Skip to main content
Top

2025 | OriginalPaper | Chapter

Bit-Security Preserving Hardness Amplification

Authors : Shun Watanabe, Kenji Yasunaga

Published in: Theory of Cryptography

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hardness amplification is one of the important reduction techniques in cryptography, and it has been extensively studied in the literature. The standard XOR lemma known in the literature evaluates the hardness in terms of the probability of correct prediction; the hardness is amplified from mildly hard (close to 1) to very hard \(1/2 + \varepsilon \) by inducing \(\varepsilon ^2\) multiplicative decrease of the circuit size. Translating such a statement in terms of the bit-security framework introduced by Micciancio-Walter (EUROCRYPT 2018) and Watanabe-Yasunaga (ASIACRYPT 2021), it may cause a bit-security loss of \(\log (1/\varepsilon )\). To resolve this issue, we derive a new variant of the XOR lemma in terms of the Rényi advantage, which directly characterizes the bit security. In the course of proving this result, we prove a new variant of the hardcore lemma in terms of the conditional squared advantage; our proof uses a boosting algorithm that may output the \(\bot \) symbol in addition to 0 and 1, which may be of independent interest.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Generally, the CS advantage is bounded above by the Rényi advantage. While the CS advantage may take a much smaller value in some cases, the CS advantage can be increased to the level of the Rényi advantage by modifying adversaries appropriately.
 
2
The symbol \(\bot \) indicates that the adversary gives up the prediction.
 
3
More precisely, this statement assumes that the cost of a weighted majority gate can be ignored. Indeed, if \(s = \omega (\log (1/\delta )/\varepsilon ^2)\), the cost is negligible; See Remark 1 for discussion.
 
4
Note that since there is a renormalization procedure, the updated probabilities of those symbols may be changed.
 
5
The latter was attributed to Nisan.
 
6
More precisely, the CS advantage in (5) is for a predictor; on the other hand, when we define the bit security, we consider the CS advantage for a distinguisher (cf. (27)). The CS advantage for a predictor was first introduced in the context of the Goldreich-Levin algorithm [17].
 
7
By the Taylor approximation, we have
$$\begin{aligned} e^{-\theta } \le 1 - \theta + \sup _{-1 \le \tau \le 1} \frac{e^{-\tau }}{2} \theta ^2 \le 1 - \theta + \frac{e}{2} \theta ^2 \le 1 - \theta + 2 \theta ^2 \end{aligned}$$
.
 
8
Such a naive implementation of the weighted majority has been studied in the circuit complexity [9].
 
9
It comes from the fact that the majority can be realized by a circuit of linear size of inputs [41].
 
10
In [32], the authors first introduced an advantage using the Shannon entropy and the mutual information; then, in order to justify the definition (28), they discussed that that advantage is approximated by the CS advantage.
 
