res Dev 22(2):344–348CrossRef Schultz TP, Blermann CJ, McGinnis GD (1983) Steam explosion of mixed hardwood chips as a biomass pretreatment. Ind Eng Chem Product Res Dev 22(2):344–348CrossRef
410.
go back to reference Sun XF, Xu F, Sun RC, Wang YX, Fowler P, Baird MS (2004) Characteristics of degraded lignins obtained from steam exploded wheat straw. Polym Degrad Stab 86(2):245–256CrossRef Sun XF, Xu F, Sun RC, Wang YX, Fowler P, Baird MS (2004) Characteristics of degraded lignins obtained from steam exploded wheat straw. Polym Degrad Stab 86(2):245–256CrossRef
411.
go back to reference Shevchenko SM, Chang K, Dick DG, Gregg DJ, Saddler JN (2001) Structure and properties of lignin in softwoods after SO2-catalyzed steam explosion and enzymatic hydrolysis. Cell Chem Technol 35(5–6):487–502 Shevchenko SM, Chang K, Dick DG, Gregg DJ, Saddler JN (2001) Structure and properties of lignin in softwoods after SO2-catalyzed steam explosion and enzymatic hydrolysis. Cell Chem Technol 35(5–6):487–502
412.
go back to reference Shevchenko SM, Beatson RP, Saddler JN (1999) The nature of lignin from steam explosion enzymatic hydrolysis of softwood—structural features and possible uses. Appl Biochem Biotechnol 77–9:867–876CrossRef Shevchenko SM, Beatson RP, Saddler JN (1999) The nature of lignin from steam explosion enzymatic hydrolysis of softwood—structural features and possible uses. Appl Biochem Biotechnol 77–9:867–876CrossRef
413.
go back to reference Ramos LP, Mathias AL, Silva FT, Cotrim AR, Ferraz AL, Chen CL (1999) Characterization of residual lignin after SO2-catalyzed steam explosion and enzymatic hydrolysis of Eucalyptus viminalis wood chips. J Agricult Food Chern 47(6):2295–2302CrossRef Ramos LP, Mathias AL, Silva FT, Cotrim AR, Ferraz AL, Chen CL (1999) Characterization of residual lignin after SO2-catalyzed steam explosion and enzymatic hydrolysis of Eucalyptus viminalis wood chips. J Agricult Food Chern 47(6):2295–2302CrossRef
414.
go back to reference Fernandez-Bolanos J, Felizon B, Heredia A, Guillen R, Jimenez A (1999) Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones. Bioresour Technol 68(2):121–132CrossRef Fernandez-Bolanos J, Felizon B, Heredia A, Guillen R, Jimenez A (1999) Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones. Bioresour Technol 68(2):121–132CrossRef
415.
go back to reference Emmel A, Mathias AL, Wypych F, Ramos LP (2003) Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresour Technol 86(2):105–115CrossRef Emmel A, Mathias AL, Wypych F, Ramos LP (2003) Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresour Technol 86(2):105–115CrossRef
416.
go back to reference Schell D, Nguyen Q, Tucker M, Boynton B (1998) Pretreatment of softwood by acid-catalyzed steam explosion followed by alkali extraction. Appl Biochem Biotechnol 70–2:17–24CrossRef Schell D, Nguyen Q, Tucker M, Boynton B (1998) Pretreatment of softwood by acid-catalyzed steam explosion followed by alkali extraction. Appl Biochem Biotechnol 70–2:17–24CrossRef
417.
go back to reference Bura R, Bothast RJ, Mansfield SD, Saddler JN (2003) Optimization of SO2-catalyzed steam pretreatment of corn fiber for ethanol production. Appl Biochem Biotechnol 105:319–335CrossRef Bura R, Bothast RJ, Mansfield SD, Saddler JN (2003) Optimization of SO2-catalyzed steam pretreatment of corn fiber for ethanol production. Appl Biochem Biotechnol 105:319–335CrossRef
418.
go back to reference Bura R, Mansfield SD, Saddler JN, Bothast RJ (2002) SO2-catalyzed steam explosion of com fiber for ethanol production. Appl Biochem Biotechnol 98:59–72CrossRef Bura R, Mansfield SD, Saddler JN, Bothast RJ (2002) SO2-catalyzed steam explosion of com fiber for ethanol production. Appl Biochem Biotechnol 98:59–72CrossRef
419.
go back to reference McDonald AG, Clark TA (1992) Characterization of oligosaccharides released by steam explosion of sulfurdioxide impregnated pinus-radiata. J Wood Chem Technol 12(1):53–78CrossRef McDonald AG, Clark TA (1992) Characterization of oligosaccharides released by steam explosion of sulfurdioxide impregnated pinus-radiata. J Wood Chem Technol 12(1):53–78CrossRef
420.
go back to reference Gellerstedt G, Lindfors EL (1984) Structural-changes in lignin during kraft pulping. Holzforschung 38(3):151–158CrossRef Gellerstedt G, Lindfors EL (1984) Structural-changes in lignin during kraft pulping. Holzforschung 38(3):151–158CrossRef
421.
go back to reference Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14(4):241–266CrossRef Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14(4):241–266CrossRef
422.
go back to reference Kleppe PJ (1970) Kraft pulping. Tappi 53(1):35ff Kleppe PJ (1970) Kraft pulping. Tappi 53(1):35ff
423.
go back to reference Holton H (1977) Soda additive softwood pulping—major new process. Pulp Pap Canada 78(10):19–24 Holton H (1977) Soda additive softwood pulping—major new process. Pulp Pap Canada 78(10):19–24
424.
go back to reference Holton HH, Chapman FL (1977) Kraft pulping with anthraquinone—laboratory and full-scale mill trials. Tappi 60(11):121–125 Holton HH, Chapman FL (1977) Kraft pulping with anthraquinone—laboratory and full-scale mill trials. Tappi 60(11):121–125
425.
go back to reference Dimmel DR (1985) Electron-transfer reactions in pulping systems. 1. Theory and applicability to anthraquinone pulping. J Wood Chem Technol 5(1):1–14CrossRef Dimmel DR (1985) Electron-transfer reactions in pulping systems. 1. Theory and applicability to anthraquinone pulping. J Wood Chem Technol 5(1):1–14CrossRef
426.
go back to reference Dimmel DR, Perry LF, Palasz PD, Chum HL (1985) Electron-transfer reactions in pulping systems. 2. Electrochemistry of anthraquinone lignin model quinone methides. J Wood Chem Technol 5(1):15–36CrossRef Dimmel DR, Perry LF, Palasz PD, Chum HL (1985) Electron-transfer reactions in pulping systems. 2. Electrochemistry of anthraquinone lignin model quinone methides. J Wood Chem Technol 5(1):15–36CrossRef
428.
go back to reference Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17(3):474–480CrossRef Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17(3):474–480CrossRef
429.
go back to reference Torget RW, Kim JS, Lee YY (2000) Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind Eng Chem Res 39(8):2817–2825CrossRef Torget RW, Kim JS, Lee YY (2000) Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind Eng Chem Res 39(8):2817–2825CrossRef
430.
go back to reference Witczak ZJ (ed) (1994) Levoglucosenone and levoglucosans. Chemistry and applications. ATL, Mt. Prospect, IL Witczak ZJ (ed) (1994) Levoglucosenone and levoglucosans. Chemistry and applications. ATL, Mt. Prospect, IL
431.
go back to reference Trahanovsky WS, Ochaoda JM, Wang C, Revell KD, Arvidson KB et al (2003) A convenient procedure for the preparation of levoglucosenone and its conversion to novel chiral derivatives. In: Carbohydrate synthons in natural products chemistry: synthesis, functionalization and applications, vol 841, pp 21–31 Trahanovsky WS, Ochaoda JM, Wang C, Revell KD, Arvidson KB et al (2003) A convenient procedure for the preparation of levoglucosenone and its conversion to novel chiral derivatives. In: Carbohydrate synthons in natural products chemistry: synthesis, functionalization and applications, vol 841, pp 21–31
432.
go back to reference Shibagaki M, Takahashi K, Kuno H, Honda I, Matsushita H (1990) Synthesis of levoglucosenone. Chem Lett 2:307–310CrossRef Shibagaki M, Takahashi K, Kuno H, Honda I, Matsushita H (1990) Synthesis of levoglucosenone. Chem Lett 2:307–310CrossRef
433.
go back to reference Fung DPC (1976) Further investigation on effect of H3p04 on pyrolysis of cellulose. Wood Sci 9(1):55–57 Fung DPC (1976) Further investigation on effect of H3p04 on pyrolysis of cellulose. Wood Sci 9(1):55–57
434.
go back to reference Halpern Y, Riffer R, Broido A (1973) Levoglucosenone (1,6-anhydro-3,4-dideoxy-delta3-beta-Dpyranosen-2-one)—major product ofacid-catalyzed pyrolysis of cellulose and related carbohydrates. J Org Chem 38(2):204–209CrossRef Halpern Y, Riffer R, Broido A (1973) Levoglucosenone (1,6-anhydro-3,4-dideoxy-delta3-beta-Dpyranosen-2-one)—major product ofacid-catalyzed pyrolysis of cellulose and related carbohydrates. J Org Chem 38(2):204–209CrossRef
435.
go back to reference Shafizadeh F, Furneaux RH, Cochran TG, Scholl JP, Sakai Y (1979) Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polym Sci 23(12):3525–3539CrossRef Shafizadeh F, Furneaux RH, Cochran TG, Scholl JP, Sakai Y (1979) Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polym Sci 23(12):3525–3539CrossRef
436.
go back to reference Dobele G, Dizhbite T, Rossinskaja G, Telysheva G, Mier D, Radtke S, Faix O (2003) Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis—a promising method for obtaining 1,6-anhydrosaccharides in high yields. Anal Appl Pyrol 68–9:197–211CrossRef Dobele G, Dizhbite T, Rossinskaja G, Telysheva G, Mier D, Radtke S, Faix O (2003) Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis—a promising method for obtaining 1,6-anhydrosaccharides in high yields. Anal Appl Pyrol 68–9:197–211CrossRef
437.
go back to reference Dobele G, Rossinskaja G, Telysheva G, Meier D, Faix O (1999) Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J Anal Appl Pyrol 49(1–2):307–317CrossRef Dobele G, Rossinskaja G, Telysheva G, Meier D, Faix O (1999) Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J Anal Appl Pyrol 49(1–2):307–317CrossRef
438.
go back to reference Edye LA, Richards GN, Zheng G (1993) Transition-metals as catalysts for pyrolysis and gasification of biomass. ACS Symp Ser 515:90–101CrossRef Edye LA, Richards GN, Zheng G (1993) Transition-metals as catalysts for pyrolysis and gasification of biomass. ACS Symp Ser 515:90–101CrossRef
439.
go back to reference Kleen M, Gellerstedt G (1995) Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J Anal Appl Pyrol 35(1):15–41CrossRef Kleen M, Gellerstedt G (1995) Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J Anal Appl Pyrol 35(1):15–41CrossRef
440.
go back to reference Richards GN, Zheng GC (1991) Influence of metal-ions and of salts on products from pyrolysis of wood applications to thermochemical processing of newsprint and biomass. J Anal Appl Pyrol 21(1–2):133–146CrossRef Richards GN, Zheng GC (1991) Influence of metal-ions and of salts on products from pyrolysis of wood applications to thermochemical processing of newsprint and biomass. J Anal Appl Pyrol 21(1–2):133–146CrossRef
441.
