Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Borophenes: Insights and Predictions From Computational Analyses

Authors : Naiwrit Karmodak, Eluvathingal D. Jemmis, Boris I. Yakobson

Published in: 2D Boron: Boraphene, Borophene, Boronene

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structural chemistry of Boron has always been very challenging. The recent discovery of two-dimensional boron phases (borophenes) on the metal templates has been one of the remarkable developments in the chemistry of boron. However, borophene is bound to have different structural variations, depending upon the synthetic techniques. Though always consisting of triangular networks, the nonplanar distortions and distribution of hexagonal holes to varying hole densities lead to dramatic modifications in structural preferences and stability. In this chapter, the recent theoretical advancements, which led fundamental contributions in understanding the structural chemistry of two- dimensional boron phases are discussed. Drawing relationships to the planar boron clusters and extended boron compounds, many structural possibilities are predicted, which eventually influenced several experimental efforts to synthesize these phases. Electron counting strategies are introduced based upon benzenoid aromaticity and MgB2, to understand their electronic structure and stability. With the help of molecular dynamics simulations on different metal surfaces and the electron density mapping, probable atomic arrangements and growth mechanisms of the recently synthesized borophenes phases are arrived at. These structural variations in borophene phases are reminiscent of the structural chemistry of 3D boron allotropes, where the presence of fractional occupancies and crystallization procedures bring in significant structural polymorphism.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Albert, H. Hillebrecht, Boron: Elementary challenge for experimenters and theoreticians. Angew. Chem., Int. Ed 48, 8640–8668 (2009)CrossRef B. Albert, H. Hillebrecht, Boron: Elementary challenge for experimenters and theoreticians. Angew. Chem., Int. Ed 48, 8640–8668 (2009)CrossRef
2.
go back to reference E.D. Jemmis, M.M. Balakrishnarajan, Polyhedral boranes and elemental boron: Direct structural relations and diverse electronic requirements. J. Am. Chem. Soc. 123, 4324–4330 (2001)CrossRef E.D. Jemmis, M.M. Balakrishnarajan, Polyhedral boranes and elemental boron: Direct structural relations and diverse electronic requirements. J. Am. Chem. Soc. 123, 4324–4330 (2001)CrossRef
3.
go back to reference T. Ogitsu, E. Schwegler, G. Galli, β-Rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013)CrossRef T. Ogitsu, E. Schwegler, G. Galli, β-Rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013)CrossRef
4.
go back to reference A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015)CrossRef A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015)CrossRef
5.
go back to reference B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016)CrossRef B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016)CrossRef
6.
go back to reference W.-L. Li, X. Chen, T. Jian, T.-T. Chen, J. Li, L.-S. Wang, From planar boron clusters to borophenes and metalloborophenes. Nat. Rev. Chem. 1, 0071 (2017)CrossRef W.-L. Li, X. Chen, T. Jian, T.-T. Chen, J. Li, L.-S. Wang, From planar boron clusters to borophenes and metalloborophenes. Nat. Rev. Chem. 1, 0071 (2017)CrossRef
7.
go back to reference A.P. Sergeeva, I.A. Popov, Z.A. Piazza, W.-L. Li, C. Romanescu, L.-S. Wang, A.I. Boldyrev, Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358 (2014)CrossRef A.P. Sergeeva, I.A. Popov, Z.A. Piazza, W.-L. Li, C. Romanescu, L.-S. Wang, A.I. Boldyrev, Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358 (2014)CrossRef
8.
go back to reference E.D. Jemmis, D.L. Prasad, Unknowns in the chemistry of boron. Curr. Sci. 95, 1277–1283 (2008) E.D. Jemmis, D.L. Prasad, Unknowns in the chemistry of boron. Curr. Sci. 95, 1277–1283 (2008)
9.
go back to reference N. Karmodak, E.D. Jemmis, Fragment approach to the electronic structure of τ-boron allotrope. Phys. Rev. B 95, 165128 (2017)CrossRef N. Karmodak, E.D. Jemmis, Fragment approach to the electronic structure of τ-boron allotrope. Phys. Rev. B 95, 165128 (2017)CrossRef
10.