11
In this paper, we focus on the circuit size.
 
12
Here, the support is the set of realizations that occur with positive probability.
 
Literature
1.
go back to reference Aslam, J.A.: Improving algorithms for boosting. In: Proceedings of the 13th Annual Conference on Computational Learning Theory, pp. 200–207 (2000) Aslam, J.A.: Improving algorithms for boosting. In: Proceedings of the 13th Annual Conference on Computational Learning Theory, pp. 200–207 (2000)
2.
go back to reference Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions. In: Fischlin, M., Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016. Lecture Notes in Computer Science, vol. 9666, pp. 273–304. Springer (2016). https://doi.org/10.1007/978-3-662-49896-5_10 Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions. In: Fischlin, M., Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016. Lecture Notes in Computer Science, vol. 9666, pp. 273–304. Springer (2016). https://​doi.​org/​10.​1007/​978-3-662-49896-5_​10
3.
go back to reference Barak, B., Hardt, M., Kale, S.: The uniform hardcore lemma via approximate Bregman projections. In: Proceedings of the 2009 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1193–1200 (2009) Barak, B., Hardt, M., Kale, S.: The uniform hardcore lemma via approximate Bregman projections. In: Proceedings of the 2009 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1193–1200 (2009)
4.
go back to reference Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof and improved concrete security for Water’s IBE scheme. In: Advances in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Lecture Notes in Computer Science, vol. 5479, pp. 407–424. Springer (2009). https://doi.org/10.1007/978-3-642-01001-9_24 Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof and improved concrete security for Water’s IBE scheme. In: Advances in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Lecture Notes in Computer Science, vol. 5479, pp. 407–424. Springer (2009). https://​doi.​org/​10.​1007/​978-3-642-01001-9_​24
7.
go back to reference Dodis, Y., Impagliazzo, R., Jaiswal, R., Kabanets, V.: Security amplification for interactive cryptographic primitives. In: Reingold, O. (ed.) Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5444, pp. 128–145. Springer (2009). https://doi.org/10.1007/978-3-642-00457-5_9 Dodis, Y., Impagliazzo, R., Jaiswal, R., Kabanets, V.: Security amplification for interactive cryptographic primitives. In: Reingold, O. (ed.) Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5444, pp. 128–145. Springer (2009). https://​doi.​org/​10.​1007/​978-3-642-00457-5_​9
8.
go back to reference van Erven, T., Harremoës, P.: Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inform. Theory 60(7), 3797–3820 (2014)MathSciNetCrossRef van Erven, T., Harremoës, P.: Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inform. Theory 60(7), 3797–3820 (2014)MathSciNetCrossRef
9.
go back to reference Goldmann, M., Håstad, J., Razborov, A.: Majority gates vs. general weighted threshold gates. Comput. Complex. 2, 277–300 (1992) Goldmann, M., Håstad, J., Razborov, A.: Majority gates vs. general weighted threshold gates. Comput. Complex. 2, 277–300 (1992)
10.
go back to reference Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR lemma. Electronic Colloquium on Computational Complexity (March 1995) Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR lemma. Electronic Colloquium on Computational Complexity (March 1995)
12.
go back to reference Goldreich, O.: On security preserving reductions - revised terminology. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, Lecture Notes in Computer Science, vol. 6650, pp. 540–546. Springer (2011) Goldreich, O.: On security preserving reductions - revised terminology. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, Lecture Notes in Computer Science, vol. 6650, pp. 540–546. Springer (2011)
13.
go back to reference Goldreich, O., Impagliazzo, R., Levin, L.A., Venkatesan, R., Zuckerman, D.: Security preserving amplification of hardness. In: 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pp. 318–326. IEEE Computer Society (1990). https://doi.org/10.1109/FSCS.1990.89550 Goldreich, O., Impagliazzo, R., Levin, L.A., Venkatesan, R., Zuckerman, D.: Security preserving amplification of hardness. In: 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pp. 318–326. IEEE Computer Society (1990). https://​doi.​org/​10.​1109/​FSCS.​1990.​89550
14.
go back to reference Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR-lemma. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, Lecture Notes in Computer Science, vol. 6650, pp. 273–301. Springer (2011). https://doi.org/10.1007/978-3-642-22670-0_23 Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR-lemma. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, Lecture Notes in Computer Science, vol. 6650, pp. 273–301. Springer (2011). https://​doi.​org/​10.​1007/​978-3-642-22670-0_​23
15.
go back to reference Götze, F., Sambale, H., Sinulis, A.: Higher order concentration for functions of weakly dependent random variables. Electron. J. Probab. 24(85), 1–19 (2019)MathSciNet Götze, F., Sambale, H., Sinulis, A.: Higher order concentration for functions of weakly dependent random variables. Electron. J. Probab. 24(85), 1–19 (2019)MathSciNet
19.
go back to reference Hatano, K., Warmuth, M.K.: Boosting versus covering. In: Advances in Neural Information Processing Systems. vol. 16 (2003) Hatano, K., Warmuth, M.K.: Boosting versus covering. In: Advances in Neural Information Processing Systems. vol. 16 (2003)
20.
go back to reference Hatano, K., Watanabe, O.: Learning \(r\)-of-\(k\) functions by boosting. In: Proceedings of the 15th International Conference on Algorithmic Learning Theory, pp. 114–126 (2004) Hatano, K., Watanabe, O.: Learning \(r\)-of-\(k\) functions by boosting. In: Proceedings of the 15th International Conference on Algorithmic Learning Theory, pp. 114–126 (2004)
21.
