Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Biomechanics of Human Iliopsoas and Functionally Related Muscles

Authors : Tijana Ivancevic, Leon Lukman, Zoran Gojkovic, Ronald Greenberg, Helen Greenberg, Bojan Jovanovic, Aleksandar Lukman

Published in: The Evolved Athlete: A Guide for Elite Sport Enhancement

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the causes of pain in the lumbosacral spine is the overexertion of the following muscles: quadratus lumborum, rectus abdominis, erector spinae group, gluteus maximus et medius, and piriformis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Lagrangian \(L\left( q,\dot{q}\right) \) is called regular when the symmetric matrix \([\partial ^{2}L/\partial \dot{q}^{i}\partial \dot{q} ^{j}],~(i,j=1,\ldots ,n)\) is everywhere nonsingular.
 
2
Recall that Kalman filter was the algorithm that was steering the Apollo 11 spaceflight in July 1969, that took Neil Armstrong and Buzz Aldrin to the moon and brought them back home.
 
3
A product of two Gaussians is another Gaussian; a Fourier transform of a Gaussian is the same Gaussian.
 
4
This Gaussian restriction is a characteristic of Kalman filtering; giving up of this restriction leads to a family of particle filters, in which the result of measurements are represented as a weighted sum of Dirac-delta functions.
 
5
In general, someone’s belief in an event or statement A will depend on their body of knowledge K. Formally, this is a belief measure, or a degree-of-belief: p(A|K), where \((\cdot |\cdot )\) means ‘given’. When K remains constant, we simply write p(A) instead of p(A|K); however, any statement about p(A) is always conditioned on a context K.
The conditional probability p(A|B) of an event A given another event B is the probability that the event A will happen given that the event B has already occurred. Also, when we have a joint event A and B, we have a joint probability : p(AB), where \((\cdot ,\cdot )\) means ‘and’, \(\wedge \), or ‘joint’. Conditional probabilities can be defined via joint probabilities and vice versa: \( p(A|B)=p(A,B)/p(B) \), which implies: \(p(A,B)=p(A|B)p(B)\).
 
6
The general Bayesian filter attempts to recover the information about the current system state \(x_{t}\) (at time t) based on the available measurements \(y_{1:t}\) (at previous times \(1,\ldots ,t\)). Formally, the Bayesian filter includes the dynamics-given time-update recursion for calculating the Prior PDF:
$$\begin{aligned} \overset{\mathrm {Prior}}{p(x_{t}|y_{1:t-1})}=\int _{\mathbb {R}^{n}}\overset{ \mathrm {Dynamics}}{p(x_{t}|x_{t-1})}\overset{\mathrm {Previous\,Prior}}{ \,p(x_{t-1}|y_{1:t-1})}dx_{t-1}\,, \end{aligned}$$
and the measurement-update recursion for calculating the Posterior (i.e., the filter PDF) using the Bayes rule:
$$\begin{aligned} \overset{\mathrm {Posterior}}{p(x_{t}|y_{1:t})}=\,\overset{\mathrm {Prior}}{ p(x_{t}|y_{1:t-1})\,\,}\overset{\mathrm {Likelihood}}{p(y_{t}|x_{t})} \,/\,Z_{t}, \end{aligned}$$
where \(Z_{t}\) is the normalizing constant (i.e., the partition function) defined by:
$$\begin{aligned} Z_{t}=\int _{\mathbb {R}^{n}}p(x_{t}|y_{1:t-1})p(y_{t}|x_{t})dx_{t}\,. \end{aligned}$$
 
7
The exponential map is a map from the orthogonal rotational Lie group \( G=SO(3)\) to its Lie algebra \(\mathfrak {g}=\mathfrak {so}(3)\), that is, \(\exp :SO(3)\rightarrow \mathfrak {so}(3)\). It is sometimes called the Lie functor [40].
 
8
The logarithm map is a map from the Lie algebra \(\mathfrak {g}=\mathfrak {so} (3)\) to its Lie group \(G=SO(3)\), \(\log =\exp ^{-1}:\mathfrak {so} (3)\rightarrow SO(3)\). It is sometimes called theinverse Lie functor [40].
 