go back to reference B. Kiraly, X. Liu, L. Wang, Z. Zhang, A.J. Mannix, B.L. Fisher, B.I. Yakobson, M.C. Hersam, N.P. Guisinger, Borophene synthesis on au(111). ACS Nano 13, 3816–3822 (2019)CrossRef B. Kiraly, X. Liu, L. Wang, Z. Zhang, A.J. Mannix, B.L. Fisher, B.I. Yakobson, M.C. Hersam, N.P. Guisinger, Borophene synthesis on au(111). ACS Nano 13, 3816–3822 (2019)CrossRef
11.
go back to reference Z. Qing, Z. Jin, C. Peng, F. Baojie, L. Wenbin, S. Shaoxiang, L. Hui, M. Sheng, C. Lan, W. Kehui, Metastable phases of 2D boron sheets on Ag(1 1 1). J. Phys.: Condens. Matter 29, 095002 (2017) Z. Qing, Z. Jin, C. Peng, F. Baojie, L. Wenbin, S. Shaoxiang, L. Hui, M. Sheng, C. Lan, W. Kehui, Metastable phases of 2D boron sheets on Ag(1 1 1). J. Phys.: Condens. Matter 29, 095002 (2017)
12.
go back to reference G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong, T. Zeng, Y. You, Q. Wang, Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 54, 15473–15477 (2015)CrossRef G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong, T. Zeng, Y. You, Q. Wang, Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 54, 15473–15477 (2015)CrossRef
13.
go back to reference R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, A. Gozar, Large-area single-crystal sheets of borophene on cu(111) surfaces. Nat. Nanotechnol. 14, 44–49 (2019)CrossRef R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, A. Gozar, Large-area single-crystal sheets of borophene on cu(111) surfaces. Nat. Nanotechnol. 14, 44–49 (2019)CrossRef
14.
go back to reference I. Boustani, Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n= 2–14). Phys. Rev. B 55, 16426 (1997)CrossRef I. Boustani, Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n= 2–14). Phys. Rev. B 55, 16426 (1997)CrossRef
15.
go back to reference Y. Liu, E.S. Penev, B.I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem. 125, 3238–3241 (2013)CrossRef Y. Liu, E.S. Penev, B.I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem. 125, 3238–3241 (2013)CrossRef
16.
go back to reference H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007)CrossRef H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007)CrossRef
17.
go back to reference X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012)CrossRef X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012)CrossRef
18.
go back to reference X. Yu, L. Li, X.-W. Xu, C.-C. Tang, Prediction of two-dimensional boron sheets by particle swarm optimization algorithm. J. Phys. Chem. C 116, 20075–20079 (2012)CrossRef X. Yu, L. Li, X.-W. Xu, C.-C. Tang, Prediction of two-dimensional boron sheets by particle swarm optimization algorithm. J. Phys. Chem. C 116, 20075–20079 (2012)CrossRef
19.
go back to reference Z. Zhang, Y. Yang, G. Gao, B.I. Yakobson, Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem., Int. Ed. 54, 13022–13026 (2015)CrossRef Z. Zhang, Y. Yang, G. Gao, B.I. Yakobson, Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem., Int. Ed. 54, 13022–13026 (2015)CrossRef
20.
go back to reference Z. Zhang, S.N. Shirodkar, Y. Yang, B.I. Yakobson, Gate-voltage control of borophene structure formation. Angew. Chem., Int. Ed. 56, 15421–15426 (2017)CrossRef Z. Zhang, S.N. Shirodkar, Y. Yang, B.I. Yakobson, Gate-voltage control of borophene structure formation. Angew. Chem., Int. Ed. 56, 15421–15426 (2017)CrossRef
21.
go back to reference S.N. Shirodkar, E.S. Penev, B.I. Yakobson, Honeycomb boron: Alchemy on aluminum pan? Sci. Bull. 63, 270–271 (2018)CrossRef S.N. Shirodkar, E.S. Penev, B.I. Yakobson, Honeycomb boron: Alchemy on aluminum pan? Sci. Bull. 63, 270–271 (2018)CrossRef
22.
