Skip to main content
Top

2020 | OriginalPaper | Chapter

24. Biotechnological Strategies for Enhanced Production of Biofuels from Lignocellulosic Biomass

Authors : K. K. Brar, B. S. Chadha, S. K. Brar, P. Singh

Published in: Valorization of Biomass to Value-Added Commodities

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Depleting fossil fuel reserves and increased climate changes have led the research community to look for sustainable and environment-friendly energy sources. Agricultural/forest feedstock has a tremendous potential to contribute for the production of biofuels and to reduce carbon dioxide emission. However, the biological transformation of lignocellulosic biomass is complicated due to their complex structure. Therefore, pretreatment, enzymatic hydrolysis, and fermentation technologies were being investigated for the conversion of lignocellulosic biomass into biofuels. Various factors that adversely affect ethanol production include presence of various fermentation inhibitors (furfurals, formic acid, and acetic acid) and presence of hexoses (glucose and mannose) that compete with or inhibit xylose utilization. This study compares and scrutinizes the various advanced biotechnological strategies applied on microbes such as strain adaptation, mutagenesis, genome shuffling, and metabolic engineering to enhance sugars and biofuel (bioethanol/biodiesel) production. Further, evaluation of BOLT-ON technology was carried out to study the impact of co-fermentation of sugars derived from molasses and lignocellulosics on ethanol production. Thus, it was concluded that co-utilization of hexoses and pentoses streams can be carried out by using advanced microbial strains that must be adapted to high sugars and ethanol concentration as well as fermentation inhibitors in future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.S. Adav, A. Ravindran, S.K. Sze, Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. J. Proteome 75, 1493–1504 (2012)CrossRef S.S. Adav, A. Ravindran, S.K. Sze, Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. J. Proteome 75, 1493–1504 (2012)CrossRef
2.
go back to reference J. Larsen, H.M. Stergaard, L. Thirup, Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy 46, 36–45 (2012)CrossRef J. Larsen, H.M. Stergaard, L. Thirup, Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy 46, 36–45 (2012)CrossRef
3.
go back to reference E. Warner, A. Schwab, 2016 Survey of Non-starch Alcohol and Renewable Hydrocarbon Biofuels Producers (National Renewable Energy Laboratory, Golden, 2017), pp. 6–10CrossRef E. Warner, A. Schwab, 2016 Survey of Non-starch Alcohol and Renewable Hydrocarbon Biofuels Producers (National Renewable Energy Laboratory, Golden, 2017), pp. 6–10CrossRef
4.
go back to reference M. Valdivia, J.L. Galan, J. Laffarga, et al., Biofuels 2020: biorefineries based on lignocellulosic materials. Microb. Biotechnol. 9, 585–594 (2016)CrossRef M. Valdivia, J.L. Galan, J. Laffarga, et al., Biofuels 2020: biorefineries based on lignocellulosic materials. Microb. Biotechnol. 9, 585–594 (2016)CrossRef
5.
go back to reference K. Igarashi, T. Uchihashi, A. Koivula, et al., Traffic jams reduce hydrolytic efficiency of cellulases on cellulose surface. Science 333, 1279–1282 (2011)CrossRef K. Igarashi, T. Uchihashi, A. Koivula, et al., Traffic jams reduce hydrolytic efficiency of cellulases on cellulose surface. Science 333, 1279–1282 (2011)CrossRef
6.
go back to reference C.M. Payne, B.C. Knott, H.B. Mayes, et al., Fungal cellulases. Chem. Rev. 115, 1308–1448 (2015)CrossRef C.M. Payne, B.C. Knott, H.B. Mayes, et al., Fungal cellulases. Chem. Rev. 115, 1308–1448 (2015)CrossRef
7.
go back to reference F.L. Motta, C.C.P. Andrade, M.H.A. Santana, A review of xylanase production by the fermentation of xylan: classification, characterization and applications, in Sustainable Degradation of Lignocellulosic Biomass – Techniques, Applications and Commercialization, ed. by A. Chandel, (IntechOpen, London, 2013), pp. 251–275 F.L. Motta, C.C.P. Andrade, M.H.A. Santana, A review of xylanase production by the fermentation of xylan: classification, characterization and applications, in Sustainable Degradation of Lignocellulosic Biomass – Techniques, Applications and Commercialization, ed. by A. Chandel, (IntechOpen, London, 2013), pp. 251–275
8.
go back to reference S.L. Marinai, Exploring methods for functional studies of CBM33-type lytic polysaccharide monooxygenases, Master’s thesis, Norwegian University of Life Sciences, Ås, 2013 S.L. Marinai, Exploring methods for functional studies of CBM33-type lytic polysaccharide monooxygenases, Master’s thesis, Norwegian University of Life Sciences, Ås, 2013
9.
go back to reference A. Levasseur, E. Drula, V. Lombard, et al., Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 1–14 (2013)CrossRef A. Levasseur, E. Drula, V. Lombard, et al., Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 1–14 (2013)CrossRef
10.
go back to reference A. Villares, C. Moreau, C. Bennati-Granier, et al., Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci. Rep. 7, 40262 (2017)CrossRef A. Villares, C. Moreau, C. Bennati-Granier, et al., Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci. Rep. 7, 40262 (2017)CrossRef
11.
go back to reference P.V. Harris, D. Welner, K.C. McFarland, et al., Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemist 49, 3305–3316 (2010)CrossRef P.V. Harris, D. Welner, K.C. McFarland, et al., Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemist 49, 3305–3316 (2010)CrossRef
12.
go back to reference S. Jung, Y. Song, H.M. Kim, et al., Enhanced lignocellulosic biomass hydrolysis by oxidative lytic polysaccharide monooxygenases (LPMOs) GH61 from Gloeophyllum trabeum. Enzym. Microb. Technol. 77, 38–45 (2015)CrossRef S. Jung, Y. Song, H.M. Kim, et al., Enhanced lignocellulosic biomass hydrolysis by oxidative lytic polysaccharide monooxygenases (LPMOs) GH61 from Gloeophyllum trabeum. Enzym. Microb. Technol. 77, 38–45 (2015)CrossRef
13.
go back to reference R.N. Maeda, V.I. Serpa, V.A.L. Rocha, et al., Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem. 46, 1196–1201 (2011)CrossRef R.N. Maeda, V.I. Serpa, V.A.L. Rocha, et al., Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem. 46, 1196–1201 (2011)CrossRef
14.
go back to reference X. Fang, S. Yano, H. Inoue, et al., Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J. Biosci. Bioeng. 107, 256–261 (2009)CrossRef X. Fang, S. Yano, H. Inoue, et al., Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J. Biosci. Bioeng. 107, 256–261 (2009)CrossRef
15.
go back to reference D. Klein-Marcuschamer, P. Oleskowicz-Popiel, B.A. Simmons, et al., The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. 109, 1083–1087 (2012)CrossRef D. Klein-Marcuschamer, P. Oleskowicz-Popiel, B.A. Simmons, et al., The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. 109, 1083–1087 (2012)CrossRef
16.
go back to reference L.P. Xiao, Z.J. Shi, F. Xu, et al., Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: evaluation of the process as a conversion method in a biorefinery concept. Bioresour. Technol. 135, 3–81 (2012) L.P. Xiao, Z.J. Shi, F. Xu, et al., Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: evaluation of the process as a conversion method in a biorefinery concept. Bioresour. Technol. 135, 3–81 (2012)
17.
go back to reference Y. Sun, J.Y. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)CrossRef Y. Sun, J.Y. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)CrossRef
18.
go back to reference A.T.W.M. Hendriks, G. Zeeman, Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)CrossRef A.T.W.M. Hendriks, G. Zeeman, Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)CrossRef
19.
go back to reference P. Kumar, D.M. Barrett, M.J. Delwiche, et al., Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)CrossRef P. Kumar, D.M. Barrett, M.J. Delwiche, et al., Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)CrossRef
20.
go back to reference P. Binod, K.U. Janu, R. Sindhu, et al., Hydrolysis of lignocellulosic biomass for bioethanol production, in Biofuels, (Academic Press, Burlington, 2011), pp. 229–250CrossRef P. Binod, K.U. Janu, R. Sindhu, et al., Hydrolysis of lignocellulosic biomass for bioethanol production, in Biofuels, (Academic Press, Burlington, 2011), pp. 229–250CrossRef
21.