9
A slightly modified form of the basic BGC-maneuver is also an essential part of thepole-vault maneuver.
 
10
The pole vault was introduced as a full medal Olympic event in 1896 Olympic Games.
 
11
We remark that there are no restrictions on the material the pole is made from (currently it is either carbon-fibre or fibreglass) or the length of the pole.
 
Literature
1.
go back to reference Anderson, F.C., Arnold, A.S., Pandy, M.G., Goldberg, S.R., Delp, S.L.: Simulation of Walking, Chapter 12 in Find an Expert. The University of Melbourne, Melbourne Research (2015) Anderson, F.C., Arnold, A.S., Pandy, M.G., Goldberg, S.R., Delp, S.L.: Simulation of Walking, Chapter 12 in Find an Expert. The University of Melbourne, Melbourne Research (2015)
2.
go back to reference Ait-Haddou, R., Binding, P., Herzog, W.: Theoretical considerations on cocontraction of sets of agonistic and antagonistic muscles. J. Biomech. 33(9), 1105–1111 (2000)CrossRef Ait-Haddou, R., Binding, P., Herzog, W.: Theoretical considerations on cocontraction of sets of agonistic and antagonistic muscles. J. Biomech. 33(9), 1105–1111 (2000)CrossRef
3.
go back to reference Abraham, R., Marsden, J.: Foundations of Mechanics. Benjamin, Reading (1978) Abraham, R., Marsden, J.: Foundations of Mechanics. Benjamin, Reading (1978)
4.
go back to reference Anderson, F.C., Pandy, M.G.: Dynamic Optimization of Human Walking. J. Biomech. Eng. 123, 381–390 (2001)CrossRef Anderson, F.C., Pandy, M.G.: Dynamic Optimization of Human Walking. J. Biomech. Eng. 123, 381–390 (2001)CrossRef
5.
go back to reference Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34, 153–161 (2001)CrossRef Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34, 153–161 (2001)CrossRef
6.
go back to reference Arampatzis, A., Schade, F., Bruggemann, G.P.: Effect of the pole-human body interaction on pole-vaulting performance. J. Biomech. 37, 1353–1360 (2004)CrossRef Arampatzis, A., Schade, F., Bruggemann, G.P.: Effect of the pole-human body interaction on pole-vaulting performance. J. Biomech. 37, 1353–1360 (2004)CrossRef
7.
go back to reference Anderson, F.C., Ziegler, J.M., Pandy, M.G., Whalen, R.T.: Application of High-Performance Computing to Numerical Simulation of Human Movement. ASME J. Biomech. Eng. 117, 155–157 (1995)CrossRef Anderson, F.C., Ziegler, J.M., Pandy, M.G., Whalen, R.T.: Application of High-Performance Computing to Numerical Simulation of Human Movement. ASME J. Biomech. Eng. 117, 155–157 (1995)CrossRef
8.
go back to reference Alexander, F.H.: The theory of rowing. In: Proceedings of the University of Durham Philosophical Society, pp. 160–179 (1925) Alexander, F.H.: The theory of rowing. In: Proceedings of the University of Durham Philosophical Society, pp. 160–179 (1925)
9.
go back to reference Cabrera, D., Ruina, A., Kleshnev, V.: A simple 1\(^+\) dimensional model of rowing mimics observed forces and motions. Hum. Mov. Sci. 25, 192–220 (2006)CrossRef Cabrera, D., Ruina, A., Kleshnev, V.: A simple 1\(^+\) dimensional model of rowing mimics observed forces and motions. Hum. Mov. Sci. 25, 192–220 (2006)CrossRef
10.
go back to reference Armbrust, W.: Energy conservation in pole vaulting. Track Tech. 125, 3991–3994 (1993) Armbrust, W.: Energy conservation in pole vaulting. Track Tech. 125, 3991–3994 (1993)
11.