go back to reference E.S. Penev, S. Bhowmick, A. Sadrzadeh, B.I. Yakobson, Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012)CrossRef E.S. Penev, S. Bhowmick, A. Sadrzadeh, B.I. Yakobson, Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012)CrossRef
23.
go back to reference E.D. Jemmis, E.G. Jayasree, Analogies between boron and carbon. Acc. Chem. Res. 36, 816–824 (2003)CrossRef E.D. Jemmis, E.G. Jayasree, Analogies between boron and carbon. Acc. Chem. Res. 36, 816–824 (2003)CrossRef
24.
go back to reference I. Boustani, New quasi-planar surfaces of bare boron. Surf. Sci. 370, 355–363 (1997)CrossRef I. Boustani, New quasi-planar surfaces of bare boron. Surf. Sci. 370, 355–363 (1997)CrossRef
25.
go back to reference I. Boustani, New convex and spherical structures of bare boron clusters. J. Solid State Chem. 133, 182–189 (1997)CrossRef I. Boustani, New convex and spherical structures of bare boron clusters. J. Solid State Chem. 133, 182–189 (1997)CrossRef
26.
go back to reference H. Hogeveen, P.W. Kwant, J. Postma, P.T. van Duynen, Electronic spectra of pyramidal dications, (CCH3)6 2+ and (CH)6 2+. Tetrahedron Lett. 15, 4351–4354 (1974)CrossRef H. Hogeveen, P.W. Kwant, J. Postma, P.T. van Duynen, Electronic spectra of pyramidal dications, (CCH3)6 2+ and (CH)6 2+. Tetrahedron Lett. 15, 4351–4354 (1974)CrossRef
27.
go back to reference E.D. Jemmis, P.V.R. Schleyer, Aromaticity in three dimensions. 4. Influence of orbital compatibility on the geometry and stability of capped annulene rings with six interstitial electrons. J. Am. Chem. Soc 104, 4781–4788 (1982)CrossRef E.D. Jemmis, P.V.R. Schleyer, Aromaticity in three dimensions. 4. Influence of orbital compatibility on the geometry and stability of capped annulene rings with six interstitial electrons. J. Am. Chem. Soc 104, 4781–4788 (1982)CrossRef
28.
go back to reference M. Böyükata, C. Özdoğan, Z.B. Güvenç, Effects of hydrogen hosting on cage structures of boron clusters: Density functional study of BmHn (m = 5–10 and n ≤ m) complexes. Phys. Scr. 77, 025602 (2008)CrossRef M. Böyükata, C. Özdoğan, Z.B. Güvenç, Effects of hydrogen hosting on cage structures of boron clusters: Density functional study of BmHn (m = 5–10 and n ≤ m) complexes. Phys. Scr. 77, 025602 (2008)CrossRef
29.
go back to reference N. Gonzalez Szwacki, C.J. Tymczak, B12Hn and B12Fn: Planar vs icosahedral structures. Nanoscale Res. Lett. 7, 1–6 (2012)CrossRef N. Gonzalez Szwacki, C.J. Tymczak, B12Hn and B12Fn: Planar vs icosahedral structures. Nanoscale Res. Lett. 7, 1–6 (2012)CrossRef
30.
go back to reference N. Karmodak, R. Chaliha, E.D. Jemmis, Overlap of radial dangling orbitals controls the relative stabilities of polyhedral BnHn–x isomers (n = 5–12, x = 0 to n – 1). Inorg. Chem. 58, 3627–3634 (2019)CrossRef N. Karmodak, R. Chaliha, E.D. Jemmis, Overlap of radial dangling orbitals controls the relative stabilities of polyhedral BnHn–x isomers (n = 5–12, x = 0 to n – 1). Inorg. Chem. 58, 3627–3634 (2019)CrossRef
31.
go back to reference J.K. Olson, A.I. Boldyrev, Planar to 3D transition in the B6Hy anions. J. Phys. Chem. A 117, 1614–1620 (2013)CrossRef J.K. Olson, A.I. Boldyrev, Planar to 3D transition in the B6Hy anions. J. Phys. Chem. A 117, 1614–1620 (2013)CrossRef
32.
