Skip to main content
Top
Published in: Natural Computing 1/2020

25-10-2018

Boolean dynamics revisited through feedback interconnections

Authors: Madalena Chaves, Daniel Figueiredo, Manuel A. Martins

Published in: Natural Computing | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Boolean models of physical or biological systems describe the global dynamics of the system and their attractors typically represent asymptotic behaviors. In the case of large networks composed of several modules, it may be difficult to identify all the attractors. To explore Boolean dynamics from a novel viewpoint, we will analyse the dynamics emerging from the composition of two known Boolean modules. The state transition graphs and attractors for each of the modules can be combined to construct a new asymptotic graph which will (1) provide a reliable method for attractor computation with partial information; (2) illustrate the differences in dynamical behavior induced by the updating strategy (asynchronous, synchronous, or mixed); and (3) show the inherited organization/structure of the original network’s state transition graph.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abou-Jaoudé W, Traynard P, Monteiro P, Saez-Rodriguez J, Helikar T, Thieffry D, Chaouiya C (2016) Logical modeling and dynamical analysis of cellular networks. Front Genet 7:94 Abou-Jaoudé W, Traynard P, Monteiro P, Saez-Rodriguez J, Helikar T, Thieffry D, Chaouiya C (2016) Logical modeling and dynamical analysis of cellular networks. Front Genet 7:94
go back to reference Akutsu T, Melkman A, Tamura T, Yamamoto M (2011) Determining a singleton attractor of a boolean network with nested canalyzing functions. J Comput Biol 18(10):1275–1290MathSciNet Akutsu T, Melkman A, Tamura T, Yamamoto M (2011) Determining a singleton attractor of a boolean network with nested canalyzing functions. J Comput Biol 18(10):1275–1290MathSciNet
go back to reference Baccala R, Kono D, Theofilopoulos A (2005) Interferons as pathogenic effectors in autoimmunity. Immunol Rev 204:9–26 Baccala R, Kono D, Theofilopoulos A (2005) Interferons as pathogenic effectors in autoimmunity. Immunol Rev 204:9–26
go back to reference Baldazzi V, Ropers D, Markowicz Y, Kahn D, Geiselmann J, de Jong H (2010) The carbon assimilation network in Escherichia coli is densely connected and largely sign-determined by directions of metabolic fluxes. PLoS Comput Biol 6(6):e1000812MathSciNet Baldazzi V, Ropers D, Markowicz Y, Kahn D, Geiselmann J, de Jong H (2010) The carbon assimilation network in Escherichia coli is densely connected and largely sign-determined by directions of metabolic fluxes. PLoS Comput Biol 6(6):e1000812MathSciNet
go back to reference Chaves M, Albert R, Sontag E (2005) Robustness and fragility of boolean models for genetic regulatory networks. J Theor Biol 235(3):431–449MathSciNet Chaves M, Albert R, Sontag E (2005) Robustness and fragility of boolean models for genetic regulatory networks. J Theor Biol 235(3):431–449MathSciNet
go back to reference Chaves M, Carta A (2015) Attractor computation using interconnected boolean networks: testing growth rate models in E. coli. Theor Comput Sci 599:47–63MathSciNetMATH Chaves M, Carta A (2015) Attractor computation using interconnected boolean networks: testing growth rate models in E. coli. Theor Comput Sci 599:47–63MathSciNetMATH
go back to reference Chaves M, Preto M (2013) Hierarchy of models: from qualitative to quantitative analysis of circadian rhythms in cyanobacteria. Chaos 23(2):025113MathSciNetMATH Chaves M, Preto M (2013) Hierarchy of models: from qualitative to quantitative analysis of circadian rhythms in cyanobacteria. Chaos 23(2):025113MathSciNetMATH