go back to reference Herzberg, A., Luby, M.: Pubic randomness in cryptography. In: Brickell, E.F. (ed.) Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings. Lecture Notes in Computer Science, vol. 740, pp. 421–432. Springer (1992). https://doi.org/10.1007/3-540-48071-4_29 Herzberg, A., Luby, M.: Pubic randomness in cryptography. In: Brickell, E.F. (ed.) Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings. Lecture Notes in Computer Science, vol. 740, pp. 421–432. Springer (1992). https://​doi.​org/​10.​1007/​3-540-48071-4_​29
22.
go back to reference Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC ’05), pp. 664–673. ACM Press (2005) Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC ’05), pp. 664–673. ACM Press (2005)
23.
go back to reference Impagliazzo, R.: Hard-core distribution for somewhat hard problems. In: Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’95), pp. 538–545 (1995) Impagliazzo, R.: Hard-core distribution for somewhat hard problems. In: Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’95), pp. 538–545 (1995)
24.
go back to reference Kale, S.: Boosting and hard-core set constructions: a simplified approach (2007), electronic Colloquium on Computational Complexity (ECCC), Report No. 131 Kale, S.: Boosting and hard-core set constructions: a simplified approach (2007), electronic Colloquium on Computational Complexity (ECCC), Report No. 131
25.
go back to reference Klivans, A.R., Servedio, R.A.: Boosting and hard-core set construction. Mach. Learn. 51, 217–238 (2003)CrossRef Klivans, A.R., Servedio, R.A.: Boosting and hard-core set construction. Mach. Learn. 51, 217–238 (2003)CrossRef
26.
go back to reference Lanzenberger, D., Maurer, U.: Direct product hardness amplification. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography - 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13043, pp. 605–625. Springer (2021) Lanzenberger, D., Maurer, U.: Direct product hardness amplification. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography - 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13043, pp. 605–625. Springer (2021)
28.
go back to reference Li, B., Micciancio, D., Schultz, M., Sorrell, J.: Securing approximate homomorphic encryption using differential privacy. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO 2022. Lecture Notes in Computer Science, vol. 13507, pp. 560–589. Springer (2022). https://doi.org/10.1007/978-3-031-15802-5_20 Li, B., Micciancio, D., Schultz, M., Sorrell, J.: Securing approximate homomorphic encryption using differential privacy. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO 2022. Lecture Notes in Computer Science, vol. 13507, pp. 560–589. Springer (2022). https://​doi.​org/​10.​1007/​978-3-031-15802-5_​20
29.
go back to reference Luby, M.: Pseudorandomness and cryptographic applications. Princeton University Press, Princeton computer science notes (1996)CrossRef Luby, M.: Pseudorandomness and cryptographic applications. Princeton University Press, Princeton computer science notes (1996)CrossRef
30.
go back to reference Maurer, U., Tessaro, S.: A hardcore lemma for computational indistinguishability: Security amplification for arbitrary weak PRGs with optimal stretch. In: TCC 2010. Lecture Notes in Computer Science, vol. 5078, pp. 237–254. Springer (2010) Maurer, U., Tessaro, S.: A hardcore lemma for computational indistinguishability: Security amplification for arbitrary weak PRGs with optimal stretch. In: TCC 2010. Lecture Notes in Computer Science, vol. 5078, pp. 237–254. Springer (2010)
31.
go back to reference Maurer, U.M., Tessaro, S.: Computational indistinguishability amplification: Tight product theorems for system composition. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5677, pp. 355–373. Springer (2009). https://doi.org/10.1007/978-3-642-03356-8_21 Maurer, U.M., Tessaro, S.: Computational indistinguishability amplification: Tight product theorems for system composition. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5677, pp. 355–373. Springer (2009). https://​doi.​org/​10.​1007/​978-3-642-03356-8_​21
35.
go back to reference Schapire, R.E., Freund, Y.: Boosting: Foundations and Algorithms. MIT Press (2012) Schapire, R.E., Freund, Y.: Boosting: Foundations and Algorithms. MIT Press (2012)
36.
go back to reference Schapire, R.E., Singer, Y.: Improved boosting algorithm using confidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999)CrossRef Schapire, R.E., Singer, Y.: Improved boosting algorithm using confidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999)CrossRef
37.
go back to reference Vadhan, S., Zheng, C.J.: A uniform min-max theorem with applications in cryptography. In: Advances in Cryptography–CRYPTO ’13. Lecture Notes in Computer Science, vol. 8042, pp. 93–110. Springer (2013) Vadhan, S., Zheng, C.J.: A uniform min-max theorem with applications in cryptography. In: Advances in Cryptography–CRYPTO ’13. Lecture Notes in Computer Science, vol. 8042, pp. 93–110. Springer (2013)
39.
go back to reference Watanabe, S., Yasunaga, K.: Bit security as computational cost for winning games with high probability. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2021. Lecture Notes in Computer Science, vol. 13092, pp. 161–188. Springer (2021) Watanabe, S., Yasunaga, K.: Bit security as computational cost for winning games with high probability. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2021. Lecture Notes in Computer Science, vol. 13092, pp. 161–188. Springer (2021)
40.
go back to reference Watanabe, S., Yasunaga, K.: Unified view for notions of bit security. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology - ASIACRYPT 2023. Lecture Notes in Computer Science, vol. 14443, pp. 361–389. Springer (2023) Watanabe, S., Yasunaga, K.: Unified view for notions of bit security. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology - ASIACRYPT 2023. Lecture Notes in Computer Science, vol. 14443, pp. 361–389. Springer (2023)
41.
go back to reference Wegener, I.: The Complexity of Boolean Functions. Wiley (1991) Wegener, I.: The Complexity of Boolean Functions. Wiley (1991)
Metadata
Title
Bit-Security Preserving Hardness Amplification
Authors
Shun Watanabe
Kenji Yasunaga
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78017-2_7

Premium Partner