go back to reference Bogert, A.J., Blana, D., Heinrich, D.: Implicit methods for efficient musculoskeletal simulation and optimal control. Proc. IUTAM 2, 297–316 (2011)CrossRef Bogert, A.J., Blana, D., Heinrich, D.: Implicit methods for efficient musculoskeletal simulation and optimal control. Proc. IUTAM 2, 297–316 (2011)CrossRef
12.
go back to reference Braff, T., Dapena, J.: A two-dimensional simulation method for the Prediction of Movements in pole Vaulting. In: Jonsson, B. (ed.) Int. Ser. Biomech. vol. 5, pp. 458–463. Human Kinetics, Champaign, IL (1985) Braff, T., Dapena, J.: A two-dimensional simulation method for the Prediction of Movements in pole Vaulting. In: Jonsson, B. (ed.) Int. Ser. Biomech. vol. 5, pp. 458–463. Human Kinetics, Champaign, IL (1985)
13.
go back to reference Bloesch, M., Hutter, M., Hoepflinger, M., et al.: State estimation for legged robots—consistent fusion of leg kinematics and IMU. In: Proc. Robotics: Sci. Sys., pp. 12345. Sydney, AU Bloesch, M., Hutter, M., Hoepflinger, M., et al.: State estimation for legged robots—consistent fusion of leg kinematics and IMU. In: Proc. Robotics: Sci. Sys., pp. 12345. Sydney, AU
14.
15.
go back to reference Bays, P.M., Wolpert, D.M.: Computational principles of sensorimotor control that minimize uncertainty and variability. J. Physiol. 578(2), 387–396 (2007)CrossRef Bays, P.M., Wolpert, D.M.: Computational principles of sensorimotor control that minimize uncertainty and variability. J. Physiol. 578(2), 387–396 (2007)CrossRef
16.
go back to reference Bauer, W.L.: Swinging as a way of increasing the mechanical energy in gymnastic maneuvers. In: Matsui, H., Kobayashi, K. (eds.) Biomechanics VIII-B, pp. 801–806. Human Kinetics, Champaign, IL (1983) Bauer, W.L.: Swinging as a way of increasing the mechanical energy in gymnastic maneuvers. In: Matsui, H., Kobayashi, K. (eds.) Biomechanics VIII-B, pp. 801–806. Human Kinetics, Champaign, IL (1983)
17.
go back to reference Chaffin, D.B., Andersson, G.B.J., Martin, B.J.: Occupational Biomechanics, 3rd edn. Wiley-Interscience, New York (1999) Chaffin, D.B., Andersson, G.B.J., Martin, B.J.: Occupational Biomechanics, 3rd edn. Wiley-Interscience, New York (1999)
18.
go back to reference Chumanov, E.S., Heiderscheit, B.C., Thelen, D.G.: The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J. Biomech. 40(16), 3555–62 (2007)CrossRef Chumanov, E.S., Heiderscheit, B.C., Thelen, D.G.: The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J. Biomech. 40(16), 3555–62 (2007)CrossRef
19.
go back to reference Cavanga, G.A.: Force Platforms as Ergometers. J. Appl. Physiol. 39, 174 (1975) Cavanga, G.A.: Force Platforms as Ergometers. J. Appl. Physiol. 39, 174 (1975)
20.
go back to reference Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRef Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRef
21.
go back to reference Dickinson, M.H., Farley, C.T., Full, R.J., et al.: How Animals Move: an Integrative View. Science 288, 100 (2000)CrossRef Dickinson, M.H., Farley, C.T., Full, R.J., et al.: How Animals Move: an Integrative View. Science 288, 100 (2000)CrossRef
22.
go back to reference Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37, 757–767 (1990)CrossRef Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37, 757–767 (1990)CrossRef
23.
go back to reference Ekevad, M., Lundberg, B.: Simulation of “smart” pole vaulting. J. Biomech. 28, 1079–1090 (1995)CrossRef Ekevad, M., Lundberg, B.: Simulation of “smart” pole vaulting. J. Biomech. 28, 1079–1090 (1995)CrossRef