go back to reference Denooy AEJ, Besemer AC, Vanbekkum H (1995) Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous-solution—kinetics and mechanism. Tetrahedron 51(29):8023–8032CrossRef Denooy AEJ, Besemer AC, Vanbekkum H (1995) Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous-solution—kinetics and mechanism. Tetrahedron 51(29):8023–8032CrossRef
442.
go back to reference Denooy AEJ, Besemer AC, Vanbekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269(1):89–98CrossRef Denooy AEJ, Besemer AC, Vanbekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269(1):89–98CrossRef
443.
go back to reference Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27(1–4):49–66CrossRef Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27(1–4):49–66CrossRef
444.
go back to reference Kato Y, Matsuo R, Isogai A (2003) Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym 51(1):69–75CrossRef Kato Y, Matsuo R, Isogai A (2003) Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym 51(1):69–75CrossRef
445.
go back to reference Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989CrossRef Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989CrossRef
446.
go back to reference Perez DD, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4(5):1417–1425CrossRef Perez DD, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4(5):1417–1425CrossRef
447.
go back to reference Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose 7(2):177–188CrossRef Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose 7(2):177–188CrossRef
448.
go back to reference Gomez-Bujedo S, Fleury E, Vignon MR (2004) Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaCIO oxidation of water-soluble cellulose acetate. Biomacromolecules 5(2):565–571CrossRef Gomez-Bujedo S, Fleury E, Vignon MR (2004) Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaCIO oxidation of water-soluble cellulose acetate. Biomacromolecules 5(2):565–571CrossRef
449.
go back to reference Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5):1665–1671CrossRef Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5):1665–1671CrossRef
450.
go back to reference Kato Y, Kaminaga J, Matsuo R, Isogai A (2004) TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydr Polym 58(4):421–426CrossRef Kato Y, Kaminaga J, Matsuo R, Isogai A (2004) TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydr Polym 58(4):421–426CrossRef
451.
go back to reference Koga T, Taniguchi I (2004) Electrochemical oxidation of glucose to glucarate using TEMPO as a mediator in an alkaline solution. Electrochemistry 72(12):858–860 Koga T, Taniguchi I (2004) Electrochemical oxidation of glucose to glucarate using TEMPO as a mediator in an alkaline solution. Electrochemistry 72(12):858–860
452.
go back to reference Schamann M, Schafer HJ (2003) TEMPO-mediated anodic oxidation of methyl glycosides and l-methyl and l-azido disaccharides. Eur Org Chem 2:351–358CrossRef Schamann M, Schafer HJ (2003) TEMPO-mediated anodic oxidation of methyl glycosides and l-methyl and l-azido disaccharides. Eur Org Chem 2:351–358CrossRef
453.
go back to reference Thaburet JF, Merbouh N, Ibert M, Marsais F, Queguiner G (2001) TEMPO-mediated oxidation of maltodextrins and D-glucose: effect of pH on the selectivity and sequestering ability of the resulting polycarboxylates. Carbohydr Res 330(1):21–29CrossRef Thaburet JF, Merbouh N, Ibert M, Marsais F, Queguiner G (2001) TEMPO-mediated oxidation of maltodextrins and D-glucose: effect of pH on the selectivity and sequestering ability of the resulting polycarboxylates. Carbohydr Res 330(1):21–29CrossRef
454.
go back to reference Merbouh N, Thaburet JF, Ibert M, Marsais F, Bobbitt JM (2001) Facile nitroxide-mediated oxidations of D-glucose to D-glucaric acid. Carbohydr Res 336(1):75–78CrossRef Merbouh N, Thaburet JF, Ibert M, Marsais F, Bobbitt JM (2001) Facile nitroxide-mediated oxidations of D-glucose to D-glucaric acid. Carbohydr Res 336(1):75–78CrossRef
455.
go back to reference Bozell JJ (ed) (2001) Chemicals and materials from renewable resources, vol 784. American Chemical Society, Washington, DC, p 64CrossRef Bozell JJ (ed) (2001) Chemicals and materials from renewable resources, vol 784. American Chemical Society, Washington, DC, p 64CrossRef
456.
go back to reference Trombotto S, Violet-Courtens E, Cottier L, Queneau Y (2004) Oxidation of two major disaccharides: sucrose and isomaltulose. Top Catal 27(1–4):31–37CrossRef Trombotto S, Violet-Courtens E, Cottier L, Queneau Y (2004) Oxidation of two major disaccharides: sucrose and isomaltulose. Top Catal 27(1–4):31–37CrossRef
457.
go back to reference Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature. 3. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydr Res 217:71–85CrossRef Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature. 3. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydr Res 217:71–85CrossRef
458.
go back to reference Ahmad T, Kenne L, Olsson K, Theander O (1995) The formation of 2-furaldehyde and formic-acid from pentoses in slightly acidic deuterium-oxide studied by H-I-Nmr spectroscopy. Carbohydr Res 276(2):309–320CrossRef Ahmad T, Kenne L, Olsson K, Theander O (1995) The formation of 2-furaldehyde and formic-acid from pentoses in slightly acidic deuterium-oxide studied by H-I-Nmr spectroscopy. Carbohydr Res 276(2):309–320CrossRef
459.
go back to reference Oefner PJ, Lanziner AH, Bonn G, Bobleter O (1992) Quantitative studies on furfural and organic-acid formation during hydrothermal, acidic and alkaline-degradation of deuterium-xylose. Monatsh Chem 123(6–7):547–556CrossRef Oefner PJ, Lanziner AH, Bonn G, Bobleter O (1992) Quantitative studies on furfural and organic-acid formation during hydrothermal, acidic and alkaline-degradation of deuterium-xylose. Monatsh Chem 123(6–7):547–556CrossRef
460.
go back to reference Montane D, Salvado J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenerg 22(4):295–304CrossRef Montane D, Salvado J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenerg 22(4):295–304CrossRef
461.
go back to reference Mansilla HD, Baeza J, Urzua S, Maturana G, Villasenor J, Duran N (1998) Acid-catalysed hydrolysis of rice hull: evaluation of furfural production. Bioresour Technol 66(3):189–193CrossRef Mansilla HD, Baeza J, Urzua S, Maturana G, Villasenor J, Duran N (1998) Acid-catalysed hydrolysis of rice hull: evaluation of furfural production. Bioresour Technol 66(3):189–193CrossRef
462.
go back to reference Carrasco E (1993) Production of furfural by dilute-acid hydrolysis of wood—methods for calculating furfural yield. Wood Fiber Sci 25(1):91–102 Carrasco E (1993) Production of furfural by dilute-acid hydrolysis of wood—methods for calculating furfural yield. Wood Fiber Sci 25(1):91–102
463.
go back to reference Riera EA, Alvarez R, Coca J (1991) Production of furfural by acid-hydrolysis of corncobs. J Chem Technol Biotechnol 50(2):149–155CrossRef Riera EA, Alvarez R, Coca J (1991) Production of furfural by acid-hydrolysis of corncobs. J Chem Technol Biotechnol 50(2):149–155CrossRef
464.
go back to reference Zeitsch KJ (2000) Furfural production needs chemical innovation. Chem Innov 30(4):29–32 Zeitsch KJ (2000) Furfural production needs chemical innovation. Chem Innov 30(4):29–32
465.
go back to reference Basta AH, EI-Saied H (2003) Furfural production and kinetics of pentosans hydrolysis in corn cobs. Cell Chem Technol 37(1–2):79–94 Basta AH, EI-Saied H (2003) Furfural production and kinetics of pentosans hydrolysis in corn cobs. Cell Chem Technol 37(1–2):79–94
466.
go back to reference Zeitsch KJ (2001) Gaseous acid catalysis: an intriguing new process. Chem Innov 31(1):41–44 Zeitsch KJ (2001) Gaseous acid catalysis: an intriguing new process. Chem Innov 31(1):41–44
467.
go back to reference Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229(2):414–423CrossRef Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229(2):414–423CrossRef
468.
go back to reference Gamse T, Marr R, Froschl E, Siebenhofer M (1997) Extraction of furfural with carbon dioxide. Separation Sci Technol 32(1–4):355–371CrossRef Gamse T, Marr R, Froschl E, Siebenhofer M (1997) Extraction of furfural with carbon dioxide. Separation Sci Technol 32(1–4):355–371CrossRef
469.
go back to reference Sako T, Sugeta T, Nakazawa N, Okubo T, Sato M et al (1992) Kinetic study of furfural formation accompanying supercritical carbon-dioxide extraction. J Chem Eng Jpn 25(4):372–377CrossRef Sako T, Sugeta T, Nakazawa N, Okubo T, Sato M et al (1992) Kinetic study of furfural formation accompanying supercritical carbon-dioxide extraction. J Chem Eng Jpn 25(4):372–377CrossRef
470.
go back to reference Kim YC, Lee HS (2001) Selective synthesis of furfural from xylose with supercritical carbon dioxide and solid acid catalyst. J Ind Eng Chem 7(6):424–429 Kim YC, Lee HS (2001) Selective synthesis of furfural from xylose with supercritical carbon dioxide and solid acid catalyst. J Ind Eng Chem 7(6):424–429
471.
go back to reference Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P (1998) Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind Crops Prod 7(2–3):95–99CrossRef Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P (1998) Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind Crops Prod 7(2–3):95–99CrossRef
472.
go back to reference Schraufnagel RA, Rase HF (1975) Levulinic acid from sucrose using acidic ion-exchange resins. Ind Eng Chem Prod Res Dev 14(1):40–44CrossRef Schraufnagel RA, Rase HF (1975) Levulinic acid from sucrose using acidic ion-exchange resins. Ind Eng Chem Prod Res Dev 14(1):40–44CrossRef
473.
go back to reference Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG et al (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycling 28(3–4):227–239CrossRef Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG et al (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycling 28(3–4):227–239CrossRef
474.
go back to reference Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114CrossRef Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114CrossRef
475.
go back to reference Lourvanij K, Rorrer GL (1994) Dehydration of glucose to organic-acids in microporous pillared clay catalysts. Appl Catal A Gen 109(1):147–165CrossRef Lourvanij K, Rorrer GL (1994) Dehydration of glucose to organic-acids in microporous pillared clay catalysts. Appl Catal A Gen 109(1):147–165CrossRef
476.
go back to reference Dahlmann J (1968) Hydrolytic method for the production of levulinic acid and its derivatives from biomass and sugars. Chem Ber 101:4251–4253CrossRef Dahlmann J (1968) Hydrolytic method for the production of levulinic acid and its derivatives from biomass and sugars. Chem Ber 101:4251–4253CrossRef
477.
go back to reference Farone WA, Cuzens JE (1999) Method for the production of levulinic acid. US Patent 5,892,107, 6 April 1999 Farone WA, Cuzens JE (1999) Method for the production of levulinic acid. US Patent 5,892,107, 6 April 1999
478.
go back to reference Jow J, Rorrer GL, Hawley MC, Lamport DTA (1987) Dehydration of D-fructose to levulinic acid over Lzy zeolite catalyst. Biomass 14(3):185–194CrossRef Jow J, Rorrer GL, Hawley MC, Lamport DTA (1987) Dehydration of D-fructose to levulinic acid over Lzy zeolite catalyst. Biomass 14(3):185–194CrossRef
479.
go back to reference Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jamefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycling 28:227–239CrossRef Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jamefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycling 28:227–239CrossRef
480.