go back to reference L.P. Ramos, The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26, 863–871 (2003)CrossRef L.P. Ramos, The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26, 863–871 (2003)CrossRef
22.
go back to reference C. Liu, C.E. Wyman, Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 96, 1978–1885 (2005)CrossRef C. Liu, C.E. Wyman, Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 96, 1978–1885 (2005)CrossRef
23.
go back to reference M. Pedersen, K.S. Johansen, A.S. Meyer, Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol. Biofuels 4, 1–10 (2011)CrossRef M. Pedersen, K.S. Johansen, A.S. Meyer, Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol. Biofuels 4, 1–10 (2011)CrossRef
24.
go back to reference D.J. Schell, J. Farmer, M. Newman, J.D. McMillan, Dilute–sulfuric acid pretreatment of corn stover in pilot-scale reactor. Appl. Biochem. Biotechnol. 105, 69–85 (2003)CrossRef D.J. Schell, J. Farmer, M. Newman, J.D. McMillan, Dilute–sulfuric acid pretreatment of corn stover in pilot-scale reactor. Appl. Biochem. Biotechnol. 105, 69–85 (2003)CrossRef
25.
go back to reference Y. Zhu, Y.Y. Lee, R.T. Elander, Dilute-acid pretreatment of corn stover using a highsolids percolation reactor. Appl. Biochem. Biotechnol. 117, 103–114 (2004)CrossRef Y. Zhu, Y.Y. Lee, R.T. Elander, Dilute-acid pretreatment of corn stover using a highsolids percolation reactor. Appl. Biochem. Biotechnol. 117, 103–114 (2004)CrossRef
26.
go back to reference T.A. Lloyd, C.E. Wyman, Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96, 1967–1977 (2005)CrossRef T.A. Lloyd, C.E. Wyman, Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96, 1967–1977 (2005)CrossRef
27.
go back to reference B.C. Saha, L.B. Iten, M.A. Cotta, et al., Dilute acid pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biotechnol. Prog. 21, 816–822 (2005)CrossRef B.C. Saha, L.B. Iten, M.A. Cotta, et al., Dilute acid pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biotechnol. Prog. 21, 816–822 (2005)CrossRef
28.
go back to reference A. Demirbas, Products from lignocellulosic materials via degradation processes. Energy Sources 30, 27–37 (2008)CrossRef A. Demirbas, Products from lignocellulosic materials via degradation processes. Energy Sources 30, 27–37 (2008)CrossRef
29.
go back to reference M. Tutt, T. Kikas, J. Olt, Influence of different pretreatment methods on bioethanol production from wheat straw. Agric. Res. Biosys. Eng. 1, 269–276 (2012) M. Tutt, T. Kikas, J. Olt, Influence of different pretreatment methods on bioethanol production from wheat straw. Agric. Res. Biosys. Eng. 1, 269–276 (2012)
30.
go back to reference M. Galbe, G. Zacchi, A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59, 618–628 (2002)CrossRef M. Galbe, G. Zacchi, A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59, 618–628 (2002)CrossRef
31.
go back to reference Y. Zhang, Y.Y. Liu, J.L. Xu, et al., High solid and low enzyme loading based saccharification of agricultural biomass. BioResources 7, 345–353 (2012) Y. Zhang, Y.Y. Liu, J.L. Xu, et al., High solid and low enzyme loading based saccharification of agricultural biomass. BioResources 7, 345–353 (2012)
32.
go back to reference Z. Zhang, I.M. O’Hara, W.O.S. Doherty, Pretreatment of sugarcane bagasse by acid-catalyzed process in aqueous ionic liquid solutions. Bioresour. Technol. 120, 149–156 (2012)CrossRef Z. Zhang, I.M. O’Hara, W.O.S. Doherty, Pretreatment of sugarcane bagasse by acid-catalyzed process in aqueous ionic liquid solutions. Bioresour. Technol. 120, 149–156 (2012)CrossRef
33.
go back to reference E.W. Jennings, D.J. Schell, Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour. Technol. 102, 1240–1245 (2011)CrossRef E.W. Jennings, D.J. Schell, Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour. Technol. 102, 1240–1245 (2011)CrossRef
34.
go back to reference T.H. Kim, J.S. Kim, C. Sunwoo, et al., Pretreatment of corn stover by aqueous ammonia. Bioresour. Technol. 90, 39–47 (2003)CrossRef T.H. Kim, J.S. Kim, C. Sunwoo, et al., Pretreatment of corn stover by aqueous ammonia. Bioresour. Technol. 90, 39–47 (2003)CrossRef
35.
go back to reference S. Kim, M.T. Holtzapple, Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 1994–2006 (2005)CrossRef S. Kim, M.T. Holtzapple, Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 1994–2006 (2005)CrossRef
36.
go back to reference R. Gupta, Y.Y. Lee, Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnol. Prog. 26, 1180–1186 (2010) R. Gupta, Y.Y. Lee, Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnol. Prog. 26, 1180–1186 (2010)
37.
go back to reference J.S. Kim, H. Kim, J.S. Lee, et al., Pretreatment characteristics of waste oak wood by ammonia percolation. Appl. Biochem. Biotechnol. 148, 15–22 (2008)CrossRef J.S. Kim, H. Kim, J.S. Lee, et al., Pretreatment characteristics of waste oak wood by ammonia percolation. Appl. Biochem. Biotechnol. 148, 15–22 (2008)CrossRef
38.
go back to reference P. Alvira, E. Tomas-Pejo, M. Ballesteros, et al., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010)CrossRef P. Alvira, E. Tomas-Pejo, M. Ballesteros, et al., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010)CrossRef
39.
go back to reference F. Teymouri, L. Laureano-Perez, H. Alizadeh, et al., Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 2014–2018 (2005)CrossRef F. Teymouri, L. Laureano-Perez, H. Alizadeh, et al., Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 2014–2018 (2005)CrossRef
40.
go back to reference N. Eqra, Y. Ajabshirchi, M. Sarshar, Effect of ozonolysis pretreatment on enzymatic digestibility of sugarcane bagasse. Agric. Eng. Int. CIGR J. 16, 151–156 (2014) N. Eqra, Y. Ajabshirchi, M. Sarshar, Effect of ozonolysis pretreatment on enzymatic digestibility of sugarcane bagasse. Agric. Eng. Int. CIGR J. 16, 151–156 (2014)
41.
go back to reference X. Pan, C. Arato, N. Gilkes, et al., Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel grade ethanol and co-products. Biotechnol. Bioeng. 90, 473–481 (2005)CrossRef X. Pan, C. Arato, N. Gilkes, et al., Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel grade ethanol and co-products. Biotechnol. Bioeng. 90, 473–481 (2005)CrossRef
42.
go back to reference X. Zhao, K. Cheng, D. Liu, Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 82, 815–827 (2009)CrossRef X. Zhao, K. Cheng, D. Liu, Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 82, 815–827 (2009)CrossRef
43.
go back to reference N. Park, H.Y. Kim, B.W. Koo, et al., Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 101, 7046–7053 (2010)CrossRef N. Park, H.Y. Kim, B.W. Koo, et al., Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 101, 7046–7053 (2010)CrossRef
44.
go back to reference J.-W. Lee, B.-W. Koo, J.-W. Choi, et al., Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour. Technol. 99, 2736–2741 (2007)CrossRef J.-W. Lee, B.-W. Koo, J.-W. Choi, et al., Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour. Technol. 99, 2736–2741 (2007)CrossRef
45.
go back to reference J.J. Yoon, C.J. Cha, Y.S. Kim, et al., The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J. Microbiol. Biotechnol. 17, 800–805 (2007) J.J. Yoon, C.J. Cha, Y.S. Kim, et al., The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J. Microbiol. Biotechnol. 17, 800–805 (2007)
46.
go back to reference L.G. Ljungdahl, The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann. N. Y. Acad. Sci. 1125, 308–321 (2008)CrossRef L.G. Ljungdahl, The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann. N. Y. Acad. Sci. 1125, 308–321 (2008)CrossRef
47.