24.
go back to reference Ekevad, M., Lundberg, B.: Influence of pole length and stiffness on the energy conversion in pole-vaulting. J. Biomech. 30, 259–264 (1997)CrossRef Ekevad, M., Lundberg, B.: Influence of pole length and stiffness on the energy conversion in pole-vaulting. J. Biomech. 30, 259–264 (1997)CrossRef
25.
go back to reference Gibson, W., Arendt-Nielsen, L., Graven-Nielsen, T.: Delayed onset muscle soreness at tendon-bone junction and muscle tissue is associated with facilitated referred pain. Exp. Brain. Res. 174(2), 351–360 (2006)CrossRef Gibson, W., Arendt-Nielsen, L., Graven-Nielsen, T.: Delayed onset muscle soreness at tendon-bone junction and muscle tissue is associated with facilitated referred pain. Exp. Brain. Res. 174(2), 351–360 (2006)CrossRef
26.
go back to reference Gibson, W., Arendt-Nielsen, L., Taguchi, T., et al.: Increased pain from muscle fascia following eccentric exercise: animal and human findings. Exp. Brain Res. 194(2), 299–308 (2009)CrossRef Gibson, W., Arendt-Nielsen, L., Taguchi, T., et al.: Increased pain from muscle fascia following eccentric exercise: animal and human findings. Exp. Brain Res. 194(2), 299–308 (2009)CrossRef
27.
go back to reference Giat, Y., Mizrahi, J., Levy, M.: A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under fes. IEEE Trans. Biomed. Eng. 40(7), 664–674 (1993)CrossRef Giat, Y., Mizrahi, J., Levy, M.: A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under fes. IEEE Trans. Biomed. Eng. 40(7), 664–674 (1993)CrossRef
28.
go back to reference Goldstein, H.: Classical Mechanics. Addison-Wesley, Boston, MA (1980)MATH Goldstein, H.: Classical Mechanics. Addison-Wesley, Boston, MA (1980)MATH
29.
go back to reference He, J., Levine, W.S., Loeb, G.E.: Feedback gains for correcting small perturbations to standing posture. IEEE Trans. Autom. Control 36, 322–32 (1991)CrossRefMATH He, J., Levine, W.S., Loeb, G.E.: Feedback gains for correcting small perturbations to standing posture. IEEE Trans. Autom. Control 36, 322–32 (1991)CrossRefMATH
30.
go back to reference Hamner, S.R., Seth, A., Delp, S.L.: Muscle contributions to propulsion and support during running. J. Biomech. 43, 2709–16 (2010)CrossRef Hamner, S.R., Seth, A., Delp, S.L.: Muscle contributions to propulsion and support during running. J. Biomech. 43, 2709–16 (2010)CrossRef
31.
go back to reference Herzog, W.: Muscle. In: Nigg, B.M., Herzog, W. (eds.) Biomechanics of the Musculoskeletal System. 2nd edn., pp. 148–88. Wiley, New York (1999) Herzog, W.: Muscle. In: Nigg, B.M., Herzog, W. (eds.) Biomechanics of the Musculoskeletal System. 2nd edn., pp. 148–88. Wiley, New York (1999)
32.
go back to reference Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. B76, 136–195 (1938)CrossRef Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. B76, 136–195 (1938)CrossRef
33.
go back to reference Hill, A.V.: The dynamic constants of human muscle. Proc. R. Soc. B128, 263–274 (1940)CrossRef Hill, A.V.: The dynamic constants of human muscle. Proc. R. Soc. B128, 263–274 (1940)CrossRef
34.
go back to reference Hill, A.V.: The series elastic component of muscles. Proc. R. Soc. B137, 273–280 (1950)CrossRef Hill, A.V.: The series elastic component of muscles. Proc. R. Soc. B137, 273–280 (1950)CrossRef
35.