go back to reference Fitzpatrick SW (2006) The biofine technology A “bio-refinery” concept based on thermochemical conversion of cellulosic biomass. Feedstocks for the future: renewables for the production of chemicals and materials. ACS Symp Ser 921:271–287CrossRef Fitzpatrick SW (2006) The biofine technology A “bio-refinery” concept based on thermochemical conversion of cellulosic biomass. Feedstocks for the future: renewables for the production of chemicals and materials. ACS Symp Ser 921:271–287CrossRef
481.
go back to reference Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF)—a review focusing on its manufacture. Starch-Starke 42(8):314–321CrossRef Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF)—a review focusing on its manufacture. Starch-Starke 42(8):314–321CrossRef
482.
go back to reference Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27(1–4):11–30CrossRef Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27(1–4):11–30CrossRef
483.
go back to reference Kroger M, Prusse U, Vorlop KD (2000) A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose. Top Catal 13(3):237–242CrossRef Kroger M, Prusse U, Vorlop KD (2000) A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose. Top Catal 13(3):237–242CrossRef
484.
go back to reference Seri K, Sakaki T, Shibata M, Inoue Y, Ishida H (2002) Lanthanum(III)-catalyzed degradation of cellulose at 250 degrees C. Bioresour Technol 81(3):257–260CrossRef Seri K, Sakaki T, Shibata M, Inoue Y, Ishida H (2002) Lanthanum(III)-catalyzed degradation of cellulose at 250 degrees C. Bioresour Technol 81(3):257–260CrossRef
485.
go back to reference Seri K, Inoue Y, Ishida H (2001) Catalytic activity of lanthanide(III) ions for the dehydration of hexose to 5hydroxymethyl-2-furaldehyde in water. Bull Chem Soc Jpn 74(6):1145–1150CrossRef Seri K, Inoue Y, Ishida H (2001) Catalytic activity of lanthanide(III) ions for the dehydration of hexose to 5hydroxymethyl-2-furaldehyde in water. Bull Chem Soc Jpn 74(6):1145–1150CrossRef
486.
go back to reference Ishida H, Seri K (1996) Catalytic activity of lanthanoide(III) ions for dehydration of D-glucose to 5-(hydroxymethyl)furfural. J Mol Catal A Chem 112(2):L163–L165CrossRef Ishida H, Seri K (1996) Catalytic activity of lanthanoide(III) ions for dehydration of D-glucose to 5-(hydroxymethyl)furfural. J Mol Catal A Chem 112(2):L163–L165CrossRef
487.
go back to reference Seri K, Inoue Y, Ishida H (2000) Highly efficient catalytic activity of lanthanide(III) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents. Chem Lett 1:22–23CrossRef Seri K, Inoue Y, Ishida H (2000) Highly efficient catalytic activity of lanthanide(III) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents. Chem Lett 1:22–23CrossRef
488.
go back to reference Vinke P, Vanbekkum H (1992) The dehydration of fructose towards 5-hydroxymethylfurfural using activated carbon as adsorbent. Starch-Starke 44(3):90–96CrossRef Vinke P, Vanbekkum H (1992) The dehydration of fructose towards 5-hydroxymethylfurfural using activated carbon as adsorbent. Starch-Starke 44(3):90–96CrossRef
489.
go back to reference Vandam HE, Kieboom APG, Vanbekkum H (1986) The conversion of fructose and glucose in acidic media formation of hydroxymethylfurfural. Starch-Starke 38(3):95–101CrossRef Vandam HE, Kieboom APG, Vanbekkum H (1986) The conversion of fructose and glucose in acidic media formation of hydroxymethylfurfural. Starch-Starke 38(3):95–101CrossRef
490.
go back to reference Kuster BFM, Vanderbaan HS (1977) Dehydration of D-fructose (formation of 5-hydroxymethyl-2-furaldehyde and levulinic acid). 2. Influence of initial and catalyst concentrations on dehydration of D-fructose. Carbohydr Res 54(2):165–176CrossRef Kuster BFM, Vanderbaan HS (1977) Dehydration of D-fructose (formation of 5-hydroxymethyl-2-furaldehyde and levulinic acid). 2. Influence of initial and catalyst concentrations on dehydration of D-fructose. Carbohydr Res 54(2):165–176CrossRef
491.
go back to reference Kuster BFM, Temmink HMG (1977) Dehydration Of D-fructose(formation of 5-hydroxymethyl-2-furaldehyde and levulinic acid) 4 influence of PH and weak-acid anions on dehydration of D-fructose. Carbohydr Res 54(2):185–191CrossRef Kuster BFM, Temmink HMG (1977) Dehydration Of D-fructose(formation of 5-hydroxymethyl-2-furaldehyde and levulinic acid) 4 influence of PH and weak-acid anions on dehydration of D-fructose. Carbohydr Res 54(2):185–191CrossRef
492.
go back to reference Rigal L, Gaset A, Gorrichon JP (1981) Selective conversion of D-fructose to 5-hydroxymethyl-2-furancarboxaldehyde using a water-solvent-ion-exchange resin triphasic system. Ind Eng Chem Prod Res Dev 20(4):719–721CrossRef Rigal L, Gaset A, Gorrichon JP (1981) Selective conversion of D-fructose to 5-hydroxymethyl-2-furancarboxaldehyde using a water-solvent-ion-exchange resin triphasic system. Ind Eng Chem Prod Res Dev 20(4):719–721CrossRef
493.
go back to reference Elhajj T, Masroua A, Martin JC, Descotes G (1987) Synthesis of 5-hydroxymethylfuran-2-carboxaldehyde and its derivatives by acidic treatment of sugars on ion-exchange resins. Bull Soc Chim Fr 5:855–860 Elhajj T, Masroua A, Martin JC, Descotes G (1987) Synthesis of 5-hydroxymethylfuran-2-carboxaldehyde and its derivatives by acidic treatment of sugars on ion-exchange resins. Bull Soc Chim Fr 5:855–860
494.
go back to reference Mercadier D, Rigal L, Gaset A, Gorrichon JP (1981) Synthesis of 5-hydroxymethyl-2-furancarboxaldehyde catalyzed by cationic exchange resins. 1. Choice of the catalyst and the characteristics of the reaction medium. Chem Technol Biotechnol 31(8):489–496 Mercadier D, Rigal L, Gaset A, Gorrichon JP (1981) Synthesis of 5-hydroxymethyl-2-furancarboxaldehyde catalyzed by cationic exchange resins. 1. Choice of the catalyst and the characteristics of the reaction medium. Chem Technol Biotechnol 31(8):489–496
495.
go back to reference Bicker M, Hirth J, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone. Green Chem 5(2):280–284CrossRef Bicker M, Hirth J, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone. Green Chem 5(2):280–284CrossRef
496.
go back to reference Lansalot-Matras C, Moreau C (2003) Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal Commun 4(10):517–520CrossRef Lansalot-Matras C, Moreau C (2003) Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal Commun 4(10):517–520CrossRef
497.
go back to reference Carlini C, Patrono P, Galletti AMR, Sbrana G (2004) Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Appl Catal A Gen 275(1–2):111–118CrossRef Carlini C, Patrono P, Galletti AMR, Sbrana G (2004) Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Appl Catal A Gen 275(1–2):111–118CrossRef
498.
go back to reference Armaroli T, Busca G, Carlini C, Giuttari M, Galletti AMR, Sbrana G (2000) Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J Mol Catal A Chem 151(1–2):233–243CrossRef Armaroli T, Busca G, Carlini C, Giuttari M, Galletti AMR, Sbrana G (2000) Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J Mol Catal A Chem 151(1–2):233–243CrossRef
499.
go back to reference Carlini C, Giuttari M, Galletti AMR, Sbrana G, Armaroli T, Busca G (1999) Selective saccharides dehydration to5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts. Appl Catal A Gen 183(2):295–302CrossRef Carlini C, Giuttari M, Galletti AMR, Sbrana G, Armaroli T, Busca G (1999) Selective saccharides dehydration to5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts. Appl Catal A Gen 183(2):295–302CrossRef
500.
go back to reference Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P et al (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A Gen 145(1–2):211–224CrossRef Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P et al (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A Gen 145(1–2):211–224CrossRef
501.
go back to reference Lourvanij K, Rorrer GL (1993) Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at 110–160 degrees-C. Ind Eng Chem Res 32(1):11–19CrossRef Lourvanij K, Rorrer GL (1993) Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at 110–160 degrees-C. Ind Eng Chem Res 32(1):11–19CrossRef
502.
go back to reference Koda K, Goto H, Shintani H, Matsumoto Y, Meshitsuka G (2001) Oxidative cleavage of lignin aromatics during chlorine bleaching of kraft pulp. J Wood Sci 47(5):362–367CrossRef Koda K, Goto H, Shintani H, Matsumoto Y, Meshitsuka G (2001) Oxidative cleavage of lignin aromatics during chlorine bleaching of kraft pulp. J Wood Sci 47(5):362–367CrossRef
503.
go back to reference Gaspar AR, Evtuguin DV, Neto CP (2004) Polyoxometalate-catalyzed oxygen delignification of kraft pulp: a pilot-plant experience. Ind Eng Chem Res 43(24):7754–7761CrossRef Gaspar AR, Evtuguin DV, Neto CP (2004) Polyoxometalate-catalyzed oxygen delignification of kraft pulp: a pilot-plant experience. Ind Eng Chem Res 43(24):7754–7761CrossRef
504.
go back to reference Gaspar A, Evtuguin DV, Neto CP (2004) Lignin reactions in oxygen delignification catalysed by Mn(II)-substituted molybdovanadophosphate polyanion. Holzforschung 58(6):640–649CrossRef Gaspar A, Evtuguin DV, Neto CP (2004) Lignin reactions in oxygen delignification catalysed by Mn(II)-substituted molybdovanadophosphate polyanion. Holzforschung 58(6):640–649CrossRef
505.
go back to reference Crestini C, Pastorini A, Tagliatesta P (2004) Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. Mol Catal A Chem 208(1–2):195–202CrossRef Crestini C, Pastorini A, Tagliatesta P (2004) Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. Mol Catal A Chem 208(1–2):195–202CrossRef
506.
go back to reference Gaspar A, Evtuguin DV, Neto CP (2003) Oxygen bleaching of kraft pulp catalysed by Mn(III)-substituted polyoxometalates. Appl Catal A Gen 239(1–2):157–168CrossRef Gaspar A, Evtuguin DV, Neto CP (2003) Oxygen bleaching of kraft pulp catalysed by Mn(III)-substituted polyoxometalates. Appl Catal A Gen 239(1–2):157–168CrossRef
507.
go back to reference Chen CL, Capanema EA, Gracz HS (2003) Reaction mechanisms in delignification of pine Kraft-AQ pulp with hydrogen peroxide using Mn(IV)-Me4DTNE as catalyst. J Agric Food Chem 51(7):1932–1941CrossRef Chen CL, Capanema EA, Gracz HS (2003) Reaction mechanisms in delignification of pine Kraft-AQ pulp with hydrogen peroxide using Mn(IV)-Me4DTNE as catalyst. J Agric Food Chem 51(7):1932–1941CrossRef
508.
go back to reference Chen CL, Capanema EA, Gracz HS (2003) Comparative studies on the delignification of pine kraft anthraquinone pulp with hydrogen peroxide by binucleus Mn(IV) complex catalysis. J Agric Food Chem 51(21):6223–6232CrossRef Chen CL, Capanema EA, Gracz HS (2003) Comparative studies on the delignification of pine kraft anthraquinone pulp with hydrogen peroxide by binucleus Mn(IV) complex catalysis. J Agric Food Chem 51(21):6223–6232CrossRef
509.
