Skip to main content
Top

2019 | OriginalPaper | Chapter

14. Biopolymer Composites and Bionanocomposites for Energy Applications

Authors : Idowu David Ibrahim, Emmanuel Rotimi Sadiku, Tamba Jamiru, Yskandar Hamam, Yasser Alayli, Azunna Agwo Eze, Williams Kehinde Kupolati

Published in: Green Biopolymers and their Nanocomposites

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An alternative and/or improved material for the energy sector is of major concern due to the advancement in the sector and the hazardous environmental impact of the current materials in use. Weight is also an issue when it comes to materials for energy generation, conversion, and storage. Bio-polymeric materials are currently being considered as an alternative option due to the inherent properties such as high strength-to-weight ratio, biodegradability, renewability, biocompatibility and cost-effectiveness. Based on these properties and the potentials of biopolymers, the composite materials are considered viable. The main focus of this chapter is on energy applications of biopolymers. The chapter also briefly explains the types, areas of application, properties and the reasons for the selection of biopolymers in the energy, biomedical and packaging sector. Finally, the study presents the future trend of biopolymers for energy applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdellaoui H, Bouhfid R, El Kacem Qaiss A (2017) Preparation of bionanocomposites and bionanomaterials from agricultural wastes. In: Jawaid M, Boufi S, Abdul Khalil HPS (eds) Cellulose-reinforced nanofibre composites. Woodhead Publishing, pp 341–371 Abdellaoui H, Bouhfid R, El Kacem Qaiss A (2017) Preparation of bionanocomposites and bionanomaterials from agricultural wastes. In: Jawaid M, Boufi S, Abdul Khalil HPS (eds) Cellulose-reinforced nanofibre composites. Woodhead Publishing, pp 341–371
2.
go back to reference Abdelrazek EM, Hezma AM, El-Khodary A, Elzayat AM (2016) Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt J Basic Appl Sci 3:10–15CrossRef Abdelrazek EM, Hezma AM, El-Khodary A, Elzayat AM (2016) Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt J Basic Appl Sci 3:10–15CrossRef
3.
go back to reference Abdo H, Elzatahry A, Alharbi H, Khalil K (2017) Electrical conductivity behavior of biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 13–25 Abdo H, Elzatahry A, Alharbi H, Khalil K (2017) Electrical conductivity behavior of biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 13–25
4.
go back to reference Abhilash M, Thomas D (2017) Biopolymers for biocomposites and chemical sensor applications. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 405–435 Abhilash M, Thomas D (2017) Biopolymers for biocomposites and chemical sensor applications. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 405–435
5.
go back to reference Adeniyi A, Agboola O, Sadiku RE, Durowoju M, Olubambi P, Reddy AB, Ibrahim ID, Kupolati WK (2016) Thermoplastic-thermoset nanostructured polymer blends. In: Thomas S, Chandran S, Shanks R (eds) Nanostructured polymer blends and composites. Elsevier Inc, USA Adeniyi A, Agboola O, Sadiku RE, Durowoju M, Olubambi P, Reddy AB, Ibrahim ID, Kupolati WK (2016) Thermoplastic-thermoset nanostructured polymer blends. In: Thomas S, Chandran S, Shanks R (eds) Nanostructured polymer blends and composites. Elsevier Inc, USA
6.
go back to reference Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36CrossRef Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36CrossRef
7.
go back to reference Agwuncha S, Sadiku E, Ibrahim ID, Aderibigbe B, Owonubi S, Agboola O, Reddy AB, Bandla M, Varaprasad K, Bayode B (2017) Poly (lactic acid) biopolymer composites and nanocomposites for biomedicals and biopackaging applications. Handbook of composites from renewable materials, nanocomposites: advanced applications, vol 8, p 135CrossRef Agwuncha S, Sadiku E, Ibrahim ID, Aderibigbe B, Owonubi S, Agboola O, Reddy AB, Bandla M, Varaprasad K, Bayode B (2017) Poly (lactic acid) biopolymer composites and nanocomposites for biomedicals and biopackaging applications. Handbook of composites from renewable materials, nanocomposites: advanced applications, vol 8, p 135CrossRef
8.