go back to reference M. Dashtban, H. Schraft, T.A. Syed, et al., Fungal biodegradation and enzymatic modification of lignin. J. Int. Biochem. Mol. Biol. 1, 36–50 (2010) M. Dashtban, H. Schraft, T.A. Syed, et al., Fungal biodegradation and enzymatic modification of lignin. J. Int. Biochem. Mol. Biol. 1, 36–50 (2010)
48.
go back to reference W.V. Balan, L. da Costa Sousa, S.P.S. Chundawat, et al., Mushroom spent straw: a potential substrate for an ethanol-based biorefinary. J. Ind. Microbiol. Biotechnol. 35, 293–301 (2008)CrossRef W.V. Balan, L. da Costa Sousa, S.P.S. Chundawat, et al., Mushroom spent straw: a potential substrate for an ethanol-based biorefinary. J. Ind. Microbiol. Biotechnol. 35, 293–301 (2008)CrossRef
49.
go back to reference K.E. Hammel, Fungal degradation of lignin, in Driven by Nature: Plant Litter Quality and Decomposition, (CAB International, Wallingford, 1997), pp. 33–45 K.E. Hammel, Fungal degradation of lignin, in Driven by Nature: Plant Litter Quality and Decomposition, (CAB International, Wallingford, 1997), pp. 33–45
50.
go back to reference R.C. Rajak, R. Banerjee, Enzymatic delignification: an attempt for lignin degradation from lignocellulosic feedstock. RSC Adv. 5, 75281–75291 (2015)CrossRef R.C. Rajak, R. Banerjee, Enzymatic delignification: an attempt for lignin degradation from lignocellulosic feedstock. RSC Adv. 5, 75281–75291 (2015)CrossRef
51.
go back to reference H. Jorgensen, J.B. Kristensen, C. Felby, Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Biorefin. 1, 119–134 (2007)CrossRef H. Jorgensen, J.B. Kristensen, C. Felby, Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Biorefin. 1, 119–134 (2007)CrossRef
52.
go back to reference A. Modenbach, Sodium hydroxide pretreatment of corn stover and subsequent enzymatic hydrolysis: an investigation of yields, kinetic modeling and glucose recovery, Thesis and Dissertations-Biosystems and Agricultural Engineering, University of Kentucky, UKnowledge, 2013 A. Modenbach, Sodium hydroxide pretreatment of corn stover and subsequent enzymatic hydrolysis: an investigation of yields, kinetic modeling and glucose recovery, Thesis and Dissertations-Biosystems and Agricultural Engineering, University of Kentucky, UKnowledge, 2013
53.
go back to reference R. Koppram, E. Tomas-Pejo, C. Xiros, et al., Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol. 32, 46–53 (2014)CrossRef R. Koppram, E. Tomas-Pejo, C. Xiros, et al., Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol. 32, 46–53 (2014)CrossRef
54.
go back to reference L. Olsson, H.R. Soerensen, B.P. Dam, et al., Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 129–132, 117–129 (2006)CrossRef L. Olsson, H.R. Soerensen, B.P. Dam, et al., Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 129–132, 117–129 (2006)CrossRef
55.
go back to reference J.C. Lopez-Linares, I. Romero, C. Cara, et al., Experimental study on ethanol production from hydrothermal pretreated rapeseed straw by simultaneous saccharification and fermentation. J. Chem. Technol. Biotechnol. 89, 104–110 (2014)CrossRef J.C. Lopez-Linares, I. Romero, C. Cara, et al., Experimental study on ethanol production from hydrothermal pretreated rapeseed straw by simultaneous saccharification and fermentation. J. Chem. Technol. Biotechnol. 89, 104–110 (2014)CrossRef
56.
go back to reference B.S. Dien, M.A. Cotta, T.W. Jeffries, Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63, 258–266 (2003)CrossRef B.S. Dien, M.A. Cotta, T.W. Jeffries, Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63, 258–266 (2003)CrossRef
57.
go back to reference D.L. Goncalves, A. Matsushika, B. Belisa, et al., Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzym. Microb. Technol. 63, 13–20 (2014)CrossRef D.L. Goncalves, A. Matsushika, B. Belisa, et al., Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzym. Microb. Technol. 63, 13–20 (2014)CrossRef
58.
go back to reference L.C. Teixeira, J.C. Linden, H.A. Schroeder, Simultaneous saccharification and co-fermentation of per-acetic acid-pretreated biomass. Appl. Biochem. Biotechnol. 84–86, 111–127 (2000)CrossRef L.C. Teixeira, J.C. Linden, H.A. Schroeder, Simultaneous saccharification and co-fermentation of per-acetic acid-pretreated biomass. Appl. Biochem. Biotechnol. 84–86, 111–127 (2000)CrossRef
59.
go back to reference M.M. Ishola, M.J. Taherzadeh, Simultaneous saccharification, filtration and fermentation (SSFF): A novel method for bioethanol production from lignocellulosic biomass. Bioresour. Technol. 133, 68–73 (2013)CrossRef M.M. Ishola, M.J. Taherzadeh, Simultaneous saccharification, filtration and fermentation (SSFF): A novel method for bioethanol production from lignocellulosic biomass. Bioresour. Technol. 133, 68–73 (2013)CrossRef
60.
go back to reference J.D. Keasling, Synthetic biology and the development of tools for metabolic engineering. Metabo. Eng. 14, 189–195 (2012)CrossRef J.D. Keasling, Synthetic biology and the development of tools for metabolic engineering. Metabo. Eng. 14, 189–195 (2012)CrossRef
61.
go back to reference M.J. Jin, V. Balan, C. Gunawan, et al., Consolidated bioprocessing (CBP) performance of Clostridium phytofermentanson AFEX-treated corn stover for ethanol production. Biotechnol. Bioeng. 108, 1290–1297 (2011)CrossRef M.J. Jin, V. Balan, C. Gunawan, et al., Consolidated bioprocessing (CBP) performance of Clostridium phytofermentanson AFEX-treated corn stover for ethanol production. Biotechnol. Bioeng. 108, 1290–1297 (2011)CrossRef
62.
go back to reference H. Akinosho, K. Yee, D. Close, et al., The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front. Chem. 2, 1–18 (2014)CrossRef H. Akinosho, K. Yee, D. Close, et al., The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front. Chem. 2, 1–18 (2014)CrossRef
63.
go back to reference V. Mbaneme, M. Chinn, Consolidated bioprocessing for biofuel production: recent advances. Energy Emiss. Control Technol. 3, 23–44 (2015) V. Mbaneme, M. Chinn, Consolidated bioprocessing for biofuel production: recent advances. Energy Emiss. Control Technol. 3, 23–44 (2015)
64.
go back to reference Z.H. Liu, L. Qin, F. Pang, et al., Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Ind. Crop. Prod. 44, 176–184 (2013)CrossRef Z.H. Liu, L. Qin, F. Pang, et al., Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Ind. Crop. Prod. 44, 176–184 (2013)CrossRef
65.
go back to reference P.W. Madson, Ethanol distillation: the fundamentals, in The Alcohol Textbook, ed. by W. M. Ingledew, D. R. Kelsall, G. D. Austin, C. Kluspies, (Nottingham University Publishers, Nottingham, 2009), pp. 292–297 P.W. Madson, Ethanol distillation: the fundamentals, in The Alcohol Textbook, ed. by W. M. Ingledew, D. R. Kelsall, G. D. Austin, C. Kluspies, (Nottingham University Publishers, Nottingham, 2009), pp. 292–297
66.
go back to reference H.-Z. Chen, Z.-H. Liu, Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng. Life Sci. 17, 489–499 (2016)CrossRef H.-Z. Chen, Z.-H. Liu, Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng. Life Sci. 17, 489–499 (2016)CrossRef
67.
go back to reference C.A. Rezende, M.A. de Lima, P. Maziero, et al., Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol. Biofuels 4, 1–18 (2011)CrossRef C.A. Rezende, M.A. de Lima, P. Maziero, et al., Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol. Biofuels 4, 1–18 (2011)CrossRef
68.