go back to reference Alves V, Capanema E, Chen CL, Gratzl J (2003) Comparative studies on oxidation of lignin model compounds with hydrogen peroxide using Mn(IV)-Me(3)TACN and Mn(IV)-Me4DTNE as catalyst. J Mol Catal A Chem 206(1–2):37–51CrossRef Alves V, Capanema E, Chen CL, Gratzl J (2003) Comparative studies on oxidation of lignin model compounds with hydrogen peroxide using Mn(IV)-Me(3)TACN and Mn(IV)-Me4DTNE as catalyst. J Mol Catal A Chem 206(1–2):37–51CrossRef
510.
go back to reference Balakshin MY, Evtuguin DV, Neto CP, Cavaco-Paulo A (2001) Polyoxometalates as mediators in the laccase catalyzed delignification. J Mol Catal B Enzym 16(3–4):131–140CrossRef Balakshin MY, Evtuguin DV, Neto CP, Cavaco-Paulo A (2001) Polyoxometalates as mediators in the laccase catalyzed delignification. J Mol Catal B Enzym 16(3–4):131–140CrossRef
511.
go back to reference Evtuguin DV, Neto CP, Rocha J (2000) Lignin degradation in oxygen delignification catalysed by [PM07V5040](8-) polyanion. Part I. Study on wood lignin. Holzforschung 54(4):381–389CrossRef Evtuguin DV, Neto CP, Rocha J (2000) Lignin degradation in oxygen delignification catalysed by [PM07V5040](8-) polyanion. Part I. Study on wood lignin. Holzforschung 54(4):381–389CrossRef
512.
go back to reference Cui Y, Puthson P, Chen CL, Gratzl JS, Kirkman AG (2000) Kinetic study on delignification of kraft-AQ pine pulp with hydrogen peroxide catalyzed by Mn(IV)-Me4DTNE. Holzforschung 54(4):413–419CrossRef Cui Y, Puthson P, Chen CL, Gratzl JS, Kirkman AG (2000) Kinetic study on delignification of kraft-AQ pine pulp with hydrogen peroxide catalyzed by Mn(IV)-Me4DTNE. Holzforschung 54(4):413–419CrossRef
513.
go back to reference Crestini C, Saladino R, Tagliatesta P, Boschi T (1999) Biomimetic degradation of lignin and lignin model compounds by synthetic anionic and cationic water soluble manganese and iron porphyrins. Bioorgan Med Chem 7(9):1897–1905CrossRef Crestini C, Saladino R, Tagliatesta P, Boschi T (1999) Biomimetic degradation of lignin and lignin model compounds by synthetic anionic and cationic water soluble manganese and iron porphyrins. Bioorgan Med Chem 7(9):1897–1905CrossRef
514.
go back to reference Glasser WG, Northey RA, Schultz TP (1999) Lignin: historical, biological and material perspectives, vol 740. American Chemical Society, Washington, DCCrossRef Glasser WG, Northey RA, Schultz TP (1999) Lignin: historical, biological and material perspectives, vol 740. American Chemical Society, Washington, DCCrossRef
515.
go back to reference Sippola V, Krause O, Vuorinen T (2004) Oxidation of lignin model compounds with cobalt-sulphosalen catalyst in the presence and absence of carbohydrate model compound. J Wood Chem Technol 24(4):323–340CrossRef Sippola V, Krause O, Vuorinen T (2004) Oxidation of lignin model compounds with cobalt-sulphosalen catalyst in the presence and absence of carbohydrate model compound. J Wood Chem Technol 24(4):323–340CrossRef
516.
go back to reference Sippola VO, Krause AOI (2003) Oxidation activity and stability of homogeneous cobalt-sulphosalen catalyst Studies with a phenolic and a non-phenolic lignin model compound in aqueous alkaline medium. J Mol Catal A Chem 194(1–2):89–97CrossRef Sippola VO, Krause AOI (2003) Oxidation activity and stability of homogeneous cobalt-sulphosalen catalyst Studies with a phenolic and a non-phenolic lignin model compound in aqueous alkaline medium. J Mol Catal A Chem 194(1–2):89–97CrossRef
517.
go back to reference Xiang Q, Lee YY (2001) Production of oxychemicals from precipitated hardwood lignin. Appl Biochem Biotechnol 91–3:71–80CrossRef Xiang Q, Lee YY (2001) Production of oxychemicals from precipitated hardwood lignin. Appl Biochem Biotechnol 91–3:71–80CrossRef
518.
go back to reference Villar JC, Caperos A, Garcia-Ochoa F (2001) Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol 35(3):245–255CrossRef Villar JC, Caperos A, Garcia-Ochoa F (2001) Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol 35(3):245–255CrossRef
519.
go back to reference Embree HD, Chen TH, Payne GF (2001) Oxygenated aromatic compounds from renewable resources: motivation, opportunities, and adsorptive separations. Chem Eng J 84(2):133–147CrossRef Embree HD, Chen TH, Payne GF (2001) Oxygenated aromatic compounds from renewable resources: motivation, opportunities, and adsorptive separations. Chem Eng J 84(2):133–147CrossRef
520.
go back to reference Koehler JA, Brune BJ, Chen TH, Glemza AJ, Vishwanath P et al (2000) Potential approach for fractionating oxygenated aromatic compounds from renewable resources. Ind Eng Chem Res 39(9):3347–3355CrossRef Koehler JA, Brune BJ, Chen TH, Glemza AJ, Vishwanath P et al (2000) Potential approach for fractionating oxygenated aromatic compounds from renewable resources. Ind Eng Chem Res 39(9):3347–3355CrossRef
521.
go back to reference Bozell JJ, Hames BR, Dimmel DR (1995) Cobalt-Schiff base complex-catalyzed oxidation of parasubstituted phenolics—preparation of benzoquinones. J Org Chem 60(8):2398–2404CrossRef Bozell JJ, Hames BR, Dimmel DR (1995) Cobalt-Schiff base complex-catalyzed oxidation of parasubstituted phenolics—preparation of benzoquinones. J Org Chem 60(8):2398–2404CrossRef
522.
go back to reference Bozell JJ, Hoberg JO, Dimmel DR (2000) Heteropolyacid catalyzed oxidation of lignin and lignin models to benzoquinones. J Wood Chem Technol 20(1):19–41CrossRef Bozell JJ, Hoberg JO, Dimmel DR (2000) Heteropolyacid catalyzed oxidation of lignin and lignin models to benzoquinones. J Wood Chem Technol 20(1):19–41CrossRef
523.
go back to reference Dimmel DR, Althen E, Savidakis M, Courchene C, Bozell JJ (1999) New quinone-based pulping catalysts. Tappi J 82(12):83–89 Dimmel DR, Althen E, Savidakis M, Courchene C, Bozell JJ (1999) New quinone-based pulping catalysts. Tappi J 82(12):83–89
524.
go back to reference Bozell JJ, Hoberg JO, Dimmel DR (1998) Catalytic oxidation of para-substituted phenols with nitrogen dioxide and oxygen. Tetrahedron Lett 39(16):2261–2264CrossRef Bozell JJ, Hoberg JO, Dimmel DR (1998) Catalytic oxidation of para-substituted phenols with nitrogen dioxide and oxygen. Tetrahedron Lett 39(16):2261–2264CrossRef
525.
go back to reference Shore SG, Ding E, Park C, Keane MA (2004) The application of {(DMF)(I 0)Yb-2[TM(CN)(4)](3) }(infinity) (TM = Ni, Pd) supported on silica to promote gas phase phenol hydrogenation. J Mol Catal A Chem 212(1–2):291–300CrossRef Shore SG, Ding E, Park C, Keane MA (2004) The application of {(DMF)(I 0)Yb-2[TM(CN)(4)](3) }(infinity) (TM = Ni, Pd) supported on silica to promote gas phase phenol hydrogenation. J Mol Catal A Chem 212(1–2):291–300CrossRef
526.
go back to reference Shore SG, Ding ER, Park C, Keane MA (2002) Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts. Catal Commun 3(2):77–84CrossRef Shore SG, Ding ER, Park C, Keane MA (2002) Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts. Catal Commun 3(2):77–84CrossRef
527.
go back to reference Scire S, Minico S, Crisafulli C (2002) Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts: an investigation on the influence of different supports and Pd precursors. Appl Catal A Gen 235(1–2):21–31CrossRef Scire S, Minico S, Crisafulli C (2002) Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts: an investigation on the influence of different supports and Pd precursors. Appl Catal A Gen 235(1–2):21–31CrossRef
528.
go back to reference Mahata N, Vishwanathan V (2000) Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts. J Catal 196(2):262–270CrossRef Mahata N, Vishwanathan V (2000) Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts. J Catal 196(2):262–270CrossRef
529.
go back to reference Claus P, Berndt H, Mohr C, Radnik J, Shin EJ, Keane MA (2000) Pd/MgO: catalyst characterization and phenol hydrogenation activity. J Catal 192(1):88–97CrossRef Claus P, Berndt H, Mohr C, Radnik J, Shin EJ, Keane MA (2000) Pd/MgO: catalyst characterization and phenol hydrogenation activity. J Catal 192(1):88–97CrossRef
530.
go back to reference Mahata N, Raghavan KV, Vishwanathan V (1999) Influence of alkali promotion on phenol hydrogenation activity of palladium alumina catalysts. Appl Catal A Gen 182(1):183–187CrossRef Mahata N, Raghavan KV, Vishwanathan V (1999) Influence of alkali promotion on phenol hydrogenation activity of palladium alumina catalysts. Appl Catal A Gen 182(1):183–187CrossRef
531.
go back to reference Mathias AL, Rodrigues AE (1995) Production of vanillin by oxidation of pine kraft lignins with oxygen. Holzforschung 49(3):273–278CrossRef Mathias AL, Rodrigues AE (1995) Production of vanillin by oxidation of pine kraft lignins with oxygen. Holzforschung 49(3):273–278CrossRef
532.
go back to reference Wu GX, Heitz M, Chornet E (1994) Improved alkaline oxidation process for the production of aldehydes (vanillin and syringaldehyde) from steam-explosion Hardwood lignin. Ind Eng Chem Res 33(3):718–723CrossRef Wu GX, Heitz M, Chornet E (1994) Improved alkaline oxidation process for the production of aldehydes (vanillin and syringaldehyde) from steam-explosion Hardwood lignin. Ind Eng Chem Res 33(3):718–723CrossRef
533.
go back to reference Tarabanko VE, Petukhov DV, Selyutin GE (2004) New mechanism for the catalytic oxidation of lignin to vanillin. Kinet Catal 45(4):569–577CrossRef Tarabanko VE, Petukhov DV, Selyutin GE (2004) New mechanism for the catalytic oxidation of lignin to vanillin. Kinet Catal 45(4):569–577CrossRef
534.
go back to reference Fargues C, Mathias A, Silva J, Rodrigues A (1996) Kinetics of vanillin oxidation. Chem Eng Technol 19(2):127–136CrossRef Fargues C, Mathias A, Silva J, Rodrigues A (1996) Kinetics of vanillin oxidation. Chem Eng Technol 19(2):127–136CrossRef
535.
go back to reference Fargues C, Mathias A, Rodrigues A (1996) Kinetics of vanillin production from om Kraft lignin oxidation. Ind Eng Chem Res 35(1):28–36CrossRef Fargues C, Mathias A, Rodrigues A (1996) Kinetics of vanillin production from om Kraft lignin oxidation. Ind Eng Chem Res 35(1):28–36CrossRef
536.