go back to reference Hill, A.V.: First and Last Experiments in Muscle Mechanics. Cambridge University Press, Cambridge (1970) Hill, A.V.: First and Last Experiments in Muscle Mechanics. Cambridge University Press, Cambridge (1970)
36.
go back to reference Huxley, A.F.: Muscle structure and theories of contraction. Progr. Biophys. Chem. 7, 255–328 (1957) Huxley, A.F.: Muscle structure and theories of contraction. Progr. Biophys. Chem. 7, 255–328 (1957)
37.
go back to reference Ivancevic, T., Greenberg, H., Greenberg, R.: Enhancing Performance and Reducing Stress in Sports: Technological Advances, vol. 24. Springer Series: Cognitive Systems Monographs, Berlin (2015) Ivancevic, T., Greenberg, H., Greenberg, R.: Enhancing Performance and Reducing Stress in Sports: Technological Advances, vol. 24. Springer Series: Cognitive Systems Monographs, Berlin (2015)
38.
go back to reference Ivancevic, V., Ivancevic, T.: Human-Like Biomechanics. Springer, New York (2006) Ivancevic, V., Ivancevic, T.: Human-Like Biomechanics. Springer, New York (2006)
39.
go back to reference Ivancevic, V., Ivancevic, T.: Natural Biodynamics. World Scientific Press, Singapore (2006) Ivancevic, V., Ivancevic, T.: Natural Biodynamics. World Scientific Press, Singapore (2006)
40.
go back to reference Ivancevic, V., Ivancevic, T.: Geometrical Dynamics of Complex Systems. Springer, New York (2006) Ivancevic, V., Ivancevic, T.: Geometrical Dynamics of Complex Systems. Springer, New York (2006)
41.
go back to reference Ishii, H., Yanagiya, T., Naito, H., Katamoto, S., Maruyama, T.: Numerical study of ball behavior in side-foot soccer kick based on impact dynamic theory. J. Biomech. 42, 2712–20 (2009)CrossRef Ishii, H., Yanagiya, T., Naito, H., Katamoto, S., Maruyama, T.: Numerical study of ball behavior in side-foot soccer kick based on impact dynamic theory. J. Biomech. 42, 2712–20 (2009)CrossRef
42.
go back to reference Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)CrossRef Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)CrossRef
43.
go back to reference Khalil, W.: Modeling and control of manipulators. Ecole Central de Nantes, Nantes (2009–2010) Khalil, W.: Modeling and control of manipulators. Ecole Central de Nantes, Nantes (2009–2010)
44.
go back to reference Kokshenev, V.B.: Dynamics of Human Walking at Steady Speeds. Phys. Rev. Let. 93(20), 208101–1 (2004)CrossRef Kokshenev, V.B.: Dynamics of Human Walking at Steady Speeds. Phys. Rev. Let. 93(20), 208101–1 (2004)CrossRef
45.
go back to reference Liu, J., Brown, R., Yue, G.: A dynamical model of muscle activation, fatigue, and recovery. Biophys. J. 82(5), 2344–2359 (2002)CrossRef Liu, J., Brown, R., Yue, G.: A dynamical model of muscle activation, fatigue, and recovery. Biophys. J. 82(5), 2344–2359 (2002)CrossRef
46.
go back to reference Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford, UK (1976)MATH Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford, UK (1976)MATH
47.
go back to reference Linthorne, N.P.: Energy loss in the pole vault take-off and the advantage of the flexible pole. Sports Eng. 3, 205–218 (2000)CrossRef Linthorne, N.P.: Energy loss in the pole vault take-off and the advantage of the flexible pole. Sports Eng. 3, 205–218 (2000)CrossRef
48.
go back to reference Linthorne, N.: The Fiberglass Pole. In: Jarver, J. (ed.) The Jumps. Tafnews Press, Los Altos (1994) Linthorne, N.: The Fiberglass Pole. In: Jarver, J. (ed.) The Jumps. Tafnews Press, Los Altos (1994)