go back to reference N. Shaibani, S. Ghazvini, M.R. Andalibi, et al., Ethanol production from sugarcane bagasse by means of enzymes produced by solid state fermentation method. Int. J. Chem. Mol. Nucl. Mater. Met. Eng. 5, 966–969 (2011) N. Shaibani, S. Ghazvini, M.R. Andalibi, et al., Ethanol production from sugarcane bagasse by means of enzymes produced by solid state fermentation method. Int. J. Chem. Mol. Nucl. Mater. Met. Eng. 5, 966–969 (2011)
69.
go back to reference W.H. Chen, B.L. Pen, C.T. Yu, et al., Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresour. Technol. 102, 2916–2924 (2011)CrossRef W.H. Chen, B.L. Pen, C.T. Yu, et al., Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresour. Technol. 102, 2916–2924 (2011)CrossRef
70.
go back to reference G. Dixit, A.R. Shah, D. Madamwar, et al., High solid saccharification using mild alkali-pretreated rice straw by hyper-cellulolytic fungal strain. Bioresour. Bioprocess. 2, 1–8 (2015)CrossRef G. Dixit, A.R. Shah, D. Madamwar, et al., High solid saccharification using mild alkali-pretreated rice straw by hyper-cellulolytic fungal strain. Bioresour. Bioprocess. 2, 1–8 (2015)CrossRef
71.
go back to reference N.K. Aggarwal, V. Goyal, A. Saini, et al., Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus Niger BK01. 3 Biotech 7, 1–10 (2017)CrossRef N.K. Aggarwal, V. Goyal, A. Saini, et al., Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus Niger BK01. 3 Biotech 7, 1–10 (2017)CrossRef
72.
go back to reference N. Xie, N. Jiang, M. Zhang, et al., Effect of different pretreatment methods of corncob on bioethanol production and enzyme recovery. Cellul. Chem. Technol. 48, 313–319 (2014) N. Xie, N. Jiang, M. Zhang, et al., Effect of different pretreatment methods of corncob on bioethanol production and enzyme recovery. Cellul. Chem. Technol. 48, 313–319 (2014)
73.
go back to reference L. Qin, Z. Liu, M. Jin, et al., High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. Bioresour. Technol. 146, 504–511 (2013)CrossRef L. Qin, Z. Liu, M. Jin, et al., High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. Bioresour. Technol. 146, 504–511 (2013)CrossRef
74.
go back to reference B.D. Bals, C. Gunawan, J. Moore, et al., Enzymatic hydrolysis of pelletized AFEX™-treated corn stover at high solid loadings. Biotechnol. Bioeng. 111, 264–271 (2014)CrossRef B.D. Bals, C. Gunawan, J. Moore, et al., Enzymatic hydrolysis of pelletized AFEX™-treated corn stover at high solid loadings. Biotechnol. Bioeng. 111, 264–271 (2014)CrossRef
75.
go back to reference W. Wang, X. Zhuang, Z. Yuan, et al., High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour. Technol. 108, 252–257 (2012)CrossRef W. Wang, X. Zhuang, Z. Yuan, et al., High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour. Technol. 108, 252–257 (2012)CrossRef
76.
go back to reference L. Wang, R. Templer, R.J. Murphy, High-solids loading enzymatic hydrolysis of waste papers for biofuel production. Appl. Energy 99, 23–31 (2012)CrossRef L. Wang, R. Templer, R.J. Murphy, High-solids loading enzymatic hydrolysis of waste papers for biofuel production. Appl. Energy 99, 23–31 (2012)CrossRef
77.
go back to reference M. Linde, E. Jakobsson, M. Galbe, et al., Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 32, 326–332 (2008)CrossRef M. Linde, E. Jakobsson, M. Galbe, et al., Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 32, 326–332 (2008)CrossRef
78.
go back to reference M. Pedersen, A.S. Meyer, Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol. Prog. 25, 399–408 (2009)CrossRef M. Pedersen, A.S. Meyer, Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol. Prog. 25, 399–408 (2009)CrossRef
79.
go back to reference L. Rosgaard, S. Pedersen, A.S. Meyer, Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Appl. Biochem. Bioethanol. 143, 284–296 (2007)CrossRef L. Rosgaard, S. Pedersen, A.S. Meyer, Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Appl. Biochem. Bioethanol. 143, 284–296 (2007)CrossRef
80.
go back to reference M.P. Garcia-Aparicio, J.M. Oliva, P. Manzanares, et al., Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel 90, 1624–1630 (2011)CrossRef M.P. Garcia-Aparicio, J.M. Oliva, P. Manzanares, et al., Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel 90, 1624–1630 (2011)CrossRef
81.
go back to reference T. Ingram, K. Wormeyer, J.C.I. Lima, et al., Comparison of different pretreatment methods for lignocellulosic materials. Part I: Conversion of rye straw to valuable products. Bioresour. Technol. 102, 5221–5228 (2011)CrossRef T. Ingram, K. Wormeyer, J.C.I. Lima, et al., Comparison of different pretreatment methods for lignocellulosic materials. Part I: Conversion of rye straw to valuable products. Bioresour. Technol. 102, 5221–5228 (2011)CrossRef
82.
go back to reference X. Zhang, W.J. Qin, M.G. Paice, et al., High consistency enzymatic hydrolysis of hardwood substrates. Bioresour. Technol. 100, 5890–5897 (2009)CrossRef X. Zhang, W.J. Qin, M.G. Paice, et al., High consistency enzymatic hydrolysis of hardwood substrates. Bioresour. Technol. 100, 5890–5897 (2009)CrossRef
83.
go back to reference C. Cara, I. Romero, J.M. Oliva, et al., Liquid hot water pretreatment of olive tree pruning residues. Appl. Biochem. Biotechnol. 137, 379–394 (2007) C. Cara, I. Romero, J.M. Oliva, et al., Liquid hot water pretreatment of olive tree pruning residues. Appl. Biochem. Biotechnol. 137, 379–394 (2007)
84.
go back to reference C. Felby, L.G. Thygesen, J.B. Kristensen, et al., Cellulose-water interactions during enzymatic hydrolysis as studied by Time Domain NMR. Cellulose 15, 703–710 (2008)CrossRef C. Felby, L.G. Thygesen, J.B. Kristensen, et al., Cellulose-water interactions during enzymatic hydrolysis as studied by Time Domain NMR. Cellulose 15, 703–710 (2008)CrossRef
85.
go back to reference P. Andric, A.S. Meyer, P.A. Jensen, et al., Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors. Biotechnol. Adv. 28, 407–425 (2010)CrossRef P. Andric, A.S. Meyer, P.A. Jensen, et al., Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors. Biotechnol. Adv. 28, 407–425 (2010)CrossRef
86.
go back to reference H. Jorgensen, J. Vibe-Pedersen, J. Larsen, et al., Liquefaction of lignocellulose at high-solids concentrations. Biotechnol. Bioeng. 96, 862–870 (2006)CrossRef H. Jorgensen, J. Vibe-Pedersen, J. Larsen, et al., Liquefaction of lignocellulose at high-solids concentrations. Biotechnol. Bioeng. 96, 862–870 (2006)CrossRef
87.
go back to reference R.K. Dasari, K. Dunaway, R.E. Berson, A scraped surface bioreactor for enzymatic saccharification of pretreated corn stover slurries. Energy Fuels 23, 492–497 (2009)CrossRef R.K. Dasari, K. Dunaway, R.E. Berson, A scraped surface bioreactor for enzymatic saccharification of pretreated corn stover slurries. Energy Fuels 23, 492–497 (2009)CrossRef
88.
go back to reference H.Z. Chen, Z.H. Liu, Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol. J. 10, 866–885 (2015)CrossRef H.Z. Chen, Z.H. Liu, Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol. J. 10, 866–885 (2015)CrossRef
89.
go back to reference D.B. Hodge, M.N. Karim, D.J. Schell, et al., Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl. Biochem. Biotechnol. 152, 88–107 (2009)CrossRef D.B. Hodge, M.N. Karim, D.J. Schell, et al., Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl. Biochem. Biotechnol. 152, 88–107 (2009)CrossRef
90.
go back to reference R.P. Chandra, K. Au-Yeung, C. Chanis, et al., The influence of pretreatment and enzyme loading on the effectiveness of batch and fed-batch hydrolysis of corn stover. Biotechnol. Prog. 27, 77–85 (2011)CrossRef R.P. Chandra, K. Au-Yeung, C. Chanis, et al., The influence of pretreatment and enzyme loading on the effectiveness of batch and fed-batch hydrolysis of corn stover. Biotechnol. Prog. 27, 77–85 (2011)CrossRef
91.