go back to reference Wu GX, Heitz M (1995) Catalytic mechanism of Cu2+ and Fe3+ in alkaline 0–2 oxidation of lignin. J Wood Chem Technol 15(2):189–202CrossRef Wu GX, Heitz M (1995) Catalytic mechanism of Cu2+ and Fe3+ in alkaline 0–2 oxidation of lignin. J Wood Chem Technol 15(2):189–202CrossRef
537.
go back to reference Tarabanko VE, Fornova NA, Kuznetsov BN, Ivanchenko NM, Kudryashev AV (1995) On the mechanism of vanillin formation in the catalytic-oxidation of lignin with oxygen. React Kinet Catal Lett 55(1):161–170CrossRef Tarabanko VE, Fornova NA, Kuznetsov BN, Ivanchenko NM, Kudryashev AV (1995) On the mechanism of vanillin formation in the catalytic-oxidation of lignin with oxygen. React Kinet Catal Lett 55(1):161–170CrossRef
538.
go back to reference McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46CrossRef McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46CrossRef
539.
go back to reference McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54CrossRef McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54CrossRef
540.
go back to reference Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrol 51(1–2):3–22CrossRef Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrol 51(1–2):3–22CrossRef
541.
go back to reference Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energ Rev 4(1):1–73CrossRef Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energ Rev 4(1):1–73CrossRef
542.
go back to reference Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18(2):590–598CrossRef Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18(2):590–598CrossRef
543.
go back to reference Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manage 45(5):651–671CrossRef Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manage 45(5):651–671CrossRef
544.
go back to reference Antal MJ, Gronli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRef Antal MJ, Gronli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRef
545.
go back to reference Balci S, Dogu T, Yucel H (1993) Pyrolysis kinetics of lignocellulosic materials. Ind Eng Chem Res 32(11):2573–2579CrossRef Balci S, Dogu T, Yucel H (1993) Pyrolysis kinetics of lignocellulosic materials. Ind Eng Chem Res 32(11):2573–2579CrossRef
546.
go back to reference Branca C, Di Blasi C (2003) Kinetics of the isothermal degradation of wood in the temperature range 528–708 K. J Anal Appl Pyrol 67(2):207–219CrossRef Branca C, Di Blasi C (2003) Kinetics of the isothermal degradation of wood in the temperature range 528–708 K. J Anal Appl Pyrol 67(2):207–219CrossRef
547.
go back to reference Brown AL, Dayton DC, Daily JW (2001) A study of cellulose pyrolysis chemistry and global kinetics at high heating rates. Energy Fuel 15(5):1286–1294CrossRef Brown AL, Dayton DC, Daily JW (2001) A study of cellulose pyrolysis chemistry and global kinetics at high heating rates. Energy Fuel 15(5):1286–1294CrossRef
548.
go back to reference Di Blasi C, Branca C (1999) Global degradation kinetics of wood and agricultural residues in air. Can J Chem Eng 77(3):555–561CrossRef Di Blasi C, Branca C (1999) Global degradation kinetics of wood and agricultural residues in air. Can J Chem Eng 77(3):555–561CrossRef
549.
go back to reference Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62(2):331–349CrossRef Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62(2):331–349CrossRef
550.
go back to reference Koufopanos CA, Papayannakos N, Maschio G, Lucchesi A (1991) Modeling of the pyrolysis of biomass particles—studies on kinetics, thermal and heat-transfer effects. Canad J Chem Eng 69(4):907–915CrossRef Koufopanos CA, Papayannakos N, Maschio G, Lucchesi A (1991) Modeling of the pyrolysis of biomass particles—studies on kinetics, thermal and heat-transfer effects. Canad J Chem Eng 69(4):907–915CrossRef
551.
go back to reference Manya JJ, Velo E, Puigjaner L (2003) Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res 42(3):434–441CrossRef Manya JJ, Velo E, Puigjaner L (2003) Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res 42(3):434–441CrossRef
552.
go back to reference Miller RS, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust Sci Technol 126(1–6):97–137 Miller RS, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust Sci Technol 126(1–6):97–137
553.
go back to reference Diebold JP (1994) A unified, global-model for the pyrolysis of cellulose. Biomass Bioenergy 7(1–6):75–85CrossRef Diebold JP (1994) A unified, global-model for the pyrolysis of cellulose. Biomass Bioenergy 7(1–6):75–85CrossRef
554.
go back to reference Bradbury AGW, Sakai Y, Shafizadeh F (1979) Kinetic-model for pyrolysis of cellulose. J Appl Polymer Sci 23(11):3271–3280CrossRef Bradbury AGW, Sakai Y, Shafizadeh F (1979) Kinetic-model for pyrolysis of cellulose. J Appl Polymer Sci 23(11):3271–3280CrossRef
555.
go back to reference Antal MJ, Mok WSL, Varhegyi G, Szekely T (1990) Review of methods for improving the yield of charcoal from biomass. Energy Fuel 4(3):221–225CrossRef Antal MJ, Mok WSL, Varhegyi G, Szekely T (1990) Review of methods for improving the yield of charcoal from biomass. Energy Fuel 4(3):221–225CrossRef
556.
go back to reference Wenzl HJA. Chemical technology of wood. Academic, Saint Louis, MO Wenzl HJA. Chemical technology of wood. Academic, Saint Louis, MO
557.
go back to reference Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2–3):87–102CrossRef Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2–3):87–102CrossRef
558.
go back to reference Bridgwater AV, Cottam ML (1992) Opportunities for biomass pyrolysis liquids production and upgrading. Energy Fuel 6(2):113–120CrossRef Bridgwater AV, Cottam ML (1992) Opportunities for biomass pyrolysis liquids production and upgrading. Energy Fuel 6(2):113–120CrossRef
559.
go back to reference Elliott DC, Beckman D, Bridgwater AV, Diebold JP, Gevert SB, Solantausta Y (1991) Developments in direct thermochemical liquefaction of biomass—1983–1990. Energy Fuel 5(3):399–410CrossRef Elliott DC, Beckman D, Bridgwater AV, Diebold JP, Gevert SB, Solantausta Y (1991) Developments in direct thermochemical liquefaction of biomass—1983–1990. Energy Fuel 5(3):399–410CrossRef
560.
go back to reference Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energ Source 24(5):471–482CrossRef Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energ Source 24(5):471–482CrossRef
561.
go back to reference Shafizadeh F (1984) The chemistry of pyrolysis and combustion. Adv Chem Ser 207:491–529 Shafizadeh F (1984) The chemistry of pyrolysis and combustion. Adv Chem Ser 207:491–529
562.
go back to reference Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3(4):283–305CrossRef Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3(4):283–305CrossRef
563.
go back to reference Bridgwater AE (2002) Fast pyrolysis of biomass: vol. 2: a handbook. CPL Scientific, Newbury, Berks Bridgwater AE (2002) Fast pyrolysis of biomass: vol. 2: a handbook. CPL Scientific, Newbury, Berks
564.
go back to reference Bridgwater AA, Czernik SA, Diebold JA, Meier DA, Oasmaa AA, Peacocke CA, Piskorz JA (1999) Fast pyrolysis of biomass: a handbook. CPL Scientific Newbury Berks, Newbury, Berks Bridgwater AA, Czernik SA, Diebold JA, Meier DA, Oasmaa AA, Peacocke CA, Piskorz JA (1999) Fast pyrolysis of biomass: a handbook. CPL Scientific Newbury Berks, Newbury, Berks
565.
go back to reference Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils—state of the art for the end user. Energy Fuel 13(4):914–921CrossRef Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils—state of the art for the end user. Energy Fuel 13(4):914–921CrossRef
566.
go back to reference Boucher ME, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 19(5):337–350CrossRef Boucher ME, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 19(5):337–350CrossRef
567.
go back to reference Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV et al (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 2: tests in diesel engines. Biomass Bioenergy 25(1):101–111CrossRef Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV et al (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 2: tests in diesel engines. Biomass Bioenergy 25(1):101–111CrossRef
568.
go back to reference Czernik S, Scahill J, Diebold J (1995) The production of liquid fuel by fast pyrolysis of biomass. J Sol Energ Eng Trans ASME 117(1):2–6CrossRef Czernik S, Scahill J, Diebold J (1995) The production of liquid fuel by fast pyrolysis of biomass. J Sol Energ Eng Trans ASME 117(1):2–6CrossRef
569.
go back to reference Ganesh A, Banerjee R (2001) Biomass pyrolysis for power generation—a potential technology. Renew Energy 22(1–3):9–14CrossRef Ganesh A, Banerjee R (2001) Biomass pyrolysis for power generation—a potential technology. Renew Energy 22(1–3):9–14CrossRef
570.
go back to reference Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Ind Eng Chem Res 43(11):2610–2618CrossRef Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Ind Eng Chem Res 43(11):2610–2618CrossRef
571.
go back to reference Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Olazar M, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. H. Aldehydes, ketones, and acids. Ind Eng Chem Res 43(11):2619–2626CrossRef Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Olazar M, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. H. Aldehydes, ketones, and acids. Ind Eng Chem Res 43(11):2619–2626CrossRef
572.
go back to reference Grassi G, Bridgwater AV (1993) The opportunities for electricity production from biomass by advanced thermal-conversion technologies. Biomass Bioenergy 4(5):339–345CrossRef Grassi G, Bridgwater AV (1993) The opportunities for electricity production from biomass by advanced thermal-conversion technologies. Biomass Bioenergy 4(5):339–345CrossRef
573.
go back to reference Peacocke GVC, Bridgwater AV (1994) Ablative plate pyrolysis of biomass for liquids. Biomass Bioenergy 7(1–6):147–154CrossRef Peacocke GVC, Bridgwater AV (1994) Ablative plate pyrolysis of biomass for liquids. Biomass Bioenergy 7(1–6):147–154CrossRef
574.
go back to reference Shihadeh A, Hochgreb S (2000) Diesel engine combustion of biomass pyrolysis oils. Energy Fuel 14(2):260–274CrossRef Shihadeh A, Hochgreb S (2000) Diesel engine combustion of biomass pyrolysis oils. Energy Fuel 14(2):260–274CrossRef
575.
go back to reference Solantausta Y, Beckman D, Bridgwater AV, Diebold JP, Elliott DC (1992) Assessment of liquefaction and pyrolysis systems. Biomass Bioenergy 2(1–6):279–297CrossRef Solantausta Y, Beckman D, Bridgwater AV, Diebold JP, Elliott DC (1992) Assessment of liquefaction and pyrolysis systems. Biomass Bioenergy 2(1–6):279–297CrossRef
576.
go back to reference Solantausta Y, Bridgwater AT, Beckman D (1995) Feasibility of power production with pyrolysis and gasification systems. Biomass Bioenergy 9(1–5):257–269CrossRef Solantausta Y, Bridgwater AT, Beckman D (1995) Feasibility of power production with pyrolysis and gasification systems. Biomass Bioenergy 9(1–5):257–269CrossRef
577.
go back to reference Vitolo S, Bresci B, Seggiani M, Gallo MG (2001) Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel 80(1):17–26CrossRef Vitolo S, Bresci B, Seggiani M, Gallo MG (2001) Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel 80(1):17–26CrossRef
578.
go back to reference Wornat MJ, Porter BG, Yang NYC (1994) Single droplet combustion of biomass pyrolysis oils. Energy Fuel 8(5):1131–1142CrossRef Wornat MJ, Porter BG, Yang NYC (1994) Single droplet combustion of biomass pyrolysis oils. Energy Fuel 8(5):1131–1142CrossRef
579.