go back to reference An S, Ma X (2017) Properties and structure of poly (3-hydroxybutyrate-co-4-hydroxybutyrate)/wood fiber biodegradable composites modified with maleic anhydride. Ind Crops Prod 109:882–888CrossRef An S, Ma X (2017) Properties and structure of poly (3-hydroxybutyrate-co-4-hydroxybutyrate)/wood fiber biodegradable composites modified with maleic anhydride. Ind Crops Prod 109:882–888CrossRef
9.
go back to reference Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol 3:113–126CrossRef Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol 3:113–126CrossRef
10.
go back to reference Arora A, Padua G (2010) Nanocomposites in food packaging. J Food Sci 75(1):R43–R49CrossRef Arora A, Padua G (2010) Nanocomposites in food packaging. J Food Sci 75(1):R43–R49CrossRef
11.
go back to reference Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353CrossRef Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353CrossRef
12.
go back to reference Benbettaïeb N, Kurek M, Bornaz S, Debeaufort F (2014) Barrier, structural and mechanical properties of bovine gelatin–chitosan blend films related to biopolymer interactions. J Sci Food Agric 94:2409–2419CrossRef Benbettaïeb N, Kurek M, Bornaz S, Debeaufort F (2014) Barrier, structural and mechanical properties of bovine gelatin–chitosan blend films related to biopolymer interactions. J Sci Food Agric 94:2409–2419CrossRef
13.
go back to reference Bettinger CJ, Bao Z (2010) Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater 22:651–655CrossRef Bettinger CJ, Bao Z (2010) Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater 22:651–655CrossRef
14.
go back to reference Bhakat D, Barik P, Bhattacharjee A (2018) Electrical conductivity behavior of Gum Arabic biopolymer-Fe3O4 nanocomposites. J Phys Chem Solids 112:73–79CrossRef Bhakat D, Barik P, Bhattacharjee A (2018) Electrical conductivity behavior of Gum Arabic biopolymer-Fe3O4 nanocomposites. J Phys Chem Solids 112:73–79CrossRef
15.
go back to reference Bindhu B, Renisha R, Roberts L, Varghese T (2018) Boron Nitride reinforced polylactic acid composites film for packaging: preparation and properties. Polym Testing 66:172–177CrossRef Bindhu B, Renisha R, Roberts L, Varghese T (2018) Boron Nitride reinforced polylactic acid composites film for packaging: preparation and properties. Polym Testing 66:172–177CrossRef
16.
go back to reference Bojanić V (2010) Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis. Hemijska industrija 64:529–535CrossRef Bojanić V (2010) Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis. Hemijska industrija 64:529–535CrossRef
17.
go back to reference Brandau DT, Jones LS, Wiethoff CM, Rexroad J, Middaugh CR (2003) Thermal stability of vaccines. J Pharm Sci 92:218–231CrossRef Brandau DT, Jones LS, Wiethoff CM, Rexroad J, Middaugh CR (2003) Thermal stability of vaccines. J Pharm Sci 92:218–231CrossRef
18.
go back to reference Bundela H, Bajpai A (2008) Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: correlation with biocompatibility aspects. Express Polym Lett 2:201–213CrossRef Bundela H, Bajpai A (2008) Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: correlation with biocompatibility aspects. Express Polym Lett 2:201–213CrossRef
19.
go back to reference Cypes SH, Saltzman WM, Giannelis EP (2003) Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties. J Controlled Release 90:163–169CrossRef Cypes SH, Saltzman WM, Giannelis EP (2003) Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties. J Controlled Release 90:163–169CrossRef
20.
go back to reference Cyprych K, Sznitko L, Mysliwiec J (2014) Starch: application of biopolymer in random lasing. Org Electron 15:2218–2222CrossRef Cyprych K, Sznitko L, Mysliwiec J (2014) Starch: application of biopolymer in random lasing. Org Electron 15:2218–2222CrossRef
21.
go back to reference Dai L (2004) Conducting polymers. In: Dai L (ed) Intelligent macromolecules for smart devices: from materials synthesis to device applications. Springer Science & Business Media, London, pp 41–80 Dai L (2004) Conducting polymers. In: Dai L (ed) Intelligent macromolecules for smart devices: from materials synthesis to device applications. Springer Science & Business Media, London, pp 41–80
22.