go back to reference J. Yang, X.P. Zhang, Q.A. Yong, et al., Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration. Bioresour. Technol. 102, 4905–4908 (2011)CrossRef J. Yang, X.P. Zhang, Q.A. Yong, et al., Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration. Bioresour. Technol. 102, 4905–4908 (2011)CrossRef
92.
go back to reference X.S. Yang, S.J. Zhang, Z. Zuo, et al., Ethanol production from the enzymatic hydrolysis of non-detoxified steam exploded corn stalk. Bioresour. Technol. 102, 7840–7844 (2011)CrossRef X.S. Yang, S.J. Zhang, Z. Zuo, et al., Ethanol production from the enzymatic hydrolysis of non-detoxified steam exploded corn stalk. Bioresour. Technol. 102, 7840–7844 (2011)CrossRef
93.
go back to reference K. Brijwani, H.S. Oberoi, P.V. Vadlani, Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 45, 120–128 (2010)CrossRef K. Brijwani, H.S. Oberoi, P.V. Vadlani, Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 45, 120–128 (2010)CrossRef
94.
go back to reference S. Chovau, D. Degrauwe, B.V. Bruggen, Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew. Sust. Energ. Rev. 26, 307–321 (2013)CrossRef S. Chovau, D. Degrauwe, B.V. Bruggen, Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew. Sust. Energ. Rev. 26, 307–321 (2013)CrossRef
95.
go back to reference A. Aden, M. Ruth, K. Ibsen, et al., Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover (National Renewable Energy Laboratory, Golden, 2002)CrossRef A. Aden, M. Ruth, K. Ibsen, et al., Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover (National Renewable Energy Laboratory, Golden, 2002)CrossRef
96.
go back to reference A. Wingren, M. Galbe, C. Roslander, et al., Effect of reduction in yeast and enzyme concentrations in a simultaneous-saccharification-and-fermentation-based bioethanol process: technical and economic evaluation. Appl. Biochem. Biotechnol. 122, 485–499 (2005)CrossRef A. Wingren, M. Galbe, C. Roslander, et al., Effect of reduction in yeast and enzyme concentrations in a simultaneous-saccharification-and-fermentation-based bioethanol process: technical and economic evaluation. Appl. Biochem. Biotechnol. 122, 485–499 (2005)CrossRef
97.
go back to reference P. Sassner, M. Galbe, G. Zacchi, Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32, 422–430 (2008)CrossRef P. Sassner, M. Galbe, G. Zacchi, Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32, 422–430 (2008)CrossRef
98.
go back to reference F.K. Kazi, J.A. Fortman, R.P. Anex, et al., Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89, 20–28 (2010)CrossRef F.K. Kazi, J.A. Fortman, R.P. Anex, et al., Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89, 20–28 (2010)CrossRef
99.
go back to reference S.T. Merino, J. Cherry, Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol. 108, 95–120 (2007) S.T. Merino, J. Cherry, Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol. 108, 95–120 (2007)
100.
go back to reference O. Takimura, T. Yanagida, S. Fujimoto, et al., Estimation of bioethanol production cost from rice straw by on-site enzyme production. J. Jpn. Pet. Inst. 56, 150–155 (2013)CrossRef O. Takimura, T. Yanagida, S. Fujimoto, et al., Estimation of bioethanol production cost from rice straw by on-site enzyme production. J. Jpn. Pet. Inst. 56, 150–155 (2013)CrossRef
101.
go back to reference M. Zhang, W. Qi, R. Liu, et al., Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34, 525–532 (2010)CrossRef M. Zhang, W. Qi, R. Liu, et al., Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34, 525–532 (2010)CrossRef
102.
go back to reference A.K. Chandel, F.A.F. Antunes, V. Anjos, et al., Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acidebase pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuels 7, 1–17 (2014)CrossRef A.K. Chandel, F.A.F. Antunes, V. Anjos, et al., Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acidebase pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuels 7, 1–17 (2014)CrossRef
103.
go back to reference G. Cruz, P.A.S. Monteiro, C.E.M. Braz, et al., Thermal and morphological evaluation of chemically pretreated sugarcane bagasse. Int. J. Chem. Mol. Eng. 7, 435–440 (2013) G. Cruz, P.A.S. Monteiro, C.E.M. Braz, et al., Thermal and morphological evaluation of chemically pretreated sugarcane bagasse. Int. J. Chem. Mol. Eng. 7, 435–440 (2013)
104.
go back to reference Y. Sun, L. Lin, C.S. Pang, et al., Hydrolysis of cotton fiber cellulose in formic acid. Energy Fuel 21, 2386–2389 (2007)CrossRef Y. Sun, L. Lin, C.S. Pang, et al., Hydrolysis of cotton fiber cellulose in formic acid. Energy Fuel 21, 2386–2389 (2007)CrossRef
105.
go back to reference S.B. Kim, S.J. Lee, J.H. Lee, et al., Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. Biotechnol. Biofuels 6, 2–11 (2013)CrossRef S.B. Kim, S.J. Lee, J.H. Lee, et al., Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. Biotechnol. Biofuels 6, 2–11 (2013)CrossRef
106.
go back to reference P. Phitsuwan, C. Permsriburasuk, S. Baramee, et al., Structural analysis of alkaline pretreated rice straw for ethanol production. Int. J. Polym. Sci. 2017, 1–9 (2017)CrossRef P. Phitsuwan, C. Permsriburasuk, S. Baramee, et al., Structural analysis of alkaline pretreated rice straw for ethanol production. Int. J. Polym. Sci. 2017, 1–9 (2017)CrossRef
107.
go back to reference M. Molaverdia, K. Karimia, S. Mirmohamadsadeghia, et al., High titer ethanol production from rice straw via solid-state simultaneous saccharification and fermentation by Mucor indicus at low enzyme loading. Energy Convers. Manag. 182, 520–529 (2019)CrossRef M. Molaverdia, K. Karimia, S. Mirmohamadsadeghia, et al., High titer ethanol production from rice straw via solid-state simultaneous saccharification and fermentation by Mucor indicus at low enzyme loading. Energy Convers. Manag. 182, 520–529 (2019)CrossRef
108.
go back to reference G.J.M. Rocha, C. Martín, V.F.N. da Silva, et al., Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour. Technol. 111, 447–452 (2012)CrossRef G.J.M. Rocha, C. Martín, V.F.N. da Silva, et al., Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour. Technol. 111, 447–452 (2012)CrossRef
109.
go back to reference R. Singh, S. Tiwari, M. Srivastava, et al., Microwave assisted alkali pretreatment of rice straw for enhancing enzymatic digestibility. J. Energy 2014, 1–7 (2014) R. Singh, S. Tiwari, M. Srivastava, et al., Microwave assisted alkali pretreatment of rice straw for enhancing enzymatic digestibility. J. Energy 2014, 1–7 (2014)
110.
go back to reference G. Gong, D. Liu, Y. Huang, Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosyst. Eng. 107, 67–73 (2010)CrossRef G. Gong, D. Liu, Y. Huang, Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosyst. Eng. 107, 67–73 (2010)CrossRef
111.
go back to reference D.C. Li, A.N. Li, A.C. Papageorgiou, Cellulases from thermophilic fungi: insights and biotechnological potential. Enzym. Res. 2011, 308730–308739 (2011) D.C. Li, A.N. Li, A.C. Papageorgiou, Cellulases from thermophilic fungi: insights and biotechnological potential. Enzym. Res. 2011, 308730–308739 (2011)
112.
go back to reference A.K. Chandel, F.F.A. Antunes, V. Anjos, et al., Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuels 6, 1–15 (2013)CrossRef A.K. Chandel, F.F.A. Antunes, V. Anjos, et al., Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuels 6, 1–15 (2013)CrossRef
113.
go back to reference F. Momayez, K. Karimi, S. Karimia, et al., Efficient hydrolysis and ethanol production fromrice straw by pretreatment with organic acids and effluent of biogas plant. RSC Adv. 7, 50537–50545 (2017)CrossRef F. Momayez, K. Karimi, S. Karimia, et al., Efficient hydrolysis and ethanol production fromrice straw by pretreatment with organic acids and effluent of biogas plant. RSC Adv. 7, 50537–50545 (2017)CrossRef
114.