go back to reference Cottam ML, Bridgwater AV (1994) Technoeconomic modeling of biomass flash pyrolysis and upgrading systems. Biomass Bioenergy 7(1–6):267–273CrossRef Cottam ML, Bridgwater AV (1994) Technoeconomic modeling of biomass flash pyrolysis and upgrading systems. Biomass Bioenergy 7(1–6):267–273CrossRef
580.
go back to reference Horne PA, Williams PT (1996) Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst: effect of catalyst dilution on product yields. Fuel 75(9):1043–1050CrossRef Horne PA, Williams PT (1996) Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst: effect of catalyst dilution on product yields. Fuel 75(9):1043–1050CrossRef
581.
go back to reference Williams PT, Horne PA (1995) The influence of catalyst regeneration on the composition of zeolite-upgraded biomass pyrolysis oils. Fuel 74(12):1839–1851CrossRef Williams PT, Horne PA (1995) The influence of catalyst regeneration on the composition of zeolite-upgraded biomass pyrolysis oils. Fuel 74(12):1839–1851CrossRef
582.
go back to reference Williams PT, Horne PA (1995) The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. J Anal Appl Pyrol 31:39–61CrossRef Williams PT, Horne PA (1995) The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. J Anal Appl Pyrol 31:39–61CrossRef
583.
go back to reference Radlein D (1999) The production of chemicals from fast pyrolysis bio-oils. In: Bridgwater A (ed) Fast pyrolysis of biomass: a handbook. CPL Press, Newbury, UK, pp 164–188 Radlein D (1999) The production of chemicals from fast pyrolysis bio-oils. In: Bridgwater A (ed) Fast pyrolysis of biomass: a handbook. CPL Press, Newbury, UK, pp 164–188
584.
go back to reference Tabatabaieraissi A, Trezek GJ (1987) Parameters governing biomass gasification. Ind Eng Chem Res 26(2):221–228CrossRef Tabatabaieraissi A, Trezek GJ (1987) Parameters governing biomass gasification. Ind Eng Chem Res 26(2):221–228CrossRef
585.
go back to reference Beenackers AACM, Van Swaaij WPM (1984) Gasification of biomass, a state of the art review. In: Bridgwater AV (ed) Thermochemical processing of biomass. Butterworths, London, UK, pp 91–136 Beenackers AACM, Van Swaaij WPM (1984) Gasification of biomass, a state of the art review. In: Bridgwater AV (ed) Thermochemical processing of biomass. Butterworths, London, UK, pp 91–136
586.
go back to reference Hos JJ, Groeneveld MJ (1987) Biomass gasification. In: Hall DO, Overend RP (eds) Biomass. Wiley, Chichester, UK, pp 237–255 Hos JJ, Groeneveld MJ (1987) Biomass gasification. In: Hall DO, Overend RP (eds) Biomass. Wiley, Chichester, UK, pp 237–255
587.
go back to reference Beenackers A (1999) Biomass gasification in moving beds, a review of European technologies. Renew Energy 16(1–4):1180–1186CrossRef Beenackers A (1999) Biomass gasification in moving beds, a review of European technologies. Renew Energy 16(1–4):1180–1186CrossRef
588.
go back to reference Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR (2004) Biomass gasification in a circulating fluidized bed. Biomass Bioenergy 26(2):171–193CrossRef Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR (2004) Biomass gasification in a circulating fluidized bed. Biomass Bioenergy 26(2):171–193CrossRef
589.
go back to reference Scala F, Chirone R (2004) Fluidized bed combustion of alternative solid fuels. Exp Therm Fluid Sci 28(7):691–699CrossRef Scala F, Chirone R (2004) Fluidized bed combustion of alternative solid fuels. Exp Therm Fluid Sci 28(7):691–699CrossRef
590.
go back to reference Scala F, Salatino P (2002) Modelling fluidized bed combustion of high-volatile solid fuels. Chem Eng Sci 57(7):1175–1196CrossRef Scala F, Salatino P (2002) Modelling fluidized bed combustion of high-volatile solid fuels. Chem Eng Sci 57(7):1175–1196CrossRef
591.
go back to reference Lanauze RD (1987) A review of the fluidized-bed combustion of biomass. J Inst Energy 60(443):66–76 Lanauze RD (1987) A review of the fluidized-bed combustion of biomass. J Inst Energy 60(443):66–76
592.
go back to reference Asif M, Ibrahim AA (2002) Minimum fluidization velocity and defluidization behavior of binary-solid liquid-fluidized beds. Powder Technol 126(3):241–254CrossRef Asif M, Ibrahim AA (2002) Minimum fluidization velocity and defluidization behavior of binary-solid liquid-fluidized beds. Powder Technol 126(3):241–254CrossRef
593.
go back to reference Stultz SC, Kitto JB, Rahn CH (1992) Chapter 16: atmospheric pressure fluidized-bed boilers. In: Stulz S, Kitto J (eds) Steam: its generation and use, vol 40. Babcock Wilcox Co, Barberton, OH, p 1064 Stultz SC, Kitto JB, Rahn CH (1992) Chapter 16: atmospheric pressure fluidized-bed boilers. In: Stulz S, Kitto J (eds) Steam: its generation and use, vol 40. Babcock Wilcox Co, Barberton, OH, p 1064
594.
go back to reference Maschio G, Lucchesi A, Stoppato G (1994) Production of syngas from biomass. Bioresour Technol 48(2):119–126CrossRef Maschio G, Lucchesi A, Stoppato G (1994) Production of syngas from biomass. Bioresour Technol 48(2):119–126CrossRef
595.
go back to reference Littlewood K (1977) Gasification—theory and application. Prog Energy Combust Sci 3(1):35–71CrossRef Littlewood K (1977) Gasification—theory and application. Prog Energy Combust Sci 3(1):35–71CrossRef
596.
go back to reference De Bari I, Barisano D, Cardinale M, Matera D, Nanna F, Viggiano D (2000) Air gasification of biomass in a downdraft fixed bed: a comparative study of the inorganic and organic products distribution. Energy Fuel 14(4):889–898CrossRef De Bari I, Barisano D, Cardinale M, Matera D, Nanna F, Viggiano D (2000) Air gasification of biomass in a downdraft fixed bed: a comparative study of the inorganic and organic products distribution. Energy Fuel 14(4):889–898CrossRef
597.
go back to reference Wyman CE, Hinman ND, Bain RL, Stevens DJ (1993) Ethanol and methanol from cellulosic materials, Chapter 21. In: Johansson TB, Kelly H, Reddy AKN, Williams RH (eds) Renewable energy, sources for fuels and electricity. Island Press, Washington, DC, pp 865–923. Acc No. 12161 Wyman CE, Hinman ND, Bain RL, Stevens DJ (1993) Ethanol and methanol from cellulosic materials, Chapter 21. In: Johansson TB, Kelly H, Reddy AKN, Williams RH (eds) Renewable energy, sources for fuels and electricity. Island Press, Washington, DC, pp 865–923. Acc No. 12161
598.
go back to reference Milne TA, Abatzoglou N, Evans RJ (1998) Biomass gasifier “tars”: their nature, formation, and conversion. NREL report no. TP-570-25357. National Renewable Energy Laboratory, Golden, CO, Nov 1998, p 202 Milne TA, Abatzoglou N, Evans RJ (1998) Biomass gasifier “tars”: their nature, formation, and conversion. NREL report no. TP-570-25357. National Renewable Energy Laboratory, Golden, CO, Nov 1998, p 202
599.
go back to reference Simell P, Stahlberg P, Kurkela E, Albrecht J, Deutsch S, Sjostrom K (2000) Provisional protocol for the sampling and analysis of tar and particulates in the gas from large-scale biomass gasifiers. Version 1998. Biomass Bioenergy 18(1):19–38CrossRef Simell P, Stahlberg P, Kurkela E, Albrecht J, Deutsch S, Sjostrom K (2000) Provisional protocol for the sampling and analysis of tar and particulates in the gas from large-scale biomass gasifiers. Version 1998. Biomass Bioenergy 18(1):19–38CrossRef
600.
go back to reference Knoef HAM, Koele HJ (2000) Survey of tar measurement protocols. Biomass Bioenergy 18(1):55–59CrossRef Knoef HAM, Koele HJ (2000) Survey of tar measurement protocols. Biomass Bioenergy 18(1):55–59CrossRef
601.
go back to reference Maniatis K, Beenackers A (2000) Tar protocols. IEA bioenergy gasification task. Biomass Bioenergy 18(1):1–4CrossRef Maniatis K, Beenackers A (2000) Tar protocols. IEA bioenergy gasification task. Biomass Bioenergy 18(1):1–4CrossRef
602.
go back to reference Caballero MA, Corella J, Aznar MP, Gil J (2000) Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts. Ind Eng Chem Res 39(5):1143–1154CrossRef Caballero MA, Corella J, Aznar MP, Gil J (2000) Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts. Ind Eng Chem Res 39(5):1143–1154CrossRef
603.
go back to reference Cummer KR, Brown RC (2002) Ancillary equipment for biomass gasification. Biomass Bioenergy 23(2):113–128CrossRef Cummer KR, Brown RC (2002) Ancillary equipment for biomass gasification. Biomass Bioenergy 23(2):113–128CrossRef
604.
go back to reference Devi L, Ptasinski KJ, Janssen F (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24(2):125–140CrossRef Devi L, Ptasinski KJ, Janssen F (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24(2):125–140CrossRef
605.
go back to reference Simell PA, Hepola JO, Krause AOI (1997) Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts. Fuel 76(12):1117–1127CrossRef Simell PA, Hepola JO, Krause AOI (1997) Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts. Fuel 76(12):1117–1127CrossRef
606.
go back to reference Consonni S, Larson ED (1996) Biomass-gasifier/aeroderivative gas turbine combined cycles. A. Technologies and performance modeling. J Eng Gas Turb Power Trans ASME 118(3):507–515CrossRef Consonni S, Larson ED (1996) Biomass-gasifier/aeroderivative gas turbine combined cycles. A. Technologies and performance modeling. J Eng Gas Turb Power Trans ASME 118(3):507–515CrossRef
607.
go back to reference Consonni S, Larson ED (1996) Biomass-gasifier/aeroderivative gas turbine combined cycles. B. Performance calculations and economic assessment. J Eng Gas Turb Power Trans ASME 118(3):516–525CrossRef Consonni S, Larson ED (1996) Biomass-gasifier/aeroderivative gas turbine combined cycles. B. Performance calculations and economic assessment. J Eng Gas Turb Power Trans ASME 118(3):516–525CrossRef
608.
go back to reference Jurado F, Ortega M, Cano A, Carpio J (2001) Biomass gasification, gas turbine, and diesel engine. Energ Source 23(10):897–905CrossRef Jurado F, Ortega M, Cano A, Carpio J (2001) Biomass gasification, gas turbine, and diesel engine. Energ Source 23(10):897–905CrossRef
609.
go back to reference Kinoshita CM, Turn SQ, Overend RP, Bain RL (1997) Power generation potential of biomass gasification systems. J Energ Eng ASCE 123(3):88–99CrossRef Kinoshita CM, Turn SQ, Overend RP, Bain RL (1997) Power generation potential of biomass gasification systems. J Energ Eng ASCE 123(3):88–99CrossRef
610.
go back to reference Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43(22):6911–6919CrossRef Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43(22):6911–6919CrossRef
611.