go back to reference Das T, Prusty S (2017) Biopolymer composites in field-effect transistors. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 219–229 Das T, Prusty S (2017) Biopolymer composites in field-effect transistors. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 219–229
24.
go back to reference De Léis CM, Nogueira AR, Kulay L, Tadini CC (2017) Environmental and energy analysis of biopolymer film based on cassava starch in Brazil. J Clean Prod 143:76–89CrossRef De Léis CM, Nogueira AR, Kulay L, Tadini CC (2017) Environmental and energy analysis of biopolymer film based on cassava starch in Brazil. J Clean Prod 143:76–89CrossRef
25.
go back to reference Decher G, Schlenoff JB (2006) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley Decher G, Schlenoff JB (2006) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley
26.
go back to reference Deshmukh K, Basheer Ahamed M, Deshmukh RR, Khadheer Pasha SK, Bhagat PR, Chidambaram K (2017) Biopolymer composites with high dielectric performance: interface engineering. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 27–128 Deshmukh K, Basheer Ahamed M, Deshmukh RR, Khadheer Pasha SK, Bhagat PR, Chidambaram K (2017) Biopolymer composites with high dielectric performance: interface engineering. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 27–128
27.
go back to reference Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V (2004) Drug-eluting bioabsorbable magnesium stent. J Intervent Cardiol 17:391–395CrossRef Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V (2004) Drug-eluting bioabsorbable magnesium stent. J Intervent Cardiol 17:391–395CrossRef
28.
go back to reference Dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714CrossRef Dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714CrossRef
29.
go back to reference Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392CrossRef Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392CrossRef
30.
go back to reference Farahnaky A, Dadfar SMM, Shahbazi M (2014) Physical and mechanical properties of gelatin–clay nanocomposite. J Food Eng 122:78–83CrossRef Farahnaky A, Dadfar SMM, Shahbazi M (2014) Physical and mechanical properties of gelatin–clay nanocomposite. J Food Eng 122:78–83CrossRef
31.
go back to reference Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng, C 23:763–772CrossRef Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng, C 23:763–772CrossRef
32.
go back to reference Fritsch A, Hellmich C, Dormieux L (2009) Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol 260:230–252CrossRef Fritsch A, Hellmich C, Dormieux L (2009) Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol 260:230–252CrossRef
33.
go back to reference Garland A (2004) Nanotechnology in plastics packaging: commercial applications in nanotechnology. Pira International Limited, UK Garland A (2004) Nanotechnology in plastics packaging: commercial applications in nanotechnology. Pira International Limited, UK
34.
go back to reference Guo M, Trzcinski A, Stuckey D, Murphy R (2011) Anaerobic digestion of starch–polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment. Biores Technol 102:11137–11146CrossRef Guo M, Trzcinski A, Stuckey D, Murphy R (2011) Anaerobic digestion of starch–polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment. Biores Technol 102:11137–11146CrossRef
35.
go back to reference Han JH (2003) Antimicrobial food packaging. Novel food Packag Tech 8:50–70CrossRef Han JH (2003) Antimicrobial food packaging. Novel food Packag Tech 8:50–70CrossRef
36.
go back to reference Haque S, Shah MS, Rahman M, Mohiuddin M (2017) Biopolymer composites in light emitting diodes. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 277–310 Haque S, Shah MS, Rahman M, Mohiuddin M (2017) Biopolymer composites in light emitting diodes. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 277–310
37.
go back to reference Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769CrossRef Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769CrossRef
38.
go back to reference Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980
39.
go back to reference Ibrahim ID, Jamiru T, Sadiku ER, Kupolati WK, Agwuncha SC, Ekundayo G (2016) Mechanical properties of sisal fibre-reinforced polymer composites: a review. Compos Interfaces 23:15–36CrossRef Ibrahim ID, Jamiru T, Sadiku ER, Kupolati WK, Agwuncha SC, Ekundayo G (2016) Mechanical properties of sisal fibre-reinforced polymer composites: a review. Compos Interfaces 23:15–36CrossRef
41.