go back to reference K.K. Brar, S. Kaur, B.S. Chadha, A novel staggered hybrid SSF approaches for efficient conversion of cellulose/hemicellulosic fractions of Corncob into Ethanol. Renew. Energy 98, 16–22 (2016)CrossRef K.K. Brar, S. Kaur, B.S. Chadha, A novel staggered hybrid SSF approaches for efficient conversion of cellulose/hemicellulosic fractions of Corncob into Ethanol. Renew. Energy 98, 16–22 (2016)CrossRef
115.
go back to reference S.P.S. Chundawat, B. Venkatesh, B.E. Dale, Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. Bioeng. 96, 219–231 (2007)CrossRef S.P.S. Chundawat, B. Venkatesh, B.E. Dale, Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. Bioeng. 96, 219–231 (2007)CrossRef
116.
go back to reference A.A. Guilherme, P.V.F. Dantas, E.S. Santos, et al., Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugarcane bagasse. Braz. J. Chem. Eng. 32, 23–33 (2015)CrossRef A.A. Guilherme, P.V.F. Dantas, E.S. Santos, et al., Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugarcane bagasse. Braz. J. Chem. Eng. 32, 23–33 (2015)CrossRef
117.
go back to reference L. Cui, X. Wei, J. Li, et al., Structure and saccharification of sugarcane bagasse pretreated with acid coupled alkaline. Adv. Eng. Res. 134, 104–107 (2017) L. Cui, X. Wei, J. Li, et al., Structure and saccharification of sugarcane bagasse pretreated with acid coupled alkaline. Adv. Eng. Res. 134, 104–107 (2017)
118.
go back to reference B. Wanitwattanarumlug, A. Luengnaruemitchai, S. Wongkasemjit, Characterization of corn cobs from microwave and potassium hydroxide pretreatment. Int. J. Mater. Metal. Eng. 6, 354–358 (2012) B. Wanitwattanarumlug, A. Luengnaruemitchai, S. Wongkasemjit, Characterization of corn cobs from microwave and potassium hydroxide pretreatment. Int. J. Mater. Metal. Eng. 6, 354–358 (2012)
119.
go back to reference H. Li, A. Deng, J. Ren, C. Liu, et al., Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Bioresour. Technol. 158, 313–320 (2014)CrossRef H. Li, A. Deng, J. Ren, C. Liu, et al., Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Bioresour. Technol. 158, 313–320 (2014)CrossRef
120.
go back to reference A. Kuila, M. Mukhopadhyay, D.K. Tuli, Accessibility of enzymatically delignified Bambusa bambos for efficient hydrolysis at minimum cellulase loading: an optimization study. Enzym. Res. 2011, 1–8 (2011)CrossRef A. Kuila, M. Mukhopadhyay, D.K. Tuli, Accessibility of enzymatically delignified Bambusa bambos for efficient hydrolysis at minimum cellulase loading: an optimization study. Enzym. Res. 2011, 1–8 (2011)CrossRef
121.
go back to reference T.L. Richardson, N.K. Harner, P.K. Bajwa et al., Approaches to deal with toxic inhibitors during fermentation of lignocellulosic substrates, in Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass. ACS Symposium Series (American Chemical Society, Washington, DC, 2011), pp. 171–202 T.L. Richardson, N.K. Harner, P.K. Bajwa et al., Approaches to deal with toxic inhibitors during fermentation of lignocellulosic substrates, in Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass. ACS Symposium Series (American Chemical Society, Washington, DC, 2011), pp. 171–202
122.
go back to reference B. Hahn-Hagerdal, K. Karhumaa, C. Fonseca, et al., Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74, 937–953 (2007)CrossRef B. Hahn-Hagerdal, K. Karhumaa, C. Fonseca, et al., Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74, 937–953 (2007)CrossRef
123.
go back to reference S.I. Mussatto, E.M.S. Machado, L.M. Carneiro, et al., Sugar metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl. Energy 92, 763–768 (2012)CrossRef S.I. Mussatto, E.M.S. Machado, L.M. Carneiro, et al., Sugar metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl. Energy 92, 763–768 (2012)CrossRef
124.
go back to reference S. Yanase, T. Hasunuma, R. Yamada, et al., Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl. Microbiol. Biotechnol. 88, 381–388 (2010)CrossRef S. Yanase, T. Hasunuma, R. Yamada, et al., Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl. Microbiol. Biotechnol. 88, 381–388 (2010)CrossRef
125.
go back to reference H. Zhou, J.S. Cheng, B.L. Wang, et al., Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 14, 611–622 (2012)CrossRef H. Zhou, J.S. Cheng, B.L. Wang, et al., Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 14, 611–622 (2012)CrossRef
126.
go back to reference S.-M. Lee, T. Jellison, H.S. Alper, Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 7, 1–8 (2014)CrossRef S.-M. Lee, T. Jellison, H.S. Alper, Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 7, 1–8 (2014)CrossRef
127.
go back to reference S. Kwak, Y. Jin, Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb. Cell Factories 16, 1–15 (2017)CrossRef S. Kwak, Y. Jin, Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb. Cell Factories 16, 1–15 (2017)CrossRef
128.
go back to reference R. Kumari, K. Pramanik, Bioethanol production from Ipomea Carnea biomass using a potential hybrid yeast strain. Appl. Biochem. Biotechnol. 171, 1771–1785 (2013)CrossRef R. Kumari, K. Pramanik, Bioethanol production from Ipomea Carnea biomass using a potential hybrid yeast strain. Appl. Biochem. Biotechnol. 171, 1771–1785 (2013)CrossRef
129.
go back to reference M.Z. Li, S.J. Elledge, Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 (2007)CrossRef M.Z. Li, S.J. Elledge, Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 (2007)CrossRef
130.
go back to reference D. Chung, M. Cha, A.M. Guss, et al., Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc. Natl. Acad. Sci. U. S. A. 111, 8931–8936 (2014)CrossRef D. Chung, M. Cha, A.M. Guss, et al., Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc. Natl. Acad. Sci. U. S. A. 111, 8931–8936 (2014)CrossRef
131.
go back to reference V.E. Balderas-Hernández, V. Hernández-Montalvo, F. Bolívar, et al., Adaptive evolution of Escherichia coli inactivated in the phosphotransferase system operon improves co-utilization of xylose and glucose under anaerobic conditions. Appl. Biochem. Biotechnol. 163, 485–496 (2011)CrossRef V.E. Balderas-Hernández, V. Hernández-Montalvo, F. Bolívar, et al., Adaptive evolution of Escherichia coli inactivated in the phosphotransferase system operon improves co-utilization of xylose and glucose under anaerobic conditions. Appl. Biochem. Biotechnol. 163, 485–496 (2011)CrossRef
132.
go back to reference S.B. Jilani, S.S.K. Venigalla, A.J. Mattam, et al., Improvement in ethanol productivity of engineered E. coli strain SSY13 in defined medium via adaptive evolution. J. Ind. Microbiol. Biotechnol. 44, 1375–1384 (2017)CrossRef S.B. Jilani, S.S.K. Venigalla, A.J. Mattam, et al., Improvement in ethanol productivity of engineered E. coli strain SSY13 in defined medium via adaptive evolution. J. Ind. Microbiol. Biotechnol. 44, 1375–1384 (2017)CrossRef
133.
go back to reference N.K. Harner, X. Wen, P.K. Bajwa, et al., Genetic improvement of native xylose-fermenting yeasts for ethanol production. J. Ind. Microbiol. Biotechnol. 42, 1–20 (2015)CrossRef N.K. Harner, X. Wen, P.K. Bajwa, et al., Genetic improvement of native xylose-fermenting yeasts for ethanol production. J. Ind. Microbiol. Biotechnol. 42, 1–20 (2015)CrossRef
134.
go back to reference P.K. Bajwa, T. Shireen, F. D’Aoust, et al., Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol. Bioeng. 104, 892–900 (2009)CrossRef P.K. Bajwa, T. Shireen, F. D’Aoust, et al., Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol. Bioeng. 104, 892–900 (2009)CrossRef
135.