go back to reference Chaves M, Tournier L (2011) Predicting the asymptotic dynamics of large biological networks by interconnections of Boolean modules. In: Proceedings of 50th conference decision and control and European control conference, Orlando, Florida, USA Chaves M, Tournier L (2011) Predicting the asymptotic dynamics of large biological networks by interconnections of Boolean modules. In: Proceedings of 50th conference decision and control and European control conference, Orlando, Florida, USA
go back to reference Chaves M, Tournier L (2018) Analysis tools for interconnected boolean networks with biological applications. Front Physiol 9:586 Chaves M, Tournier L (2018) Analysis tools for interconnected boolean networks with biological applications. Front Physiol 9:586
go back to reference Comet JP, Bernot G, Das A, Diener F, Massot C, Cessieux A (2012) Simplified models for the mammalian circadian clock. Procedia Comput Sci 11:127–138 Comet JP, Bernot G, Das A, Diener F, Massot C, Cessieux A (2012) Simplified models for the mammalian circadian clock. Procedia Comput Sci 11:127–138
go back to reference Crama Y, Hammer P (2011) Boolean functions: theory, algorithms, and applications. Cambridge University Press, New YorkMATH Crama Y, Hammer P (2011) Boolean functions: theory, algorithms, and applications. Cambridge University Press, New YorkMATH
go back to reference Demongeot J, Elena A, Sené S (2008) Robustness in regulatory networks: a multi-disciplinary approach. Acta Biotheor 56(1):27–49 Demongeot J, Elena A, Sené S (2008) Robustness in regulatory networks: a multi-disciplinary approach. Acta Biotheor 56(1):27–49
go back to reference Demongeot J, Goles E, Morvan M, Noual M, Sené S (2010) Attraction basins as gauges of robustness against boundary conditions in biological complex systems. PLOS One 5(8):1–18 Demongeot J, Goles E, Morvan M, Noual M, Sené S (2010) Attraction basins as gauges of robustness against boundary conditions in biological complex systems. PLOS One 5(8):1–18
go back to reference Devloo V, Hansen P, Labbé M (2003) Identification of all steady states in large networks by logical analysis. Bull Math Biol 65:1025–1051MATH Devloo V, Hansen P, Labbé M (2003) Identification of all steady states in large networks by logical analysis. Bull Math Biol 65:1025–1051MATH
go back to reference Diestel R (2005) Graph theory, 3rd edn. Springer, HeidelbergMATH Diestel R (2005) Graph theory, 3rd edn. Springer, HeidelbergMATH
go back to reference Dong G, Yang Q, Wang Q, Kim YI, Wood T, Osteryoung K, van Oudenaarden A, Golden S (2010) Elevated atpase activity of kaic applies a circadian checkpoint on cell division in synechococcus elongatus. Cell 140:529–539 Dong G, Yang Q, Wang Q, Kim YI, Wood T, Osteryoung K, van Oudenaarden A, Golden S (2010) Elevated atpase activity of kaic applies a circadian checkpoint on cell division in synechococcus elongatus. Cell 140:529–539
go back to reference Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):124–131 Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):124–131
go back to reference Feillet C, Krusche P, Tamanini F, Janssens R, Downey M, Martin P, Teboul M, Saito S, Lévi F, Bretschneider T, van der Horst G, Delaunay F, Rand D (2014) Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. PNAS 111(27):9828–9833 Feillet C, Krusche P, Tamanini F, Janssens R, Downey M, Martin P, Teboul M, Saito S, Lévi F, Bretschneider T, van der Horst G, Delaunay F, Rand D (2014) Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. PNAS 111(27):9828–9833
go back to reference Feillet C, van der Horst G, Lévi F, Rand D, Delaunay F (2015) Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front Neurol 6:96 Feillet C, van der Horst G, Lévi F, Rand D, Delaunay F (2015) Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front Neurol 6:96
go back to reference García-Gomez M, Azpeitia E, Alvarez-Buylla E (2017) A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana. PLoS Comput Biol 13(4):e1005488 García-Gomez M, Azpeitia E, Alvarez-Buylla E (2017) A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana. PLoS Comput Biol 13(4):e1005488
