2016 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Graph Drawing and Network Visualization
Canonical orderings serve as the basis for many incremental planar drawing algorithms. All these techniques, however, have in common that they are limited to undirected graphs. While st-orderings do extend to directed graphs, especially planar st-graphs, they do not offer the same properties as canonical orderings. In this work we extend the so called bitonic st-orderings to directed graphs. We fully characterize planar st-graphs that admit such an ordering and provide a linear-time algorithm for recognition and ordering. If for a graph no bitonic st-ordering exists, we show how to find in linear time a minimum set of edges to split such that the resulting graph admits one. With this new technique we are able to draw every upward planar graph on n vertices by using at most one bend per edge, at most \(n - 3\) bends in total and within quadratic area.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1
This restriction is necessary due to the possible absence of the
st-edge which is allowed by our definition of planar
st-graphs.
1.
go back to reference Abbasi, S., Healy, P., Rextin, A.: Improving the running time of embedded upward planarity testing. Inf. Process. Lett. 110(7), 274–278 (2010) MathSciNetCrossRefMATH Abbasi, S., Healy, P., Rextin, A.: Improving the running time of embedded upward planarity testing. Inf. Process. Lett.
110(7), 274–278 (2010)
MathSciNetCrossRefMATH
2.
go back to reference Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 6(12), 476–497 (1994) MathSciNetCrossRefMATH Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica
6(12), 476–497 (1994)
MathSciNetCrossRefMATH
3.
go back to reference Biedl, T.C., Derka, M.: The (3, 1)-ordering for 4-connected planar triangulations. CoRR abs/1511.00873 (2015) Biedl, T.C., Derka, M.: The (3, 1)-ordering for 4-connected planar triangulations. CoRR abs/1511.00873 (2015)
4.
go back to reference Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009) MATH Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)
MATH
5.
go back to reference Di Battista, G., Frati, F.: A survey on small-area planar graph drawing. CoRR abs/1410.1006 (2014) Di Battista, G., Frati, F.: A survey on small-area planar graph drawing. CoRR abs/1410.1006 (2014)
6.
go back to reference Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theoret. Comput. Sci. 61(2–3), 175–198 (1988) MathSciNetCrossRefMATH Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theoret. Comput. Sci.
61(2–3), 175–198 (1988)
MathSciNetCrossRefMATH
7.
go back to reference Di Battista, G., Tamassia, R., Tollis, I.: Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom. 7(1), 381–401 (1992) MathSciNetCrossRefMATH Di Battista, G., Tamassia, R., Tollis, I.: Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom.
7(1), 381–401 (1992)
MathSciNetCrossRefMATH
8.
go back to reference Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. Discrete Math. 23(4), 1842–1899 (2009) MathSciNetCrossRefMATH Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. Discrete Math.
23(4), 1842–1899 (2009)
MathSciNetCrossRefMATH
9.
go back to reference de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990) MathSciNetCrossRefMATH de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica
10(1), 41–51 (1990)
MathSciNetCrossRefMATH
10.
go back to reference de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Bipolar orientations revisited. Discrete Appl. Math. 56(2–3), 157–179 (1995). 5th Franco-Japanese Days MathSciNetCrossRefMATH de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Bipolar orientations revisited. Discrete Appl. Math.
56(2–3), 157–179 (1995). 5th Franco-Japanese Days
MathSciNetCrossRefMATH
11.
go back to reference Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 286–297. Springer, Heidelberg (1995). doi: 10.1007/3-540-58950-3_384 CrossRef Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 286–297. Springer, Heidelberg (1995). doi:
10.1007/3-540-58950-3_384
CrossRef
12.
go back to reference Gronemann, M.: Bitonic st-orderings for Upward Planar Graphs. arXiv e-prints, August 2016. http://arxiv.org/abs/1608.08578v1 Gronemann, M.: Bitonic st-orderings for Upward Planar Graphs. arXiv e-prints, August 2016.
http://arxiv.org/abs/1608.08578v1
13.
go back to reference Gronemann, M.: Bitonic st-orderings of biconnected planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 162–173. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45803-7_14 Gronemann, M.: Bitonic
st-orderings of biconnected planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 162–173. Springer, Heidelberg (2014). doi:
10.1007/978-3-662-45803-7_14
14.
go back to reference Gronemann, M.: Algorithms for incremental planar graph drawing and two-page book embeddings. Ph.D. thesis, University of Cologne (2015) Gronemann, M.: Algorithms for incremental planar graph drawing and two-page book embeddings. Ph.D. thesis, University of Cologne (2015)
15.
go back to reference Harel, D., Sardas, M.: An algorithm for straight-line drawing of planar graphs. Algorithmica 20(2), 119–135 (1998) MathSciNetCrossRefMATH Harel, D., Sardas, M.: An algorithm for straight-line drawing of planar graphs. Algorithmica
20(2), 119–135 (1998)
MathSciNetCrossRefMATH
16.
go back to reference Hutton, M.D., Lubiw, A.: Upward planarity testing of single-source acyclic digraphs. SIAM J. Comput. 25(2), 291–311 (1996) MathSciNetCrossRefMATH Hutton, M.D., Lubiw, A.: Upward planarity testing of single-source acyclic digraphs. SIAM J. Comput.
25(2), 291–311 (1996)
MathSciNetCrossRefMATH
17.
go back to reference Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996) MathSciNetCrossRefMATH Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica
16, 4–32 (1996)
MathSciNetCrossRefMATH
18.
go back to reference Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoret. Comput. Sci. 172(1), 175–193 (1997) MathSciNetCrossRefMATH Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoret. Comput. Sci.
172(1), 175–193 (1997)
MathSciNetCrossRefMATH
19.
go back to reference Papakostas, A.: Upward planarity testing of outerplanar dags (extended abstract). In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 298–306. Springer, Heidelberg (1995). doi: 10.1007/3-540-58950-3_385 CrossRef Papakostas, A.: Upward planarity testing of outerplanar dags (extended abstract). In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 298–306. Springer, Heidelberg (1995). doi:
10.1007/3-540-58950-3_385
CrossRef
20.
go back to reference Samee, M.A.H., Rahman, M.S.: Upward planar drawings of series-parallel digraphs with maximum degree three. In: WALCOM 2012, pp. 28–45. Bangladesh Academy of Sciences (BAS) (2007) Samee, M.A.H., Rahman, M.S.: Upward planar drawings of series-parallel digraphs with maximum degree three. In: WALCOM 2012, pp. 28–45. Bangladesh Academy of Sciences (BAS) (2007)
21.
go back to reference Schmidt, J.M.: The mondshein sequence. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 967–978. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43948-7_80 Schmidt, J.M.: The mondshein sequence. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 967–978. Springer, Heidelberg (2014). doi:
10.1007/978-3-662-43948-7_80
- Title
- Bitonic st-orderings for Upward Planar Graphs
- DOI
- https://doi.org/10.1007/978-3-319-50106-2_18
- Author:
-
Martin Gronemann
- Publisher
- Springer International Publishing
- Sequence number
- 18