go back to reference A.P. Sergeeva, Z.A. Piazza, C. Romanescu, W.-L. Li, A.I. Boldyrev, L.-S. Wang, B22 − and B23 −: All-boron analogues of anthracene and Phenanthrene. J. Am. Chem. Soc. 134, 18065–18073 (2012)CrossRef A.P. Sergeeva, Z.A. Piazza, C. Romanescu, W.-L. Li, A.I. Boldyrev, L.-S. Wang, B22 and B23 : All-boron analogues of anthracene and Phenanthrene. J. Am. Chem. Soc. 134, 18065–18073 (2012)CrossRef
33.
go back to reference N. Gonzalez Szwacki, A. Sadrzadeh, B.I. Yakobson, B80 fullerene: An Ab-initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98, 166804 (2007)CrossRef N. Gonzalez Szwacki, A. Sadrzadeh, B.I. Yakobson, B80 fullerene: An Ab-initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98, 166804 (2007)CrossRef
34.
go back to reference M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Academic press, 1996) M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Academic press, 1996)
35.
go back to reference E.S. Penev, V.I. Artyukhov, F. Ding, B.I. Yakobson, Unfolding the fullerene: Nanotubes, graphene and poly-elemental varieties by simulations. Adv. Mater. 24, 4956–4976 (2012)CrossRef E.S. Penev, V.I. Artyukhov, F. Ding, B.I. Yakobson, Unfolding the fullerene: Nanotubes, graphene and poly-elemental varieties by simulations. Adv. Mater. 24, 4956–4976 (2012)CrossRef
36.
go back to reference D.L.V.K. Prasad, E.D. Jemmis, Stuffing improves the stability of Fullerenelike boron clusters. Phys. Rev. Lett. 100, 165504 (2008)CrossRef D.L.V.K. Prasad, E.D. Jemmis, Stuffing improves the stability of Fullerenelike boron clusters. Phys. Rev. Lett. 100, 165504 (2008)CrossRef
37.
go back to reference D.L.V.K. Prasad, E.D. Jemmis, Stuffed fullerenelike boron carbide nanoclusters. Appl. Phys. Lett. 96, 023108 (2010)CrossRef D.L.V.K. Prasad, E.D. Jemmis, Stuffed fullerenelike boron carbide nanoclusters. Appl. Phys. Lett. 96, 023108 (2010)CrossRef
38.
go back to reference W. Huang, L.-S. Wang, Probing the 2D to 3D structural transition in gold cluster anions using argon tagging. Phys. Rev. Lett. 102, 153401 (2009)CrossRef W. Huang, L.-S. Wang, Probing the 2D to 3D structural transition in gold cluster anions using argon tagging. Phys. Rev. Lett. 102, 153401 (2009)CrossRef
39.
go back to reference Y. Ohishi, K. Kimura, M. Yamaguchi, N. Uchida, T. Kanayama, Formation of hydrogenated boron clusters in an external quadrupole static attraction ion trap. J. Chem. Phys. 128, 124304 (2008)CrossRef Y. Ohishi, K. Kimura, M. Yamaguchi, N. Uchida, T. Kanayama, Formation of hydrogenated boron clusters in an external quadrupole static attraction ion trap. J. Chem. Phys. 128, 124304 (2008)CrossRef
40.
go back to reference Y. Ohishi, K. Kimura, M. Yamaguchi, N. Uchida, T. Kanayama, Synthesis and formation mechanism of hydrogenated boron clusters B12Hn with controlled hydrogen content. J. Chem. Phys. 133, 074305 (2010)CrossRef Y. Ohishi, K. Kimura, M. Yamaguchi, N. Uchida, T. Kanayama, Synthesis and formation mechanism of hydrogenated boron clusters B12Hn with controlled hydrogen content. J. Chem. Phys. 133, 074305 (2010)CrossRef
41.
go back to reference D.Y. Zubarev, A.I. Boldyrev, Comprehensive analysis of chemical bonding in boron clusters. J. Comput. Chem. 28, 251–268 (2007)CrossRef D.Y. Zubarev, A.I. Boldyrev, Comprehensive analysis of chemical bonding in boron clusters. J. Comput. Chem. 28, 251–268 (2007)CrossRef
42.