49.
go back to reference Morlier, J., Cid, M.: Three-dimensional analysis of the angular momentum of a pole-vaulter. J. Biomech. 29, 1085–1090 (1996)CrossRef Morlier, J., Cid, M.: Three-dimensional analysis of the angular momentum of a pole-vaulter. J. Biomech. 29, 1085–1090 (1996)CrossRef
50.
go back to reference Ma, L., Chablat, D., Bennis, F., Zhang, W.: A new simple dynamic muscle fatigue model and its validation. Int. J. Indust. Erg. 39(1), 211–220 (2009)CrossRef Ma, L., Chablat, D., Bennis, F., Zhang, W.: A new simple dynamic muscle fatigue model and its validation. Int. J. Indust. Erg. 39(1), 211–220 (2009)CrossRef
51.
go back to reference Ma, R., Chablat, D., Bennis, F., Ma, L.: Human Muscle Fatigue Model in Dynamic Motions. In: Lenarcic, J., Husty, M. (eds.) Latest Advances in Robot Kinematics, pp. 349-356. Springer, Dordrecht, NL (2012) Ma, R., Chablat, D., Bennis, F., Ma, L.: Human Muscle Fatigue Model in Dynamic Motions. In: Lenarcic, J., Husty, M. (eds.) Latest Advances in Robot Kinematics, pp. 349-356. Springer, Dordrecht, NL (2012)
52.
go back to reference Menegaldo, L.L., Fleury, A.T., Weber, H.I.: A ‘cheap’ optimal control approach to estimate muscle forces in musculoskeletal systems. J. Biomech. 39, 1787–1795 (2006)CrossRef Menegaldo, L.L., Fleury, A.T., Weber, H.I.: A ‘cheap’ optimal control approach to estimate muscle forces in musculoskeletal systems. J. Biomech. 39, 1787–1795 (2006)CrossRef
53.
go back to reference Morlier, J., Mesnard, M.: Influence of the moment exerted by the athlete on the pole in pole-vaulting performance. J. Biomech. 40, 2261–2267 (2007)CrossRef Morlier, J., Mesnard, M.: Influence of the moment exerted by the athlete on the pole in pole-vaulting performance. J. Biomech. 40, 2261–2267 (2007)CrossRef
54.
go back to reference Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 2nd edn. Springer, New York (1999)CrossRefMATH Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 2nd edn. Springer, New York (1999)CrossRefMATH
55.
go back to reference Haeufle, D.F.B., Günther, M., Bayer, A., Schmitt, S.: Hill-type muscle model with serial damping and eccentric force-velocity relation. J. Biomech. 47, 1531–1536 (2014)CrossRef Haeufle, D.F.B., Günther, M., Bayer, A., Schmitt, S.: Hill-type muscle model with serial damping and eccentric force-velocity relation. J. Biomech. 47, 1531–1536 (2014)CrossRef
56.
go back to reference Molloy, M., Salazar-Torres, J., Kerr, C., McDowell, B.C., Cosgrove, A.P.: The effects of industry standard averaging and filtering techniques in kinematic gait analysis. Gait Posture 28(4), 559–62 (2008)CrossRef Molloy, M., Salazar-Torres, J., Kerr, C., McDowell, B.C., Cosgrove, A.P.: The effects of industry standard averaging and filtering techniques in kinematic gait analysis. Gait Posture 28(4), 559–62 (2008)CrossRef
58.
go back to reference Ma, L., Zhang, W., Hu, B., et al.: Determination of subject-specific muscle fatigue rates under static fatiguing operations. Ergonomics 56(12), 1889–1900 (2013)CrossRef Ma, L., Zhang, W., Hu, B., et al.: Determination of subject-specific muscle fatigue rates under static fatiguing operations. Ergonomics 56(12), 1889–1900 (2013)CrossRef
59.
