Skip to main content
Top
Published in: Wireless Personal Communications 1/2022

02-03-2022

Blind Signal Modulation Classification Using Constellation Pattern Analysis with Oversampling Factor Alteration

Authors: Yogesh Kumar, Gaurav Jajoo, Ashok Kumar, Sandeep Kumar Yadav

Published in: Wireless Personal Communications | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Automatic modulation classification finds its application in many military and civil areas. It is an integral part of cognitive radio and software defined radio technologies. In this paper, LabVIEW based Field Programmable Gate Array (FPGA) implementation of modulation classification algorithm is proposed. Any modulation scheme among BPSK, QPSK, 8PSK, 8QAM, 16QAM and 4ASK is classified by alteration of oversampling factor and further error minimization between extracted constellation and ideal constellation of considered modulation schemes. Study results reveal that the developed method detects the above mentioned modulation schemes reliably above 12 dB SNR in Additive White Gaussian Noise (AWGN) channel. Comparative analysis of the proposed method with existing methods based on higher order statistics, mel-frequency ceptral coefficients and naive based modulation classification shows an overall improvement in classification accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ali, A., Yangyu, F., & Liu, S. (2017). Automatic modulation classification of digital modulation signals with stacked autoencoders. Digital Signal Processing, 71, 108–116.MathSciNetCrossRef Ali, A., Yangyu, F., & Liu, S. (2017). Automatic modulation classification of digital modulation signals with stacked autoencoders. Digital Signal Processing, 71, 108–116.MathSciNetCrossRef
2.
go back to reference Arain, S., Shaikh, M. N., Waqas, A., Ali, Q., Chowdhry, B. S., & Themistos, C. (2017). Comparative study and packet error rate analysis of advance modulation schemes for optical wireless communication networks. Wireless Personal Communications, 95(2), 593–606.CrossRef Arain, S., Shaikh, M. N., Waqas, A., Ali, Q., Chowdhry, B. S., & Themistos, C. (2017). Comparative study and packet error rate analysis of advance modulation schemes for optical wireless communication networks. Wireless Personal Communications, 95(2), 593–606.CrossRef
3.
go back to reference Aslam, M.W., Zhu, Z & Nandi, A.K. (2010). Automatic digital modulation classification using genetic programming with k-nearest neighbor. In: Military Communications Conference, 2010-MILCOM 2010, pp. 1731–1736. IEEE Aslam, M.W., Zhu, Z & Nandi, A.K. (2010). Automatic digital modulation classification using genetic programming with k-nearest neighbor. In: Military Communications Conference, 2010-MILCOM 2010, pp. 1731–1736. IEEE
4.
go back to reference Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and knn. IEEE Transactions on wireless communications, 11(8), 2742–2750. Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and knn. IEEE Transactions on wireless communications, 11(8), 2742–2750.
5.
go back to reference Avci, E. (2009). Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: Hgasvm. Expert Systems with Applications, 36(2), 1391–1402.CrossRef Avci, E. (2009). Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: Hgasvm. Expert Systems with Applications, 36(2), 1391–1402.CrossRef
6.
go back to reference Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: classical approaches and new trends. IET communications, 1(2), 137–156.CrossRef Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: classical approaches and new trends. IET communications, 1(2), 137–156.CrossRef
7.
go back to reference Dobre, O.A., Bar-Ness, Y & Su, W. (2003). Higher-order cyclic cumulants for high order modulation classification. In: Military Communications Conference, 2003. MILCOM’03. 2003 IEEE, vol. 1, pp. 112–117. IEEE Dobre, O.A., Bar-Ness, Y & Su, W. (2003). Higher-order cyclic cumulants for high order modulation classification. In: Military Communications Conference, 2003. MILCOM’03. 2003 IEEE, vol. 1, pp. 112–117. IEEE
8.
go back to reference Fehske, A., Gaeddert, J & Reed, J.H. (2005). A new approach to signal classification using spectral correlation and neural networks. In: New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, pp. 144–150. IEEE Fehske, A., Gaeddert, J & Reed, J.H. (2005). A new approach to signal classification using spectral correlation and neural networks. In: New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, pp. 144–150. IEEE
9.