go back to reference Ibrahim ID, Jamiru T, Sadiku RE, Kupolati WK, Agwuncha SC (2017a) Dependency of the mechanical properties of sisal fiber reinforced recycled polypropylene composites on fiber surface treatment, fiber content and nanoclay. J Polym Environ 25:427–434CrossRef Ibrahim ID, Jamiru T, Sadiku RE, Kupolati WK, Agwuncha SC (2017a) Dependency of the mechanical properties of sisal fiber reinforced recycled polypropylene composites on fiber surface treatment, fiber content and nanoclay. J Polym Environ 25:427–434CrossRef
43.
go back to reference Imran M, Revol-Junelles A-M, Martyn A, Tehrany EA, Jacquot M, Linder M, Desobry S (2010) Active food packaging evolution: transformation from micro-to nanotechnology. Crit Rev Food Sci Nutr 50:799–821CrossRef Imran M, Revol-Junelles A-M, Martyn A, Tehrany EA, Jacquot M, Linder M, Desobry S (2010) Active food packaging evolution: transformation from micro-to nanotechnology. Crit Rev Food Sci Nutr 50:799–821CrossRef
44.
go back to reference Kakran M, Li L (2012) Carbon nanomaterials for drug delivery. Key Engineering Materials. Trans Tech Publications, pp 76–80 Kakran M, Li L (2012) Carbon nanomaterials for drug delivery. Key Engineering Materials. Trans Tech Publications, pp 76–80
45.
go back to reference Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S (2017) Environmental applications of chitosan and cellulosic biopolymers: a comprehensive outlook. Biores Technol 242:295–303CrossRef Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S (2017) Environmental applications of chitosan and cellulosic biopolymers: a comprehensive outlook. Biores Technol 242:295–303CrossRef
46.
go back to reference Keller SS, Gammelgaard L, Jensen MP, Schmid S, Davis ZJ, Boisen A (2011) Deposition of biopolymer films on micromechanical sensors. Microelectron Eng 88:2297–2299CrossRef Keller SS, Gammelgaard L, Jensen MP, Schmid S, Davis ZJ, Boisen A (2011) Deposition of biopolymer films on micromechanical sensors. Microelectron Eng 88:2297–2299CrossRef
47.
go back to reference Khalil AM, Hassan ML, Ward AA (2017) Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohyd Polym 157:503–511CrossRef Khalil AM, Hassan ML, Ward AA (2017) Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohyd Polym 157:503–511CrossRef
48.
go back to reference Kim J (2017) Multifunctional smart biopolymer composites as actuators. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 311–331 Kim J (2017) Multifunctional smart biopolymer composites as actuators. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 311–331
49.
go back to reference Kisku SK, Sarkar N, Dash S, Swain SK (2014) Preparation of starch/PVA/CaCO3 nanobiocomposite films: study of fire retardant, thermal resistant, gas barrier and biodegradable properties. Polymer-Plast Technol Eng 53:1664–1670CrossRef Kisku SK, Sarkar N, Dash S, Swain SK (2014) Preparation of starch/PVA/CaCO3 nanobiocomposite films: study of fire retardant, thermal resistant, gas barrier and biodegradable properties. Polymer-Plast Technol Eng 53:1664–1670CrossRef
50.
go back to reference Klotzbach T, Watt M, Ansari Y, Minteer SD (2006) Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization. J Membr Sci 282:276–283CrossRef Klotzbach T, Watt M, Ansari Y, Minteer SD (2006) Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization. J Membr Sci 282:276–283CrossRef
51.
go back to reference Klotzbach TL, Watt M, Ansari Y, Minteer SD (2008) Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion® polymers. J Membr Sci 311:81–88CrossRef Klotzbach TL, Watt M, Ansari Y, Minteer SD (2008) Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion® polymers. J Membr Sci 311:81–88CrossRef
52.
go back to reference Korol J, Burchart-Korol D, Pichlak M (2016) Expansion of environmental impact assessment for eco-efficiency evaluation of biocomposites for industrial application. J Clean Prod 113:144–152CrossRef Korol J, Burchart-Korol D, Pichlak M (2016) Expansion of environmental impact assessment for eco-efficiency evaluation of biocomposites for industrial application. J Clean Prod 113:144–152CrossRef
53.