go back to reference Sakka, S., Chablat, D., Ma, R., et al.: Predictive model of the human muscle fatigue: application to repetitive push-pull tasks with light external load. Int. J. Human Factors Mod. Sim., Indersci. 5(1), 81–97 (2015) Sakka, S., Chablat, D., Ma, R., et al.: Predictive model of the human muscle fatigue: application to repetitive push-pull tasks with light external load. Int. J. Human Factors Mod. Sim., Indersci. 5(1), 81–97 (2015)
60.
go back to reference McWatt, B.: The mechanics of take off in jumping events. In: Jarver, J. (ed) The Jumps. Tafnews Press, Los Altos (1994) McWatt, B.: The mechanics of take off in jumping events. In: Jarver, J. (ed) The Jumps. Tafnews Press, Los Altos (1994)
61.
go back to reference Michele, A.A.: Iliopsoas; development of anomalies in man. Thomas Publishing, Springfield, Ill (1962) Michele, A.A.: Iliopsoas; development of anomalies in man. Thomas Publishing, Springfield, Ill (1962)
62.
go back to reference Neptune, R.R., Clark, D.J., Kautz, S.A.: Modular control of human walking: A simulation study. J. Biomech. 42, 1282–1287 (2009)CrossRef Neptune, R.R., Clark, D.J., Kautz, S.A.: Modular control of human walking: A simulation study. J. Biomech. 42, 1282–1287 (2009)CrossRef
63.
go back to reference Ober-Bloebaum, S., Junge, O., Marsden, J.E.: Discrete Mechanics and Optimal Control: an Analysis (2008). arXiv:0810.1386 [math.OC] Ober-Bloebaum, S., Junge, O., Marsden, J.E.: Discrete Mechanics and Optimal Control: an Analysis (2008). arXiv:​0810.​1386 [math.OC]
64.
go back to reference Park, S., Han, Y., Hahn, H.: Balance control of a biped robot using camera image of reference object. Int. J. Con. Aut. Sys. 7(1), 75–84 (2009)CrossRef Park, S., Han, Y., Hahn, H.: Balance control of a biped robot using camera image of reference object. Int. J. Con. Aut. Sys. 7(1), 75–84 (2009)CrossRef
65.
go back to reference Pandy, M.G., Zajac, F.E., Sim, E., Levine, W.S.: An optimal control model for maximum-height human jumping. J. Biomech. 23, 1185–1198 (1990)CrossRef Pandy, M.G., Zajac, F.E., Sim, E., Levine, W.S.: An optimal control model for maximum-height human jumping. J. Biomech. 23, 1185–1198 (1990)CrossRef
66.
go back to reference Rotella, N., Bloesch, M., Righetti, L., Schaal, S.: State Estimation for a Humanoid Robot. iN: IEEE RSJ Int. Con. IntelL. Rob. SysT., pp. 952–958 (2014) Rotella, N., Bloesch, M., Righetti, L., Schaal, S.: State Estimation for a Humanoid Robot. iN: IEEE RSJ Int. Con. IntelL. Rob. SysT., pp. 952–958 (2014)
67.
go back to reference Roberts, J., Marsh, R.L., Weyand, P.G., Taylor, C.R.: Muscular Force in Running Turkeys: The Economy of Minimizing Work. Science 275, 1113 (1997)CrossRef Roberts, J., Marsh, R.L., Weyand, P.G., Taylor, C.R.: Muscular Force in Running Turkeys: The Economy of Minimizing Work. Science 275, 1113 (1997)CrossRef
68.
go back to reference Ralston, H.J.: Energetics of Human Walking. In: Herman, R.M., et al. (eds.) Neural Control of Locomotion, pp. 77–98. Plenum Press, New York (1976) Ralston, H.J.: Energetics of Human Walking. In: Herman, R.M., et al. (eds.) Neural Control of Locomotion, pp. 77–98. Plenum Press, New York (1976)
69.
go back to reference Schade, F., Arampatzis, A., Bruggemann, G.P.: Reproducibility of energy parameters in the pole vault. J. Biomech. 39, 146–147 (2006)CrossRef Schade, F., Arampatzis, A., Bruggemann, G.P.: Reproducibility of energy parameters in the pole vault. J. Biomech. 39, 146–147 (2006)CrossRef
70.