go back to reference Hameed, F., Dobre, O. A., & Popescu, D. C. (2009). On the likelihood-based approach to modulation classification. IEEE Transactions on Wireless Communications, 8(12), 5884–5892.CrossRef Hameed, F., Dobre, O. A., & Popescu, D. C. (2009). On the likelihood-based approach to modulation classification. IEEE Transactions on Wireless Communications, 8(12), 5884–5892.CrossRef
10.
go back to reference Hazza, A., Shoaib, M., Alshebeili, S. A., & Fahad, A. (2013). An overview of feature-based methods for digital modulation classification (pp. 1–6). IEEE. Hazza, A., Shoaib, M., Alshebeili, S. A., & Fahad, A. (2013). An overview of feature-based methods for digital modulation classification (pp. 1–6). IEEE.
11.
go back to reference Hong, L & Ho, K. (1999). Identification of digital modulation types using the wavelet transform. In: Military Communications Conference Proceedings, 1999. MILCOM 1999. IEEE, vol. 1, pp. 427–431. IEEE Hong, L & Ho, K. (1999). Identification of digital modulation types using the wavelet transform. In: Military Communications Conference Proceedings, 1999. MILCOM 1999. IEEE, vol. 1, pp. 427–431. IEEE
12.
go back to reference Huan, C. Y., & Polydoros, A. (1995). Likelihood methods for mpsk modulation classification. IEEE Transactions on Communications, 43(234), 1493–1504.CrossRef Huan, C. Y., & Polydoros, A. (1995). Likelihood methods for mpsk modulation classification. IEEE Transactions on Communications, 43(234), 1493–1504.CrossRef
13.
go back to reference Jajoo, G., Kumar, Y., Kumar, A., & Yadav, S. K. (2020). Blind signal modulation recognition through density spread of constellation signature. Wireless Personal Communications, 114(4), 3137–3156.CrossRef Jajoo, G., Kumar, Y., Kumar, A., & Yadav, S. K. (2020). Blind signal modulation recognition through density spread of constellation signature. Wireless Personal Communications, 114(4), 3137–3156.CrossRef
14.
go back to reference Jajoo, G., Kumar, Y., Kumar, A., & Yadav, S. K. (2020). Implementation of modulation classifier over software defined radio. IET Communications, 14(9), 1467–1475.CrossRef Jajoo, G., Kumar, Y., Kumar, A., & Yadav, S. K. (2020). Implementation of modulation classifier over software defined radio. IET Communications, 14(9), 1467–1475.CrossRef
15.
go back to reference Jajoo, G., Kumar, Y., & Yadav, S. K. (2019). Blind signal psk/qam recognition using clustering analysis of constellation signature in flat fading channel. IEEE Communications Letters, 23(10), 1853–1856.CrossRef Jajoo, G., Kumar, Y., & Yadav, S. K. (2019). Blind signal psk/qam recognition using clustering analysis of constellation signature in flat fading channel. IEEE Communications Letters, 23(10), 1853–1856.CrossRef
16.
go back to reference Jajoo, G., Kumar, Y., Yadav, S. K., Adhikari, B., & Kumar, A. (2017). Blind signal modulation recognition through clustering analysis of constellation signature. Expert Systems with Applications, 90, 13–22.CrossRef Jajoo, G., Kumar, Y., Yadav, S. K., Adhikari, B., & Kumar, A. (2017). Blind signal modulation recognition through clustering analysis of constellation signature. Expert Systems with Applications, 90, 13–22.CrossRef
17.
go back to reference Jajoo, G., Yadav, Y. K., & Yadav, S. (2018). Blind signal digital modulation classification through k-medoids clustering (pp. 1–5). IEEE. Jajoo, G., Yadav, Y. K., & Yadav, S. (2018). Blind signal digital modulation classification through k-medoids clustering (pp. 1–5). IEEE.
18.
go back to reference Keshk, M. E. H. M., El-Naby, M. A., Al-Makhlasawy, R. M., El-Khobby, H. A., Hamouda, W., Elnaby, M. M. A., El-Rabaie, E. S. M., Dessouky, M. I., Alshebeili, S. A., & El-Samie, F. E. A. (2015). Automatic modulation recognition in wireless multi-carrier wireless systems with cepstral features. Wireless Personal Communications, 81(3), 1243–1288.CrossRef Keshk, M. E. H. M., El-Naby, M. A., Al-Makhlasawy, R. M., El-Khobby, H. A., Hamouda, W., Elnaby, M. M. A., El-Rabaie, E. S. M., Dessouky, M. I., Alshebeili, S. A., & El-Samie, F. E. A. (2015). Automatic modulation recognition in wireless multi-carrier wireless systems with cepstral features. Wireless Personal Communications, 81(3), 1243–1288.CrossRef
19.
go back to reference Kumar, Y., Jajoo, G., & Yadav, S. K. (2020). 2d-fft based modulation classification using deep convolution neural network (pp. 1–6). IEEE. Kumar, Y., Jajoo, G., & Yadav, S. K. (2020). 2d-fft based modulation classification using deep convolution neural network (pp. 1–6). IEEE.
20.
go back to reference Kumar, Y., Sheoran, M., Jajoo, G., & Yadav, S. K. (2020). Automatic modulation classification based on constellation density using deep learning. IEEE Communications Letters, 24(6), 1275–1278.CrossRef Kumar, Y., Sheoran, M., Jajoo, G., & Yadav, S. K. (2020). Automatic modulation classification based on constellation density using deep learning. IEEE Communications Letters, 24(6), 1275–1278.CrossRef