go back to reference Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G (2008) Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17):1917–1925 Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G (2008) Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17):1917–1925
go back to reference Gerard C, Goldbeter A (2009) Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. PNAS 106(51):21643–21648 Gerard C, Goldbeter A (2009) Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. PNAS 106(51):21643–21648
go back to reference Hong C, Hwang J, Cho KH, Shin I (2015) An efficient steady-state analysis method for large boolean networks with high maximum node connectivity. PLoS ONE 10(12):e0145734 Hong C, Hwang J, Cho KH, Shin I (2015) An efficient steady-state analysis method for large boolean networks with high maximum node connectivity. PLoS ONE 10(12):e0145734
go back to reference Irons D (2006) Improving the efficiency of attractor cycle identification in Boolean networks. Phys D 217:7–21MathSciNetMATH Irons D (2006) Improving the efficiency of attractor cycle identification in Boolean networks. Phys D 217:7–21MathSciNetMATH
go back to reference Jarrah A, Raposa B, Laubenbacher R (2007) Nested canalyzing, unate cascade, and polynomial functions. Phys D 233(2):167–174MathSciNetMATH Jarrah A, Raposa B, Laubenbacher R (2007) Nested canalyzing, unate cascade, and polynomial functions. Phys D 233(2):167–174MathSciNetMATH
go back to reference Kauffman S, Peterson C, Samuelsson B, Troein C (2004) Genetic networks with canalyzing boolean rules are always stable. PNAS 101(49):17102–17107 Kauffman S, Peterson C, Samuelsson B, Troein C (2004) Genetic networks with canalyzing boolean rules are always stable. PNAS 101(49):17102–17107
go back to reference Klamt S, Saez-Rodriguez J, Lindquist J, Simeoni L, Gilles E (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform 7(1):56 Klamt S, Saez-Rodriguez J, Lindquist J, Simeoni L, Gilles E (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform 7(1):56
go back to reference Klarner H, Bockmayr A, Siebert H (2014) Computing symbolic steady states of boolean networks. In: Was J, Sirakoulis G, Bandini S (eds) Cellular automata, LNCS, vol 8751. Springer, Heidelberg, pp 561–570 Klarner H, Bockmayr A, Siebert H (2014) Computing symbolic steady states of boolean networks. In: Was J, Sirakoulis G, Bandini S (eds) Cellular automata, LNCS, vol 8751. Springer, Heidelberg, pp 561–570
go back to reference Klarner H, Siebert H (2015) Approximating attractors of boolean networks by iterative CTL model checking. Front Bioeng Biotechnol 3:130 Klarner H, Siebert H (2015) Approximating attractors of boolean networks by iterative CTL model checking. Front Bioeng Biotechnol 3:130
go back to reference Mendoza L, Xenarios I (2006) A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor Biol Med Model 3(1):13 Mendoza L, Xenarios I (2006) A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor Biol Med Model 3(1):13
go back to reference Mori T, Flöttmann M, Krantz M, Akutsu T, Klipp E (2015) Stochastic simulation of boolean rxncon models: towards quantitative analysis of large signaling networks. BMC Syst Biol 9(45):1–9 Mori T, Flöttmann M, Krantz M, Akutsu T, Klipp E (2015) Stochastic simulation of boolean rxncon models: towards quantitative analysis of large signaling networks. BMC Syst Biol 9(45):1–9
go back to reference Ortiz-Gutiérrez E, García-Cruz K, Azpeitia E, Castillo A, Sánchez M, Alvarez-Buylla E (2015) A dynamic gene regulatory network model that recovers the cyclic behavior of Arabidopsis thaliana cell cycle. PLoS Comput Biol 11(9):e1004486 Ortiz-Gutiérrez E, García-Cruz K, Azpeitia E, Castillo A, Sánchez M, Alvarez-Buylla E (2015) A dynamic gene regulatory network model that recovers the cyclic behavior of Arabidopsis thaliana cell cycle. PLoS Comput Biol 11(9):e1004486