go back to reference Gerhard SC, Wang DN, Overend RP, Paisley MA (1994) Catalytic conditioning of synthesis gas produced by biomass gasification. Biomass Bioenergy 7(1–6):307–313CrossRef Gerhard SC, Wang DN, Overend RP, Paisley MA (1994) Catalytic conditioning of synthesis gas produced by biomass gasification. Biomass Bioenergy 7(1–6):307–313CrossRef
612.
go back to reference Kinoshita CM, Wang Y, Zhou J (1994) Tar formation under different biomass gasification conditions. J Anal Appl Pyrol 29(2):169–181CrossRef Kinoshita CM, Wang Y, Zhou J (1994) Tar formation under different biomass gasification conditions. J Anal Appl Pyrol 29(2):169–181CrossRef
613.
go back to reference Marsak J, Skoblja S (2002) Role of catalysts in tar removal from biomass gasification. Chem Listy 96(10):813–820 Marsak J, Skoblja S (2002) Role of catalysts in tar removal from biomass gasification. Chem Listy 96(10):813–820
614.
go back to reference Simell P, Kurkela E, Stahlberg P, Hepola J (1996) Catalytic hot gas cleaning of gasification gas. Catal Today 27(1–2):55–62CrossRef Simell P, Kurkela E, Stahlberg P, Hepola J (1996) Catalytic hot gas cleaning of gasification gas. Catal Today 27(1–2):55–62CrossRef
615.
go back to reference Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73(3):155–173CrossRef Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73(3):155–173CrossRef
616.
go back to reference Baker EG, Mudge LK, Brown MD (1987) Steam gasification of biomass with nickel secondary catalysts. Ind Eng Chem Res 26(7):1335–1339CrossRef Baker EG, Mudge LK, Brown MD (1987) Steam gasification of biomass with nickel secondary catalysts. Ind Eng Chem Res 26(7):1335–1339CrossRef
617.
go back to reference Brown MD, Mudge LK, Baker EG (1984) Catalysts for gasification of biomass. Biotechnol Bioeng 14:125–136 Brown MD, Mudge LK, Baker EG (1984) Catalysts for gasification of biomass. Biotechnol Bioeng 14:125–136
618.
go back to reference Mudge LK, Sealock LJ, Weber SL (1979) Catalyzed steam gasification of biomass. Anal Appl Pyrol 1(2):165–175CrossRef Mudge LK, Sealock LJ, Weber SL (1979) Catalyzed steam gasification of biomass. Anal Appl Pyrol 1(2):165–175CrossRef
619.
go back to reference Stevens DJ (2001) Hot gas conditioning: recent progress with larger-scale biomass gasification systems. NREL/SR-510-29952. Department of Energy, National Renewable Energy Laboratory, Golden, CO, Aug 2001, p 88 Stevens DJ (2001) Hot gas conditioning: recent progress with larger-scale biomass gasification systems. NREL/SR-510-29952. Department of Energy, National Renewable Energy Laboratory, Golden, CO, Aug 2001, p 88
620.
go back to reference Corella J, Aznar MP, Gil J, Caballero MA (1999) Biomass gasification in fluidized bed: where to locate the dolomite to improve gasification? Energy Fuel 13(6):1122–1127CrossRef Corella J, Aznar MP, Gil J, Caballero MA (1999) Biomass gasification in fluidized bed: where to locate the dolomite to improve gasification? Energy Fuel 13(6):1122–1127CrossRef
621.
go back to reference Corella J, Toledo JM, Padilla R (2004) Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: which is better? Energy Fuel 18(3):713–720CrossRef Corella J, Toledo JM, Padilla R (2004) Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: which is better? Energy Fuel 18(3):713–720CrossRef
622.
go back to reference Delgado J, Aznar MP, Corella J (1997) Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res 36(5):1535–1543CrossRef Delgado J, Aznar MP, Corella J (1997) Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res 36(5):1535–1543CrossRef
623.
go back to reference Devi L, Ptasinski KJ, Janssen F, van Paasen SVB, Bergman PCA, Kiel JHA (2005) Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renew Energy 30(4):565–587CrossRef Devi L, Ptasinski KJ, Janssen F, van Paasen SVB, Bergman PCA, Kiel JHA (2005) Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renew Energy 30(4):565–587CrossRef
624.
go back to reference Orio A, Corella J, Narvaez I (1997) Performance of different dolomites on hot raw gas cleaning from biomass gasification with air. Ind Eng Chem Res 36(9):3800–3808CrossRef Orio A, Corella J, Narvaez I (1997) Performance of different dolomites on hot raw gas cleaning from biomass gasification with air. Ind Eng Chem Res 36(9):3800–3808CrossRef
625.
go back to reference Simell PA, Leppalahti JK, Kurkela EA (1995) Tar-decomposing activity of carbonate rocks under high CO2 partial-pressure. Fuel 74(6):938–945CrossRef Simell PA, Leppalahti JK, Kurkela EA (1995) Tar-decomposing activity of carbonate rocks under high CO2 partial-pressure. Fuel 74(6):938–945CrossRef
626.
go back to reference Aznar MP, Caballero MA, Gil J, Martin JA, Corella J (1998) Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal. Ind Eng Chem Res 37(7):2668–2680CrossRef Aznar MP, Caballero MA, Gil J, Martin JA, Corella J (1998) Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal. Ind Eng Chem Res 37(7):2668–2680CrossRef
627.
go back to reference Caballero MA, Aznar MP, Gil J, Martin JA, Frances E, Corella J (1997) Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 1. Hot gas upgrading by the catalytic reactor. Ind Eng Chem Res 36(12):5227–5239CrossRef Caballero MA, Aznar MP, Gil J, Martin JA, Frances E, Corella J (1997) Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 1. Hot gas upgrading by the catalytic reactor. Ind Eng Chem Res 36(12):5227–5239CrossRef
628.
go back to reference Courson C, Makaga E, Petit C, Kiennemann A (2000) Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming. Catal Today 63(2–4):427–437CrossRef Courson C, Makaga E, Petit C, Kiennemann A (2000) Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming. Catal Today 63(2–4):427–437CrossRef
629.
go back to reference Bridgwater AV (1995) The technical and economic-feasibility of biomass gasification for power-generation. Fuel 74(5):631–653CrossRef Bridgwater AV (1995) The technical and economic-feasibility of biomass gasification for power-generation. Fuel 74(5):631–653CrossRef
630.
go back to reference Stahl K, Neergaard M (1998) IGCC power plant for biomass utilisation, Varnamo, Sweden. Biomass Bioenergy 15(3):205–211CrossRef Stahl K, Neergaard M (1998) IGCC power plant for biomass utilisation, Varnamo, Sweden. Biomass Bioenergy 15(3):205–211CrossRef
631.
go back to reference Lundqvist RG (1993) The IGCC demonstration plant at Varnamo. Bioresour Technol 46(1–2):49–53CrossRef Lundqvist RG (1993) The IGCC demonstration plant at Varnamo. Bioresour Technol 46(1–2):49–53CrossRef
632.
go back to reference Dasappa S, Paul PJ, Mukunda HS, Rajan NKS, Sridhar G, Sridhar HV (2004) Biomass gasification technology—a route to meet energy needs. Curr Sci 87(7):908–916 Dasappa S, Paul PJ, Mukunda HS, Rajan NKS, Sridhar G, Sridhar HV (2004) Biomass gasification technology—a route to meet energy needs. Curr Sci 87(7):908–916
633.
go back to reference Dasappa S, Sridhar HV, Sridhar G, Paul PJ, Mukunda HS (2003) Biomass gasification—a substitute to fossil fuel for heat application. Biomass Bioenergy 25(6):637–649CrossRef Dasappa S, Sridhar HV, Sridhar G, Paul PJ, Mukunda HS (2003) Biomass gasification—a substitute to fossil fuel for heat application. Biomass Bioenergy 25(6):637–649CrossRef
634.
go back to reference Fuel Cell Handbook Corp Author(s), EG and G Services Staff, Author, Parsons, Inc. Staff, Author, SA/C Staff, Author, 5th edn. Business/Technology (B/T), Orinda, 2000, p 292 Fuel Cell Handbook Corp Author(s), EG and G Services Staff, Author, Parsons, Inc. Staff, Author, SA/C Staff, Author, 5th edn. Business/Technology (B/T), Orinda, 2000, p 292
635.
go back to reference Appleby AJ (1996) Fuel cell technology: status and future prospects. Energy 21(7–8):521–653CrossRef Appleby AJ (1996) Fuel cell technology: status and future prospects. Energy 21(7–8):521–653CrossRef
636.
go back to reference Cappadonia M, Stimming U, Kordesch KV, de Oliveira JCT (2005) Fuel cells. In: Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley, Hoboken, p 400 Cappadonia M, Stimming U, Kordesch KV, de Oliveira JCT (2005) Fuel cells. In: Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley, Hoboken, p 400
637.
go back to reference Kordesch KVA, Simader GA (2000) Fuel cells and their applications. Wiley, Hoboken, NJ, p 375 Kordesch KVA, Simader GA (2000) Fuel cells and their applications. Wiley, Hoboken, NJ, p 375
638.
go back to reference Larminie J (2002) Fuel cells. In: Kirk-Othmer encyclopedia of chemical technology. vol 12, 5th edn. Wiley, Hoboken, NJ, p 850 Larminie J (2002) Fuel cells. In: Kirk-Othmer encyclopedia of chemical technology. vol 12, 5th edn. Wiley, Hoboken, NJ, p 850
639.
go back to reference Eichenberger PH (1998) The 2 MW Santa Clara project. J Power Sources 71(1–2):95–99CrossRef Eichenberger PH (1998) The 2 MW Santa Clara project. J Power Sources 71(1–2):95–99CrossRef
640.
go back to reference Figueroa RA, Otahal J (1998) Utility experience with a 250-kW molten carbonate fuel cell cogeneration power plant at NAS Miramar, San Diego. J Power Sources 71(1–2):100–104CrossRef Figueroa RA, Otahal J (1998) Utility experience with a 250-kW molten carbonate fuel cell cogeneration power plant at NAS Miramar, San Diego. J Power Sources 71(1–2):100–104CrossRef
641.
go back to reference Huijsmans JPP, Kraaij GJ, Makkus RC, Rietveld G, Sitters EF, Reijers HTJ (2000) An analysis of endurance issues for MCFC. J Power Sources 86(1–2):117–121CrossRef Huijsmans JPP, Kraaij GJ, Makkus RC, Rietveld G, Sitters EF, Reijers HTJ (2000) An analysis of endurance issues for MCFC. J Power Sources 86(1–2):117–121CrossRef
642.
go back to reference Huijsmans JPP, van Berkel FPF, Christie GM (1998) Intermediate temperature SOFC—a promise for the 21st century. J Power Sources 71(1–2):107–110CrossRef Huijsmans JPP, van Berkel FPF, Christie GM (1998) Intermediate temperature SOFC—a promise for the 21st century. J Power Sources 71(1–2):107–110CrossRef
643.
go back to reference Lobachyov KV, Richter HJ (1998) An advanced integrated biomass gasification and molten fuel cell power system. Energ Convers Manage 39(16–18):1931–1943CrossRef Lobachyov KV, Richter HJ (1998) An advanced integrated biomass gasification and molten fuel cell power system. Energ Convers Manage 39(16–18):1931–1943CrossRef
644.
go back to reference Gesser HD, Hunter NR (1998) A review of C-1 conversion chemistry. Catal Today 42(3):183–189CrossRef Gesser HD, Hunter NR (1998) A review of C-1 conversion chemistry. Catal Today 42(3):183–189CrossRef
645.