go back to reference Krebsz M, Pasinszki T, Tung TT, Losic D (2017) Development of vapor/gas sensors from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 385–403 Krebsz M, Pasinszki T, Tung TT, Losic D (2017) Development of vapor/gas sensors from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 385–403
54.
go back to reference Li Z, Gu X, Lou S, Zheng Y (2008) The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29:1329–1344CrossRef Li Z, Gu X, Lou S, Zheng Y (2008) The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29:1329–1344CrossRef
55.
go back to reference Lin L, Fu F, Qin L (2017) Cellulose fiber-based high strength composites. In: Fan M, Fu F (eds) Advanced high strength natural fibre composites in construction. Elsevier, pp 179–203 Lin L, Fu F, Qin L (2017) Cellulose fiber-based high strength composites. In: Fan M, Fu F (eds) Advanced high strength natural fibre composites in construction. Elsevier, pp 179–203
56.
go back to reference Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72:R39–R55CrossRef Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72:R39–R55CrossRef
57.
go back to reference Meier M (2014) Sustainable polymers: reduced environmental impact, renewable raw materials and catalysis. Green Chem 16:1672CrossRef Meier M (2014) Sustainable polymers: reduced environmental impact, renewable raw materials and catalysis. Green Chem 16:1672CrossRef
58.
go back to reference Mendes RG, Bachmatiuk A, Büchner B, Cuniberti G, Rümmeli MH (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem, B 1:401–428CrossRef Mendes RG, Bachmatiuk A, Büchner B, Cuniberti G, Rümmeli MH (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem, B 1:401–428CrossRef
59.
go back to reference Mendes RG, Koch B, Bachmatiuk A, Ma X, Sanchez S, Damm C, Schmidt OG, Gemming T, Eckert J, Rümmeli MH (2015) A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. Journal Mater Chem B 3:2522–2529CrossRef Mendes RG, Koch B, Bachmatiuk A, Ma X, Sanchez S, Damm C, Schmidt OG, Gemming T, Eckert J, Rümmeli MH (2015) A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. Journal Mater Chem B 3:2522–2529CrossRef
60.
go back to reference Mohanty F, Swain SK (2017) Bionanocomposites for food packaging applications. In: Oprea AE, Grumezescu AM (eds) Nanotechnology applications in food. Academic Press, pp 363–379 Mohanty F, Swain SK (2017) Bionanocomposites for food packaging applications. In: Oprea AE, Grumezescu AM (eds) Nanotechnology applications in food. Academic Press, pp 363–379
61.
go back to reference Mohiuddin M, Kumar B, Haque S (2017) biopolymer composites in photovoltaics and photodetectors. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 459–486 Mohiuddin M, Kumar B, Haque S (2017) biopolymer composites in photovoltaics and photodetectors. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 459–486
62.
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
63.
go back to reference Muthumeenal A, Pethaiah SS, Nagendran A (2017) Biopolymer composites in fuel cells. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 185–217 Muthumeenal A, Pethaiah SS, Nagendran A (2017) Biopolymer composites in fuel cells. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 185–217
64.
go back to reference Nagasawa S, Yajima D, Torimitsu S, Abe H, Iwase H (2014) Fatal water intoxication during olanzapine treatment: a case report. Leg Med 16:89–91CrossRef Nagasawa S, Yajima D, Torimitsu S, Abe H, Iwase H (2014) Fatal water intoxication during olanzapine treatment: a case report. Leg Med 16:89–91CrossRef
65.
go back to reference Okonkwo PC, Collins E, Okonkwo E (2017) Application of biopolymer composites in super capacitor. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 487–503 Okonkwo PC, Collins E, Okonkwo E (2017) Application of biopolymer composites in super capacitor. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 487–503
66.
go back to reference Oksman K, Mathew AP, Sain M (2009) Novel bionanocomposites: processing, properties and potential applications. Plast Rubber Compos 38:396–405CrossRef Oksman K, Mathew AP, Sain M (2009) Novel bionanocomposites: processing, properties and potential applications. Plast Rubber Compos 38:396–405CrossRef
67.
go back to reference Oliveira AS, Alcântara ACS, Pergher SBC (2017) Bionanocomposite systems based on montmorillonite and biopolymers for the controlled release of olanzapine. Mater Sci Eng, C 75:1250–1258CrossRef Oliveira AS, Alcântara ACS, Pergher SBC (2017) Bionanocomposite systems based on montmorillonite and biopolymers for the controlled release of olanzapine. Mater Sci Eng, C 75:1250–1258CrossRef
68.