go back to reference T. Watanabe, I. Watanabe, M. Yamamoto, et al., A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour. Technol. 102, 1844–1848 (2011)CrossRef T. Watanabe, I. Watanabe, M. Yamamoto, et al., A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour. Technol. 102, 1844–1848 (2011)CrossRef
136.
go back to reference H.S. Oberoi, N. Babbar, S.K. Sandhu, et al., Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J. Ind. Microbiol. Biotechnol. 39, 557–566 (2012)CrossRef H.S. Oberoi, N. Babbar, S.K. Sandhu, et al., Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J. Ind. Microbiol. Biotechnol. 39, 557–566 (2012)CrossRef
137.
go back to reference B. Erdei, B. Franko, M. Galbe, et al., Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnol. Biofuels 5(1), 12 (2012)CrossRef B. Erdei, B. Franko, M. Galbe, et al., Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnol. Biofuels 5(1), 12 (2012)CrossRef
138.
go back to reference P. Antil, R. Gupta, R. Kuhad, Simultaneous saccharification and fermentation of pretreated sugarcane bagasse to ethanol using a new thermotolerant yeast. Ann. Microbiol. 65, 423–429 (2015)CrossRef P. Antil, R. Gupta, R. Kuhad, Simultaneous saccharification and fermentation of pretreated sugarcane bagasse to ethanol using a new thermotolerant yeast. Ann. Microbiol. 65, 423–429 (2015)CrossRef
139.
go back to reference C. Huang, M.H. Zong, H. Wu, et al., Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour. Technol. 100, 4535–4538 (2009)CrossRef C. Huang, M.H. Zong, H. Wu, et al., Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour. Technol. 100, 4535–4538 (2009)CrossRef
140.
go back to reference M.J. Jin, C. Sarks, C. Gunawan, et al., Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX pretreated corn stover. Biotechnol. Biofuels 6, 1–14 (2013)CrossRef M.J. Jin, C. Sarks, C. Gunawan, et al., Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX pretreated corn stover. Biotechnol. Biofuels 6, 1–14 (2013)CrossRef
141.
go back to reference Y. Li, J.Y. Park, R. Shiroma, et al., Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984. Appl. Biochem. Biotechnol. 166, 1781–1790 (2012)CrossRef Y. Li, J.Y. Park, R. Shiroma, et al., Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984. Appl. Biochem. Biotechnol. 166, 1781–1790 (2012)CrossRef
142.
go back to reference P.K. Bajwa, C. Phaenark, N. Grant, et al., Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresour. Technol. 102, 9965–9969 (2011)CrossRef P.K. Bajwa, C. Phaenark, N. Grant, et al., Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresour. Technol. 102, 9965–9969 (2011)CrossRef
143.
go back to reference W. Zhang, A.L. Geng, Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol. Biofuels 5, 46–57 (2012)CrossRef W. Zhang, A.L. Geng, Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol. Biofuels 5, 46–57 (2012)CrossRef
144.
go back to reference I. Watanabe, T. Nakamura, J. Shima, Characterization of a spontaneous flocculation mutant derived from Candida glabrata: a useful strain for bioethanol production. J. Biosci. Bioeng. 107, 379–382 (2009)CrossRef I. Watanabe, T. Nakamura, J. Shima, Characterization of a spontaneous flocculation mutant derived from Candida glabrata: a useful strain for bioethanol production. J. Biosci. Bioeng. 107, 379–382 (2009)CrossRef
145.
go back to reference A. Jain, S.P. Chaurasia, Bioethanol production in membrane bioreactor (MBR) system: a review. Int. J. Environ. Res. Public Health 4, 387–394 (2014) A. Jain, S.P. Chaurasia, Bioethanol production in membrane bioreactor (MBR) system: a review. Int. J. Environ. Res. Public Health 4, 387–394 (2014)
146.
go back to reference H. Li, N.J. Kim, M. Jiang, et al., Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresour. Technol. 100, 3245–3251 (2009)CrossRef H. Li, N.J. Kim, M. Jiang, et al., Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresour. Technol. 100, 3245–3251 (2009)CrossRef
147.
go back to reference K. Olofsson, M. Wiman, G. Liden, Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. Biotechnolgy 145, 168–175 (2010)CrossRef K. Olofsson, M. Wiman, G. Liden, Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. Biotechnolgy 145, 168–175 (2010)CrossRef
148.
go back to reference K. Ohgren, A. Rudolf, M. Galbe, Fuel ethanol production from steam pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30, 863–869 (2006)CrossRef K. Ohgren, A. Rudolf, M. Galbe, Fuel ethanol production from steam pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30, 863–869 (2006)CrossRef
149.
go back to reference K.E. Kang, D.-P. Chung, Y. Kim, et al., High-titer ethanol production from simultaneous saccharification and fermentation using a continuous feeding system. Fuel 145, 18–24 (2015)CrossRef K.E. Kang, D.-P. Chung, Y. Kim, et al., High-titer ethanol production from simultaneous saccharification and fermentation using a continuous feeding system. Fuel 145, 18–24 (2015)CrossRef
150.
go back to reference M.K. Balasubramaniam, Potential utilization of rice straw for ethanol production by sequential fermentation of cellulose and xylose using Saccharomyces cerevisiae and Pachysolen tannophilus. Int. J. Sci. Eng. Technol. Res. 2, 1531–1535 (2013) M.K. Balasubramaniam, Potential utilization of rice straw for ethanol production by sequential fermentation of cellulose and xylose using Saccharomyces cerevisiae and Pachysolen tannophilus. Int. J. Sci. Eng. Technol. Res. 2, 1531–1535 (2013)
151.
go back to reference L.R. Hickert, P.B. de Souza-Cruz, C.A. Rosa, et al., Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresour. Technol. 143, 112–116 (2013)CrossRef L.R. Hickert, P.B. de Souza-Cruz, C.A. Rosa, et al., Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresour. Technol. 143, 112–116 (2013)CrossRef
152.
go back to reference R.K. Sukumaran, V.J. Surender, R. Sindhu, et al., Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour. Technol. 101, 4826–4833 (2010)CrossRef R.K. Sukumaran, V.J. Surender, R. Sindhu, et al., Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour. Technol. 101, 4826–4833 (2010)CrossRef
153.
go back to reference J.B. Gonsalves, An assessment of the biofuels industry in India, in United Nations Conference on Trade and Development (UNCTAD/DITC/TED/2006/6) (UNCTAD, Geneva, 2006), pp. 1–42 J.B. Gonsalves, An assessment of the biofuels industry in India, in United Nations Conference on Trade and Development (UNCTAD/DITC/TED/2006/6) (UNCTAD, Geneva, 2006), pp. 1–42
154.
go back to reference N. Yu, L. Tan, Z.Y. Sun, et al., Production of bio-ethanol by integrating microwave-assisted dilute sulfuric acid pretreated sugarcane bagasse slurry with molasses. Biotechnol. Appl. Biochem. 185, 191–206 (2017)CrossRef N. Yu, L. Tan, Z.Y. Sun, et al., Production of bio-ethanol by integrating microwave-assisted dilute sulfuric acid pretreated sugarcane bagasse slurry with molasses. Biotechnol. Appl. Biochem. 185, 191–206 (2017)CrossRef
155.
go back to reference K.K. Brar, D. Agrawal, B.S. Chadha, et al., Evaluating novel fungal secretomes for efficient saccharification and fermentation of composite sugars derived from hydrolysate and molasses into ethanol. Bioresour. Technol. 273, 114–121 (2019)CrossRef K.K. Brar, D. Agrawal, B.S. Chadha, et al., Evaluating novel fungal secretomes for efficient saccharification and fermentation of composite sugars derived from hydrolysate and molasses into ethanol. Bioresour. Technol. 273, 114–121 (2019)CrossRef
156.
go back to reference R. Subramaniam, S. Dufreche, M. Zappi, et al., Microbial lipids from renewable resources: production and characterization. J. Ind. Microbiol. Biotechnol. 37, 1271–1287 (2010)CrossRef R. Subramaniam, S. Dufreche, M. Zappi, et al., Microbial lipids from renewable resources: production and characterization. J. Ind. Microbiol. Biotechnol. 37, 1271–1287 (2010)CrossRef
157.