go back to reference Green AES (1991) Overview of fuel conversion. FACT (American Society of Mechanical Engineers), 12 (Solid Fuel Conversion for the Transportation Sector), 3–15 Green AES (1991) Overview of fuel conversion. FACT (American Society of Mechanical Engineers), 12 (Solid Fuel Conversion for the Transportation Sector), 3–15
646.
go back to reference Keim, W., C1 chemistry: present status and aspects for the future. In: Chemistry for the future, Proceedings of the IUPAC congress, 29, 1984, pp 53–62 Keim, W., C1 chemistry: present status and aspects for the future. In: Chemistry for the future, Proceedings of the IUPAC congress, 29, 1984, pp 53–62
647.
go back to reference Rostrup-Nielsen JR (2002) Syngas in perspective. Catal Today 71(3–4):243–247CrossRef Rostrup-Nielsen JR (2002) Syngas in perspective. Catal Today 71(3–4):243–247CrossRef
648.
go back to reference Wender I (1996) Reactions of synthesis gas. Fuel Process Technol 48(3):189–297CrossRef Wender I (1996) Reactions of synthesis gas. Fuel Process Technol 48(3):189–297CrossRef
649.
go back to reference Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, TP-510-34929. National Renewable Energy Laboratory, Golden, CO, p 160 Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, TP-510-34929. National Renewable Energy Laboratory, Golden, CO, p 160
650.
go back to reference Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27CrossRef Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27CrossRef
651.
go back to reference van den Broek R, Faaij A, van Wijk A (1996) Biomass combustion for power generation. Biomass Bioenergy 11(4):271–281CrossRef van den Broek R, Faaij A, van Wijk A (1996) Biomass combustion for power generation. Biomass Bioenergy 11(4):271–281CrossRef
652.
go back to reference Prasad SB (1995) Biomass-fired steam power cogeneration system—a theoretical-study. Energ Convers Manage 36(1):65–77CrossRef Prasad SB (1995) Biomass-fired steam power cogeneration system—a theoretical-study. Energ Convers Manage 36(1):65–77CrossRef
653.
go back to reference Baxter LL, Miles TR, Miles TR, Jenkins BM, Milne T et al (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54(1–3):47–78CrossRef Baxter LL, Miles TR, Miles TR, Jenkins BM, Milne T et al (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54(1–3):47–78CrossRef
654.
go back to reference Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuel 17(6):1510–1521CrossRef Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuel 17(6):1510–1521CrossRef
655.
go back to reference Demirbas A (2003) Toxic air emissions from biomass combustion. Energ Source 25(5):419–427 Demirbas A (2003) Toxic air emissions from biomass combustion. Energ Source 25(5):419–427
656.
go back to reference Hubbard AJ (1995) Hazardous air emissions potential from a wood-fired furnace. Combust Sci Technol 108(4–6):297–309CrossRef Hubbard AJ (1995) Hazardous air emissions potential from a wood-fired furnace. Combust Sci Technol 108(4–6):297–309CrossRef
657.
go back to reference Baxter LL (1993) Ash deposition during biomass and coal combustion—a mechanistic approach. Biomass Bioenergy 4(2):85–102CrossRef Baxter LL (1993) Ash deposition during biomass and coal combustion—a mechanistic approach. Biomass Bioenergy 4(2):85–102CrossRef
658.
go back to reference Blander M, Milne TA, Dayton DC, Backman R, Blake D et al (2001) Equilibrium chemistry of biomass combustion: a round-robin set of calculations using available computer programs and databases. Energy Fuel 15(2):344–349CrossRef Blander M, Milne TA, Dayton DC, Backman R, Blake D et al (2001) Equilibrium chemistry of biomass combustion: a round-robin set of calculations using available computer programs and databases. Energy Fuel 15(2):344–349CrossRef
659.
go back to reference Dayton DC, Frederick WJ (1996) Direct observation of alkali vapor release during biomass combustion and gasification. 2. Black liquor combustion at 1100 degrees C. Energy Fuel 10(2):284–292CrossRef Dayton DC, Frederick WJ (1996) Direct observation of alkali vapor release during biomass combustion and gasification. 2. Black liquor combustion at 1100 degrees C. Energy Fuel 10(2):284–292CrossRef
660.
go back to reference Dayton DC, French RJ, Milne TA (1995) Direct observation of alkali vapor release during biomass combustion and gasification. 1. Application of molecular-beam mass-spectrometry to switchgrass combustion. Energy Fuel 9(5):855–865CrossRef Dayton DC, French RJ, Milne TA (1995) Direct observation of alkali vapor release during biomass combustion and gasification. 1. Application of molecular-beam mass-spectrometry to switchgrass combustion. Energy Fuel 9(5):855–865CrossRef
661.
go back to reference Glarborg P, Jensen AD, Johnsson JE (2003) Fuel nitrogen conversion in solid fuel fired systems. Prog Energy Combust Sci 29(2):89–113CrossRef Glarborg P, Jensen AD, Johnsson JE (2003) Fuel nitrogen conversion in solid fuel fired systems. Prog Energy Combust Sci 29(2):89–113CrossRef
662.
go back to reference Bakker RR, Jenkins BM, Williams RB (2002) Fluidized bed combustion of leached rice straw. Energy Fuel 16(2):356–365CrossRef Bakker RR, Jenkins BM, Williams RB (2002) Fluidized bed combustion of leached rice straw. Energy Fuel 16(2):356–365CrossRef
663.
go back to reference Nordin A (1994) Chemical elemental characteristics of biomass fuels. Biomass Bioenergy 6(5):339–347CrossRef Nordin A (1994) Chemical elemental characteristics of biomass fuels. Biomass Bioenergy 6(5):339–347CrossRef
664.
go back to reference Brouwer J, Owens WD, Harding NS, Heap MP, Pershing DW (1995) Cofiring waste biofuels and coal for emissions reduction. Abstr Paper Am Chem Soc 209:32-FUEL Brouwer J, Owens WD, Harding NS, Heap MP, Pershing DW (1995) Cofiring waste biofuels and coal for emissions reduction. Abstr Paper Am Chem Soc 209:32-FUEL
665.
go back to reference Demirbas A (2003) Sustainable cofiring of biomass with coal. Energ Convers Manage 44(9):1465–1479CrossRef Demirbas A (2003) Sustainable cofiring of biomass with coal. Energ Convers Manage 44(9):1465–1479CrossRef
666.
go back to reference Harding NS, Adams BR (2000) Biomass as a reburning fuel: a specialized cofiring application. Biomass Bioenergy 19(6):429–445CrossRef Harding NS, Adams BR (2000) Biomass as a reburning fuel: a specialized cofiring application. Biomass Bioenergy 19(6):429–445CrossRef
667.
go back to reference Niksa S, Liu GS, Felix L, Bushy PV, Boylan DM (2003) Predicting NOX emissions from biomass cofiring. Abstr Paper Am Chem Soc 226:U540 Niksa S, Liu GS, Felix L, Bushy PV, Boylan DM (2003) Predicting NOX emissions from biomass cofiring. Abstr Paper Am Chem Soc 226:U540
668.
go back to reference Hughes EE, Tillman DA (1998) Biomass cofiring: status and prospects 1996. Fuel Process Technol 54(1–3):127–142CrossRef Hughes EE, Tillman DA (1998) Biomass cofiring: status and prospects 1996. Fuel Process Technol 54(1–3):127–142CrossRef
669.
go back to reference Boylan D, Bush V, Bransby DI (2000) Switchgrass cofiring: pilot scale and field evaluation. Biomass Bioenergy 19(6):411–417CrossRef Boylan D, Bush V, Bransby DI (2000) Switchgrass cofiring: pilot scale and field evaluation. Biomass Bioenergy 19(6):411–417CrossRef
670.
go back to reference Boylan DM (1996) Southern company tests of wood/coal cofiring in pulverized coal units. Biomass Bioenergy 10(2–3):139–147CrossRef Boylan DM (1996) Southern company tests of wood/coal cofiring in pulverized coal units. Biomass Bioenergy 10(2–3):139–147CrossRef
671.
go back to reference Gold BA, Tillman DA (1996) Wood cofiring evaluation at TVA power plants. Biomass Bioenergy 10(2–3):71–78CrossRef Gold BA, Tillman DA (1996) Wood cofiring evaluation at TVA power plants. Biomass Bioenergy 10(2–3):71–78CrossRef
672.
go back to reference Tillman DA (2000) Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19(6):365–384CrossRef Tillman DA (2000) Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19(6):365–384CrossRef
673.
go back to reference Tillman DA, Stahl RW (1995) Wood cofiring experience in cyclone boilers. Abstr Paper Am Chem Soc 209:31-FUEL Tillman DA, Stahl RW (1995) Wood cofiring experience in cyclone boilers. Abstr Paper Am Chem Soc 209:31-FUEL
674.
go back to reference Tillman DA (1997) Biomass cofiring guidelines, EPRITR-108952. Foster Wheeler Environmental Corporation for the Electric Power Research Institute, Sacramento, CA, p 107 Tillman DA (1997) Biomass cofiring guidelines, EPRITR-108952. Foster Wheeler Environmental Corporation for the Electric Power Research Institute, Sacramento, CA, p 107
675.
go back to reference Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 14(2):301–304CrossRef Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 14(2):301–304CrossRef
676.
go back to reference Shoemaker S, Raymond J, Bruner R (1981) Cellulases: diversity amongst improved Trichoderma strains. In: Hollander A (ed) Trends in the biology of fermentations for fuels and chemicals. Plenum Press, New York, pp 89–129CrossRef Shoemaker S, Raymond J, Bruner R (1981) Cellulases: diversity amongst improved Trichoderma strains. In: Hollander A (ed) Trends in the biology of fermentations for fuels and chemicals. Plenum Press, New York, pp 89–129CrossRef
677.
go back to reference Enari TM (1983) Microbial cellulases, 1st edn. Applied Science, London, pp 183–223 Enari TM (1983) Microbial cellulases, 1st edn. Applied Science, London, pp 183–223
678.
go back to reference Mandels M, Reese ET (1964) Fungal cellulases and the microbial decomposition of cellulosic fabric. Dev Ind Microbiol 5:5–20 Mandels M, Reese ET (1964) Fungal cellulases and the microbial decomposition of cellulosic fabric. Dev Ind Microbiol 5:5–20
679.
go back to reference Selig, M. J., W. S. Adney, M. E. Himmel and S. R. Decker. (2009). “The Impact of Cell Wall Acetylation on Corn Stover Hydrolysis by Cellulolytic and Xylanolytic Enzymes”. Cellulose. 16:711–722 Selig, M. J., W. S. Adney, M. E. Himmel and S. R. Decker. (2009). “The Impact of Cell Wall Acetylation on Corn Stover Hydrolysis by Cellulolytic and Xylanolytic Enzymes”. Cellulose. 16:711–722
680.
go back to reference Selig, M. J., T. B. Vinzant, M. E. Himmel, and S. R. Decker. (2009). “The Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes”. Appl. Biochem. Biotechnol. 155:397–406. Selig, M. J., T. B. Vinzant, M. E. Himmel, and S. R. Decker. (2009). “The Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes”. Appl. Biochem. Biotechnol. 155:397–406.
Metadata
Title
Biomass Conversion
Authors
Stephen R. Decker
John Sheehan
David C. Dayton
Joseph J. Bozell
William S. Adney
Bonnie Hames
Steven R. Thomas
Richard L. Bain
Stefan Czernik
Min Zhang
Michael E. Himmel
Copyright Year
2012
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4614-4259-2_33