go back to reference Park S-B, Lih E, Park K-S, Joung YK, Han DK (2017) Biopolymer-based functional composites for medical applications. Prog Polym Sci 68:77–105CrossRef Park S-B, Lih E, Park K-S, Joung YK, Han DK (2017) Biopolymer-based functional composites for medical applications. Prog Polym Sci 68:77–105CrossRef
69.
go back to reference Pattanashetti NA, Heggannavar GB, Kariduraganavar MY (2017) Smart biopolymers and their biomedical applications. Procedia Manufact 12:263–279CrossRef Pattanashetti NA, Heggannavar GB, Kariduraganavar MY (2017) Smart biopolymers and their biomedical applications. Procedia Manufact 12:263–279CrossRef
70.
go back to reference Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198CrossRef Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198CrossRef
71.
go back to reference Pavlović M, Ćosović V, Pavlović M, Bojanić V, Nikolić N, Aleksić R (2012) Electrical conductivity of lignocellulose composites loaded with electrodeposited copper powders. Part II. Influence of particle size on percolation threshold. Int J Electrochem Sci 7:8883–8893 Pavlović M, Ćosović V, Pavlović M, Bojanić V, Nikolić N, Aleksić R (2012) Electrical conductivity of lignocellulose composites loaded with electrodeposited copper powders. Part II. Influence of particle size on percolation threshold. Int J Electrochem Sci 7:8883–8893
72.
go back to reference Pavlović M, Pavlović M, Panić V, Talijan N, Vasiljević L, Tomić M (2012) Electrical conductivity of lignocellulose composites loaded with electrodeposited copper powders. Part III. Influence of particle morphology on appearance of electrical conductive layers. Int J Electrochem Sci 7:8894–8904 Pavlović M, Pavlović M, Panić V, Talijan N, Vasiljević L, Tomić M (2012) Electrical conductivity of lignocellulose composites loaded with electrodeposited copper powders. Part III. Influence of particle morphology on appearance of electrical conductive layers. Int J Electrochem Sci 7:8894–8904
73.
go back to reference Persico P, Ambrogi V, Carfagna C, Cerruti P, Ferrocino I, Mauriello G (2009) Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym Eng Sci 49:1447–1455CrossRef Persico P, Ambrogi V, Carfagna C, Cerruti P, Ferrocino I, Mauriello G (2009) Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym Eng Sci 49:1447–1455CrossRef
74.
go back to reference Pinto G, Maaroufi AK, Benavente R, Pereña JM (2011) Electrical conductivity of urea–formaldehyde–cellulose composites loaded with copper. Polym Compos 32:193–198CrossRef Pinto G, Maaroufi AK, Benavente R, Pereña JM (2011) Electrical conductivity of urea–formaldehyde–cellulose composites loaded with copper. Polym Compos 32:193–198CrossRef
75.
go back to reference Ponnamma D, Guo Q, Krupa I, Al-Maadeed MAS, Varughese K, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phy Chem Chem Phy 17:3954–3981CrossRef Ponnamma D, Guo Q, Krupa I, Al-Maadeed MAS, Varughese K, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phy Chem Chem Phy 17:3954–3981CrossRef
76.
go back to reference Ponnamma D, Sadasivuni K, Almaadeed M (2017) Introduction of biopolymer composites: what to do in electronics? In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 1–12 Ponnamma D, Sadasivuni K, Almaadeed M (2017) Introduction of biopolymer composites: what to do in electronics? In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 1–12
77.
go back to reference Ponnamma D, Sadasivuni KK, Wan C, Thomas S, Alma’adeed MA-A (2015) Flexible and stretchable electronic composites. Springer International Publishing, Switzerland Ponnamma D, Sadasivuni KK, Wan C, Thomas S, Alma’adeed MA-A (2015) Flexible and stretchable electronic composites. Springer International Publishing, Switzerland
78.