go back to reference Slater, H., Arendt-Nielsen, L., Wright, A., Graven-Nielsen, T.: Sensory and motor e V ects of experimental muscle pain in patients with lateral epicondylalgia and controls with delayed onset muscle soreness. Pain 114, 118–130 (2005)CrossRef Slater, H., Arendt-Nielsen, L., Wright, A., Graven-Nielsen, T.: Sensory and motor e V ects of experimental muscle pain in patients with lateral epicondylalgia and controls with delayed onset muscle soreness. Pain 114, 118–130 (2005)CrossRef
71.
go back to reference Thelen, D.G., Chumanov, E.S., Best, T.M., Swanson, S.C., Heiderscheit, B.C.: Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med. Sci. Sports. Exerc. 37(11), 1931–8 (2005)CrossRef Thelen, D.G., Chumanov, E.S., Best, T.M., Swanson, S.C., Heiderscheit, B.C.: Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med. Sci. Sports. Exerc. 37(11), 1931–8 (2005)CrossRef
72.
go back to reference Trawny, N., Roumeliotis, S.I.: Indirect Kalman filter for 3D attitude estimation. Univ. Minnesota, Dept. Comp. Sci. & Eng., Tech. Rep. 2005-002 (2005) Trawny, N., Roumeliotis, S.I.: Indirect Kalman filter for 3D attitude estimation. Univ. Minnesota, Dept. Comp. Sci. & Eng., Tech. Rep. 2005-002 (2005)
73.
go back to reference Vaslin, P., Couetard, Y., Cid, M.: Three dimensional dynamic analysis of the pole vault. J. Biomech. 27(6), 694 (1994)CrossRef Vaslin, P., Couetard, Y., Cid, M.: Three dimensional dynamic analysis of the pole vault. J. Biomech. 27(6), 694 (1994)CrossRef
74.
go back to reference Willems, P.A., Cavanga, G.A., Heglund, N.C.: External, Internal and Total Work in Human Locomotion. J. Exp. Biol. 198, 379 (1995) Willems, P.A., Cavanga, G.A., Heglund, N.C.: External, Internal and Total Work in Human Locomotion. J. Exp. Biol. 198, 379 (1995)
75.
go back to reference Wexler, A.S., Ding, J., Binder-Macleod, S.A.: A mathematical model that predicts skeletal muscle force. IEEE Trans. Biomed. Eng. 44(5), 337–348 (1997)CrossRef Wexler, A.S., Ding, J., Binder-Macleod, S.A.: A mathematical model that predicts skeletal muscle force. IEEE Trans. Biomed. Eng. 44(5), 337–348 (1997)CrossRef
76.
77.
go back to reference Wikipedia: Recursive Bayesian estimation (2015) Wikipedia: Recursive Bayesian estimation (2015)
79.
go back to reference Yeadon, M.R., Hiley, M.J.: The mechanics of the backward giant circle on the high bar. Hum. Mov. Sci. 19, 153–173 (2000)CrossRef Yeadon, M.R., Hiley, M.J.: The mechanics of the backward giant circle on the high bar. Hum. Mov. Sci. 19, 153–173 (2000)CrossRef
80.
go back to reference Zhang, J., Lockhart, T.E., Soangra, R.: Classifying Lower Extremity Muscle Fatigue during Walking using Machine Learning and Inertial Sensors. Ann. Biomed. Eng. 42(3), 600–612 (2014)CrossRef Zhang, J., Lockhart, T.E., Soangra, R.: Classifying Lower Extremity Muscle Fatigue during Walking using Machine Learning and Inertial Sensors. Ann. Biomed. Eng. 42(3), 600–612 (2014)CrossRef
81.
go back to reference Zajac, F.E.: Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989) Zajac, F.E.: Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)
Metadata
Title
Biomechanics of Human Iliopsoas and Functionally Related Muscles
Authors
Tijana Ivancevic
Leon Lukman
Zoran Gojkovic
Ronald Greenberg
Helen Greenberg
Bojan Jovanovic
Aleksandar Lukman
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57928-3_4

Premium Partner