go back to reference J. Ageitos, J. Vallejo, P. Veiga-Crespo, et al., Oily yeasts as oleaginous cell factories. Appl. Microbiol. Biotechnol. 90, 1219–1227 (2011)CrossRef J. Ageitos, J. Vallejo, P. Veiga-Crespo, et al., Oily yeasts as oleaginous cell factories. Appl. Microbiol. Biotechnol. 90, 1219–1227 (2011)CrossRef
158.
go back to reference S. Papanikolaou, G. Aggelis, Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur. J. Lipid Sci. Technol. 113, 1052–1073 (2011)CrossRef S. Papanikolaou, G. Aggelis, Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur. J. Lipid Sci. Technol. 113, 1052–1073 (2011)CrossRef
159.
go back to reference L. Hui, C. Wan, D. Hai-tao, et al., Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour. Technol. 101, 7556–7562 (2010)CrossRef L. Hui, C. Wan, D. Hai-tao, et al., Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour. Technol. 101, 7556–7562 (2010)CrossRef
160.
go back to reference A. Andre, P. Diamantopoulou, A. Philippoussis, et al., Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind. Crop. Prod. 31, 407–416 (2010)CrossRef A. Andre, P. Diamantopoulou, A. Philippoussis, et al., Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind. Crop. Prod. 31, 407–416 (2010)CrossRef
161.
go back to reference A. Chatzifragkou, A. Makri, A. Belka, et al., Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36, 1097–1108 (2011)CrossRef A. Chatzifragkou, A. Makri, A. Belka, et al., Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36, 1097–1108 (2011)CrossRef
162.
go back to reference Y.N. Liang, T.Y. Tang, T. Siddaramu, et al., Lipid production from sweet sorghum bagasse through yeast fermentation. Renew. Energy 40, 130–136 (2012)CrossRef Y.N. Liang, T.Y. Tang, T. Siddaramu, et al., Lipid production from sweet sorghum bagasse through yeast fermentation. Renew. Energy 40, 130–136 (2012)CrossRef
163.
go back to reference A. Chatzifragkou, S. Fakas, M. Galiotou-Panayotou, et al., Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur. J. Lipid Sci. Technol. 112, 1048–1057 (2010)CrossRef A. Chatzifragkou, S. Fakas, M. Galiotou-Panayotou, et al., Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur. J. Lipid Sci. Technol. 112, 1048–1057 (2010)CrossRef
164.
go back to reference C.N. Economou, A. Makri, G. Aggelis, et al., Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour. Technol. 101, 1385–1388 (2010)CrossRef C.N. Economou, A. Makri, G. Aggelis, et al., Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour. Technol. 101, 1385–1388 (2010)CrossRef
165.
go back to reference X.C. Yu, Y.B. Zheng, K.M. Dorgan, et al., Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour. Technol. 102, 6134–6140 (2011)CrossRef X.C. Yu, Y.B. Zheng, K.M. Dorgan, et al., Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour. Technol. 102, 6134–6140 (2011)CrossRef
166.
go back to reference Y.A. Tsigie, C.Y. Wang, C.T. Truong, et al., Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour. Technol. 102, 9216–9222 (2011)CrossRef Y.A. Tsigie, C.Y. Wang, C.T. Truong, et al., Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour. Technol. 102, 9216–9222 (2011)CrossRef
167.
go back to reference X. Huang, Y. Wang, W. Liu, et al., Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum. Bioresour. Technol. 102, 9705–9709 (2011)CrossRef X. Huang, Y. Wang, W. Liu, et al., Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum. Bioresour. Technol. 102, 9705–9709 (2011)CrossRef
168.
go back to reference C. Huang, X.F. Chen, L. Xiong, et al., Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresour. Technol. 110, 711–714 (2012)CrossRef C. Huang, X.F. Chen, L. Xiong, et al., Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresour. Technol. 110, 711–714 (2012)CrossRef
169.
go back to reference D. Xing, A. Pan, D. Xue, et al., Biomass carbohydrates assimilation and lipid accumulation by Mortierella isabellina. Chin. J. Biotechnol. 26, 189–193 (2010) D. Xing, A. Pan, D. Xue, et al., Biomass carbohydrates assimilation and lipid accumulation by Mortierella isabellina. Chin. J. Biotechnol. 26, 189–193 (2010)
170.
go back to reference J. Tao, C.C. Dai, Q.Y. Yang, et al., Production of biodiesel with acid hydrolysate of Populus euramevicana cv leaves by Rhodotorula glutinis. Int. J. Green Energy 7, 387–396 (2010)CrossRef J. Tao, C.C. Dai, Q.Y. Yang, et al., Production of biodiesel with acid hydrolysate of Populus euramevicana cv leaves by Rhodotorula glutinis. Int. J. Green Energy 7, 387–396 (2010)CrossRef
171.
go back to reference H. Lin, W. Cheng, H.T. Ding, et al., Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour. Technol. 101, 7556–7562 (2010)CrossRef H. Lin, W. Cheng, H.T. Ding, et al., Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour. Technol. 101, 7556–7562 (2010)CrossRef
172.
go back to reference H. Uemura, Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl. Microbiol. Biotechnol. 95, 1–12 (2012)CrossRef H. Uemura, Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl. Microbiol. Biotechnol. 95, 1–12 (2012)CrossRef
173.
go back to reference M.H. Liang, J.G. Jiang, Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52, 395–408 (2013)CrossRef M.H. Liang, J.G. Jiang, Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52, 395–408 (2013)CrossRef
174.
go back to reference M. Tai, G. Stephanopoulos, Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15, 1–9 (2013)CrossRef M. Tai, G. Stephanopoulos, Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15, 1–9 (2013)CrossRef
175.
go back to reference G.S. Wang, J.W. Jae-Won Lee, et al., Dilute acid pretreatment of corncob for efficient sugar production. Biotechnol. Appl. Biochem. 163, 658–668 (2011)CrossRef G.S. Wang, J.W. Jae-Won Lee, et al., Dilute acid pretreatment of corncob for efficient sugar production. Biotechnol. Appl. Biochem. 163, 658–668 (2011)CrossRef
176.
go back to reference A. Beopoulos, Z. Mrozova, F. Thevenieau, et al., Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 74, 7779–7789 (2008)CrossRef A. Beopoulos, Z. Mrozova, F. Thevenieau, et al., Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 74, 7779–7789 (2008)CrossRef
177.
go back to reference R. Ruenwai, S. Cheevadhanarak, K. Laoteng, Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Mol. Biotechnol. 42, 327–332 (2009)CrossRef R. Ruenwai, S. Cheevadhanarak, K. Laoteng, Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Mol. Biotechnol. 42, 327–332 (2009)CrossRef
178.
go back to reference S. Ichikawa, S. Karita, Bacterial production and secretion of water-insoluble fuel compounds from cellulose without the supplementation of cellulases. FEMS Microbiol. Lett. 362, 1–24 (2015)CrossRef S. Ichikawa, S. Karita, Bacterial production and secretion of water-insoluble fuel compounds from cellulose without the supplementation of cellulases. FEMS Microbiol. Lett. 362, 1–24 (2015)CrossRef
179.
go back to reference Z. Fatma, K. Jawed, A.J. Mattam, et al., Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli. Metab. Eng. 37, 35–45 (2016)CrossRef Z. Fatma, K. Jawed, A.J. Mattam, et al., Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli. Metab. Eng. 37, 35–45 (2016)CrossRef
180.
go back to reference U.S. Department of Energy (DOE) Annual Report. Department of Energy (2003) U.S. Department of Energy (DOE) Annual Report. Department of Energy (2003)
181.
go back to reference N.K. Harner, P.K. Bajwa, M.B. Habash, et al., Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid. Anton. van Leeuw. 105, 29–43 (2014) N.K. Harner, P.K. Bajwa, M.B. Habash, et al., Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid. Anton. van Leeuw. 105, 29–43 (2014)
Metadata
Title
Biotechnological Strategies for Enhanced Production of Biofuels from Lignocellulosic Biomass
Authors
K. K. Brar
B. S. Chadha
S. K. Brar
P. Singh
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-38032-8_24