go back to reference Prusty G, Swain SK (2013) Dispersion of multiwalled carbon nanotubes in polyacrylonitrile-co-starch copolymer matrix for enhancement of electrical, thermal, and gas barrier properties. Polym Compos 34:330–334CrossRef Prusty G, Swain SK (2013) Dispersion of multiwalled carbon nanotubes in polyacrylonitrile-co-starch copolymer matrix for enhancement of electrical, thermal, and gas barrier properties. Polym Compos 34:330–334CrossRef
79.
go back to reference Puiggalí J, Katsarava R (2017) Bionanocomposites. In: Jlassi K, Chehimi MM, Thomas S (eds) Clay-polymer nanocomposites. Elsevier, pp 239–272 Puiggalí J, Katsarava R (2017) Bionanocomposites. In: Jlassi K, Chehimi MM, Thomas S (eds) Clay-polymer nanocomposites. Elsevier, pp 239–272
80.
go back to reference Rajan M, Dharman G, Sumathra M (2017) Development of microwave absorbers from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 231–253 Rajan M, Dharman G, Sumathra M (2017) Development of microwave absorbers from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 231–253
81.
go back to reference Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st-century materials world. Prog Mater Sci 50:962–1079CrossRef Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st-century materials world. Prog Mater Sci 50:962–1079CrossRef
82.
go back to reference Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652CrossRef Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652CrossRef
83.
go back to reference Rovera C, Cozzolino CA, Ghaani M, Morrone D, Olsson RT, Farris S (2018) Mechanical behavior of biopolymer composite coatings on plastic films by depth-sensing indentation—a nanoscale study. J Colloid Interface Sci 512:638–646CrossRef Rovera C, Cozzolino CA, Ghaani M, Morrone D, Olsson RT, Farris S (2018) Mechanical behavior of biopolymer composite coatings on plastic films by depth-sensing indentation—a nanoscale study. J Colloid Interface Sci 512:638–646CrossRef
84.
go back to reference Saini RK, Bajpai AK, Jain E (2018) Advances in bionanocomposites for biomedical applications. In: Shimpi NG (ed) Biodegradable and biocompatible polymer composites. Woodhead Publishing, pp 379–399 Saini RK, Bajpai AK, Jain E (2018) Advances in bionanocomposites for biomedical applications. In: Shimpi NG (ed) Biodegradable and biocompatible polymer composites. Woodhead Publishing, pp 379–399
85.
go back to reference Sawant SN (2017) Development of biosensors from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 353–383 Sawant SN (2017) Development of biosensors from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 353–383
86.
go back to reference Singh R, Bhattacharya B, Rhee H-W, Singh PK (2015) Solid gellan gum polymer electrolyte for energy application. Int J Hydrogen Energy 40:9365–9372CrossRef Singh R, Bhattacharya B, Rhee H-W, Singh PK (2015) Solid gellan gum polymer electrolyte for energy application. Int J Hydrogen Energy 40:9365–9372CrossRef
87.
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
88.
go back to reference Slowing II, Trewyn BG, Giri S, Lin VY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Func Mater 17:1225–1236CrossRef Slowing II, Trewyn BG, Giri S, Lin VY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Func Mater 17:1225–1236CrossRef
89.
go back to reference Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRef Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRef
90.
go back to reference Sowjanya J, Singh J, Mohita T, Saravanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf, B 109:294–300CrossRef Sowjanya J, Singh J, Mohita T, Saravanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf, B 109:294–300CrossRef
91.
go back to reference Subramanian V, Varade D (2017) Thermoelectric properties of biopolymer composites. In: Biopolymer composites in electronics, pp 155–183CrossRef Subramanian V, Varade D (2017) Thermoelectric properties of biopolymer composites. In: Biopolymer composites in electronics, pp 155–183CrossRef
92.
go back to reference Sun F, Zhou H, Lee J (2011) Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 7:3813–3828CrossRef Sun F, Zhou H, Lee J (2011) Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 7:3813–3828CrossRef
93.
go back to reference Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68:408–420CrossRef Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68:408–420CrossRef
94.
go back to reference Sznitko L, Szukalski A, Cyprych K, Karpinski P, Miniewicz A, Mysliwiec J (2013) Surface roughness induced random lasing in bio-polymeric dye doped film. Chem Phys Lett 576:31–34CrossRef Sznitko L, Szukalski A, Cyprych K, Karpinski P, Miniewicz A, Mysliwiec J (2013) Surface roughness induced random lasing in bio-polymeric dye doped film. Chem Phys Lett 576:31–34CrossRef
95.