go back to reference Plikus MV, Vollmers C, de la Cruz D, Chaix A, Ramos R, Panda S, Chuong CM (2013) Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. PNAS 110(23):E2106–E2115 Plikus MV, Vollmers C, de la Cruz D, Chaix A, Ramos R, Panda S, Chuong CM (2013) Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. PNAS 110(23):E2106–E2115
go back to reference Purnick P, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410 Purnick P, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410
go back to reference Rust M, Markson J, Lane W, Fisher D, O’Shea E (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809 Rust M, Markson J, Lane W, Fisher D, O’Shea E (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809
go back to reference Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 3(8):e163MathSciNet Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 3(8):e163MathSciNet
go back to reference Shmulevich I, Dougherty E, Kim S, Zhang W (2002) Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274 Shmulevich I, Dougherty E, Kim S, Zhang W (2002) Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274
go back to reference Sontag E (1998) Mathematical control theory, 2nd edn. Springer, New YorkMATH Sontag E (1998) Mathematical control theory, 2nd edn. Springer, New YorkMATH
go back to reference Stoll G, Caron B, Viara E, Dugourd A, Zinovyev A, Naldi A, Kroemer G, Barillot E, Calzone L (2017) Maboss 2.0: an environment for stochastic boolean modeling. Bioinformatics 33(4):2226–2228 Stoll G, Caron B, Viara E, Dugourd A, Zinovyev A, Naldi A, Kroemer G, Barillot E, Calzone L (2017) Maboss 2.0: an environment for stochastic boolean modeling. Bioinformatics 33(4):2226–2228
go back to reference Tournier L, Chaves M (2013) Interconnection of asynchronous Boolean networks, asymptotic and transient dynamics. Automatica 49(4):884–893MathSciNetMATH Tournier L, Chaves M (2013) Interconnection of asynchronous Boolean networks, asymptotic and transient dynamics. Automatica 49(4):884–893MathSciNetMATH
go back to reference Vecchio DD, Ninfa A, Sontag E (2008) Modular cell biology: retroactivity and insulation. Mol Syst Biol 4:161 Vecchio DD, Ninfa A, Sontag E (2008) Modular cell biology: retroactivity and insulation. Mol Syst Biol 4:161
go back to reference Veliz-Cuba A, Aguilar B, Hinkelmann F, Laubenbacher R (2014) Steady state analysis of boolean molecular network models via model reduction and computational algebra. BMC Bioinform 15:221 Veliz-Cuba A, Aguilar B, Hinkelmann F, Laubenbacher R (2014) Steady state analysis of boolean molecular network models via model reduction and computational algebra. BMC Bioinform 15:221
go back to reference Wang RS, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:055001 Wang RS, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:055001
go back to reference Zañudo J, Albert R (2013) An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos 23(2):025111MathSciNetMATH Zañudo J, Albert R (2013) An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos 23(2):025111MathSciNetMATH
go back to reference Zhang R, Shah M, Yang J, Nyland S, Liu X, Yun J, Albert R, Loughran TP Jr (2008) Network model of survival signaling in large granular lymphocyte leukemia. PNAS 105(42):16308–16313 Zhang R, Shah M, Yang J, Nyland S, Liu X, Yun J, Albert R, Loughran TP Jr (2008) Network model of survival signaling in large granular lymphocyte leukemia. PNAS 105(42):16308–16313
Metadata
Title
Boolean dynamics revisited through feedback interconnections
Authors
Madalena Chaves
Daniel Figueiredo
Manuel A. Martins
Publication date
25-10-2018
Publisher
Springer Netherlands
Published in
Natural Computing / Issue 1/2020
Print ISSN: 1567-7818
Electronic ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-018-9716-8

Other articles of this Issue 1/2020

Natural Computing 1/2020 Go to the issue

EditorialNotes

Preface

Premium Partner