go back to reference D.Y. Zubarev, A.I. Boldyrev, Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008)CrossRef D.Y. Zubarev, A.I. Boldyrev, Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008)CrossRef
43.
go back to reference B. Kiran, S. Bulusu, H.-J. Zhai, S. Yoo, X.C. Zeng, L.-S. Wang, Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. U. S. A. 102, 961–964 (2005)CrossRef B. Kiran, S. Bulusu, H.-J. Zhai, S. Yoo, X.C. Zeng, L.-S. Wang, Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. U. S. A. 102, 961–964 (2005)CrossRef
44.
go back to reference N. Karmodak, E.D. Jemmis, Exohedral complexation of B40, C60 and Arenes with transition metals: A comparative DFT study. Chem. Asian J. 11, 3350–3354 (2016)CrossRef N. Karmodak, E.D. Jemmis, Exohedral complexation of B40, C60 and Arenes with transition metals: A comparative DFT study. Chem. Asian J. 11, 3350–3354 (2016)CrossRef
45.
go back to reference H.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z.A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Y.-W. Mu, G.-F. Wei, Z.-P. Liu, J. Li, S.-D. Li, L.-S. Wang, Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014)CrossRef H.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z.A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Y.-W. Mu, G.-F. Wei, Z.-P. Liu, J. Li, S.-D. Li, L.-S. Wang, Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014)CrossRef
46.
go back to reference Z.A. Piazza, H.S. Hu, W.L. Li, Y.F. Zhao, J. Li, L.S. Wang, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014)CrossRef Z.A. Piazza, H.S. Hu, W.L. Li, Y.F. Zhao, J. Li, L.S. Wang, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014)CrossRef
47.
go back to reference S. Suehara, T. Aizawa, T. Sasaki, Graphenelike surface boron layer: Structural phases on transition-metal diborides (0001). Phys. Rev. B 81, 085423 (2010)CrossRef S. Suehara, T. Aizawa, T. Sasaki, Graphenelike surface boron layer: Structural phases on transition-metal diborides (0001). Phys. Rev. B 81, 085423 (2010)CrossRef
48.
go back to reference M.E. Jones, R.E. Marsh, The preparation and structure of magnesium boride, MgB2. J. Am. Chem. Soc. 76, 1434–1436 (1954)CrossRef M.E. Jones, R.E. Marsh, The preparation and structure of magnesium boride, MgB2. J. Am. Chem. Soc. 76, 1434–1436 (1954)CrossRef
49.
go back to reference D.L.V.K. Prasad, E.D. Jemmis, Boron and MgB2 analogs of fullerenes and carbon nanotubes: A density functional theory study. J. Mol. Struc.: THEOCHEM 771, 111–115 (2006)CrossRef D.L.V.K. Prasad, E.D. Jemmis, Boron and MgB2 analogs of fullerenes and carbon nanotubes: A density functional theory study. J. Mol. Struc.: THEOCHEM 771, 111–115 (2006)CrossRef
50.
go back to reference H. Tang, S. Ismail-Beigi, Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures. Phys. Rev. B 80, 134113 (2009)CrossRef H. Tang, S. Ismail-Beigi, Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures. Phys. Rev. B 80, 134113 (2009)CrossRef
51.
go back to reference N. Karmodak, E.D. Jemmis, The role of holes in borophenes: An Ab initio study of their structure and stability with and without metal templates. Angew. Chem., Int. Ed 56, 10093–10097 (2017)CrossRef N. Karmodak, E.D. Jemmis, The role of holes in borophenes: An Ab initio study of their structure and stability with and without metal templates. Angew. Chem., Int. Ed 56, 10093–10097 (2017)CrossRef
52.
go back to reference J. Kunstmann, A. Quandt, Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties. Phys. Rev. B 74, 035413 (2006)CrossRef J. Kunstmann, A. Quandt, Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties. Phys. Rev. B 74, 035413 (2006)CrossRef
53.
go back to reference H. Tang, S. Ismail-Beigi, First-principles study of boron sheets and nanotubes. Phys. Rev. B 82, 115412 (2010)CrossRef H. Tang, S. Ismail-Beigi, First-principles study of boron sheets and nanotubes. Phys. Rev. B 82, 115412 (2010)CrossRef
54.