21.
go back to reference Mirarab, M. & Sobhani, M (2007). Robust modulation classification for psk/qam/ask using higher-order cumulants. In: 2007 6th International Conference on Information, Communications & Signal Processing, pp. 1–4. IEEE (2007) Mirarab, M. & Sobhani, M (2007). Robust modulation classification for psk/qam/ask using higher-order cumulants. In: 2007 6th International Conference on Information, Communications & Signal Processing, pp. 1–4. IEEE (2007)
22.
go back to reference Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on communications, 46(4), 431–436.CrossRef Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on communications, 46(4), 431–436.CrossRef
25.
go back to reference Peng, S., Jiang, H., Wang, H., Alwageed, H., Zhou, Y., Sebdani, M. M., & Yao, Y. D. (2018). Modulation classification based on signal constellation diagrams and deep learning. IEEE transactions on neural networks and learning systems, 99, 1–10. Peng, S., Jiang, H., Wang, H., Alwageed, H., Zhou, Y., Sebdani, M. M., & Yao, Y. D. (2018). Modulation classification based on signal constellation diagrams and deep learning. IEEE transactions on neural networks and learning systems, 99, 1–10.
26.
go back to reference Popoola, J. J., & van Olst, R. (2013). The performance evaluation of a spectrum sensing implementation using an automatic modulation classification detection method with a universal software radio peripheral. Expert Systems with Applications, 40(6), 2165–2173.CrossRef Popoola, J. J., & van Olst, R. (2013). The performance evaluation of a spectrum sensing implementation using an automatic modulation classification detection method with a universal software radio peripheral. Expert Systems with Applications, 40(6), 2165–2173.CrossRef
27.
go back to reference Sethi, A. & Ray, B (2013). Blind carrier/timing recovery and detection of modulation scheme (2013). US Patent 8,605,830 Sethi, A. & Ray, B (2013). Blind carrier/timing recovery and detection of modulation scheme (2013). US Patent 8,605,830
28.
go back to reference Wei, W., & Mendel, J. M. (2000). Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Transactions on Communications, 48(2), 189–193.CrossRef Wei, W., & Mendel, J. M. (2000). Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Transactions on Communications, 48(2), 189–193.CrossRef
29.
go back to reference Wong, M. D., & Nandi, A. K. (2004). Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing, 84(2), 351–365.CrossRef Wong, M. D., & Nandi, A. K. (2004). Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing, 84(2), 351–365.CrossRef
30.
go back to reference Wong, M.D., Ting, S.K. & Nandi, A.K. (2008). Naive bayes classification of adaptive broadband wireless modulation schemes with higher order cumulants. In: Signal Processing and Communication Systems, 2008. ICSPCS 2008. 2nd International Conference on, pp. 1–5. IEEE Wong, M.D., Ting, S.K. & Nandi, A.K. (2008). Naive bayes classification of adaptive broadband wireless modulation schemes with higher order cumulants. In: Signal Processing and Communication Systems, 2008. ICSPCS 2008. 2nd International Conference on, pp. 1–5. IEEE
31.
go back to reference Yadav, Y. K., Jajoo, G., & Yadav, S. K. (2017). Modulation scheme detection of blind signal using constellation graphical representation (pp. 231–235). IEEE. Yadav, Y. K., Jajoo, G., & Yadav, S. K. (2017). Modulation scheme detection of blind signal using constellation graphical representation (pp. 231–235). IEEE.
32.
go back to reference Yu, H., Shi, L., Qian, Y., Shu, F., Li, J., Zhao, Y., & Jayakody, D. N. K. (2017). A cooperative modulation recognition: New paradigm for power line networks in smart grid. Physical Communication, 25, 268–276.CrossRef Yu, H., Shi, L., Qian, Y., Shu, F., Li, J., Zhao, Y., & Jayakody, D. N. K. (2017). A cooperative modulation recognition: New paradigm for power line networks in smart grid. Physical Communication, 25, 268–276.CrossRef
33.
go back to reference Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE communications Surveys & Tutorials, 11(1), 116–130.CrossRef Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE communications Surveys & Tutorials, 11(1), 116–130.CrossRef
Metadata
Title
Blind Signal Modulation Classification Using Constellation Pattern Analysis with Oversampling Factor Alteration
Authors
Yogesh Kumar
Gaurav Jajoo
Ashok Kumar
Sandeep Kumar Yadav
Publication date
02-03-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09564-7

Other articles of this Issue 1/2022

Wireless Personal Communications 1/2022 Go to the issue