go back to reference Thakur VK, Singha AS (2015) Surface modification of biopolymers. Wiley, pp 1–418 Thakur VK, Singha AS (2015) Surface modification of biopolymers. Wiley, pp 1–418
97.
go back to reference Vuong J, Hellmich C (2011) Bone fibrillogenesis and mineralization: quantitative analysis and implications for tissue elasticity. J Theor Biol 287:115–130CrossRef Vuong J, Hellmich C (2011) Bone fibrillogenesis and mineralization: quantitative analysis and implications for tissue elasticity. J Theor Biol 287:115–130CrossRef
98.
go back to reference Wan Y, Creber KA, Peppley B, Bui VT (2003) Ionic conductivity of chitosan membranes. Polymer 44:1057–1065CrossRef Wan Y, Creber KA, Peppley B, Bui VT (2003) Ionic conductivity of chitosan membranes. Polymer 44:1057–1065CrossRef
99.
go back to reference Wawrzycka-Gorczyca I, Borowski P, Osypiuk-Tomasik J, Mazur L, Koziol AE (2007) Crystal structure of olanzapine and its solvates. Part 3. Two and three-component solvates with water, ethanol, butan-2-ol and dichloromethane. J Mol Struct 830:188–197CrossRef Wawrzycka-Gorczyca I, Borowski P, Osypiuk-Tomasik J, Mazur L, Koziol AE (2007) Crystal structure of olanzapine and its solvates. Part 3. Two and three-component solvates with water, ethanol, butan-2-ol and dichloromethane. J Mol Struct 830:188–197CrossRef
100.
go back to reference Winey KI, Kashiwagi T, Mu M (2007) Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull 32:348–353CrossRef Winey KI, Kashiwagi T, Mu M (2007) Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull 32:348–353CrossRef
101.
go back to reference Xiong R, Grant AM, Ma R, Zhang S, Tsukruk VV (2018) Naturally-derived biopolymer nanocomposites: interfacial design, properties and emerging applications. Mater Sci Eng, R 125:1–41CrossRef Xiong R, Grant AM, Ma R, Zhang S, Tsukruk VV (2018) Naturally-derived biopolymer nanocomposites: interfacial design, properties and emerging applications. Mater Sci Eng, R 125:1–41CrossRef
102.
go back to reference Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040CrossRef Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040CrossRef
103.
go back to reference Xue Q (2004) The influence of particle shape and size on electric conductivity of metal–polymer composites. Eur Polym J 40:323–327CrossRef Xue Q (2004) The influence of particle shape and size on electric conductivity of metal–polymer composites. Eur Polym J 40:323–327CrossRef
104.
go back to reference Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70(1):R1–R10CrossRef Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70(1):R1–R10CrossRef
105.
go back to reference Yatigala NS, Bajwa DS, Bajwa SG (2018) Compatibilization improves physico-mechanical properties of biodegradable biobased polymer composites. Compos A Appl Sci Manuf 107:315–325CrossRef Yatigala NS, Bajwa DS, Bajwa SG (2018) Compatibilization improves physico-mechanical properties of biodegradable biobased polymer composites. Compos A Appl Sci Manuf 107:315–325CrossRef
106.
go back to reference Zhu Z, Ye C, Fu W, Wu H (2016) Improvement in mechanical and thermal properties of polylactic acid biocomposites due to the addition of hybrid sisal fibers and diatomite particles. Int J Polym Anal Charact 21:365–377CrossRef Zhu Z, Ye C, Fu W, Wu H (2016) Improvement in mechanical and thermal properties of polylactic acid biocomposites due to the addition of hybrid sisal fibers and diatomite particles. Int J Polym Anal Charact 21:365–377CrossRef
Metadata
Title
Biopolymer Composites and Bionanocomposites for Energy Applications
Authors
Idowu David Ibrahim
Emmanuel Rotimi Sadiku
Tamba Jamiru
Yskandar Hamam
Yasser Alayli
Azunna Agwo Eze
Williams Kehinde Kupolati
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8063-1_14

Premium Partners