go back to reference H. Shu, F. Li, P. Liang, X. Chen, Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an ag(111) surface. Nanoscale 8, 16284–16291 (2016)CrossRef H. Shu, F. Li, P. Liang, X. Chen, Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an ag(111) surface. Nanoscale 8, 16284–16291 (2016)CrossRef
55.
go back to reference E.S. Penev, A. Kutana, B.I. Yakobson, Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016)CrossRef E.S. Penev, A. Kutana, B.I. Yakobson, Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016)CrossRef
56.
go back to reference N. Gao, X. Wu, X. Jiang, Y. Bai, J. Zhao, Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding. FlatChem 7, 48–54 (2018) N. Gao, X. Wu, X. Jiang, Y. Bai, J. Zhao, Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding. FlatChem 7, 48–54 (2018)
57.
go back to reference L.Z. Zhang, Q.B. Yan, S.X. Du, G. Su, H.J. Gao, Boron sheet adsorbed on metal surfaces: Structures and electronic properties. J. Phys. Chem. C 116, 18202–18206 (2012)CrossRef L.Z. Zhang, Q.B. Yan, S.X. Du, G. Su, H.J. Gao, Boron sheet adsorbed on metal surfaces: Structures and electronic properties. J. Phys. Chem. C 116, 18202–18206 (2012)CrossRef
58.
go back to reference N. Karmodak, E.D. Jemmis, Metal templates and boron sources controlling Borophene structures: An ab initio study. J. Phys. Chem. C 122, 2268–2274 (2018)CrossRef N. Karmodak, E.D. Jemmis, Metal templates and boron sources controlling Borophene structures: An ab initio study. J. Phys. Chem. C 122, 2268–2274 (2018)CrossRef
59.
go back to reference Z. Zhang, A.J. Mannix, Z. Hu, B. Kiraly, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Substrate-induced nanoscale undulations of Borophene on silver. Nano Lett. 16, 6622–6627 (2016)CrossRef Z. Zhang, A.J. Mannix, Z. Hu, B. Kiraly, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Substrate-induced nanoscale undulations of Borophene on silver. Nano Lett. 16, 6622–6627 (2016)CrossRef
60.
go back to reference X. Liu, Z. Zhang, L. Wang, B.I. Yakobson, M.C. Hersam, Intermixing and periodic self-assembly of borophene line defects. Nat. Mater. 17, 783–788 (2018)CrossRef X. Liu, Z. Zhang, L. Wang, B.I. Yakobson, M.C. Hersam, Intermixing and periodic self-assembly of borophene line defects. Nat. Mater. 17, 783–788 (2018)CrossRef
61.
go back to reference W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, K. Wu, Experimental realization of honeycomb borophene. Sci. Bull. 63, 282–286 (2018)CrossRef W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, K. Wu, Experimental realization of honeycomb borophene. Sci. Bull. 63, 282–286 (2018)CrossRef
62.
go back to reference X. Liu, L. Wang, S. Li, M.S. Rahn, B.I. Yakobson, M.C. Hersam, Geometric imaging of borophene polymorphs with functionalized probes. Nat. Commun. 10, 1642 (2019)CrossRef X. Liu, L. Wang, S. Li, M.S. Rahn, B.I. Yakobson, M.C. Hersam, Geometric imaging of borophene polymorphs with functionalized probes. Nat. Commun. 10, 1642 (2019)CrossRef
63.
go back to reference X. Sun, X. Liu, J. Yin, J. Yu, Y. Li, Y. Hang, X. Zhou, M. Yu, J. Li, G. Tai, W. Guo, Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 27, 1603300 (2017)CrossRef X. Sun, X. Liu, J. Yin, J. Yu, Y. Li, Y. Hang, X. Zhou, M. Yu, J. Li, G. Tai, W. Guo, Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 27, 1603300 (2017)CrossRef
64.
go back to reference F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition. Nano Lett. 16, 3022–3028 (2016)CrossRef F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition. Nano Lett. 16, 3022–3028 (2016)CrossRef
65.
go back to reference X.-F. Zhou, X. Dong, A.R. Oganov, Q. Zhu, Y. Tian, H.-T. Wang, Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 112, 085502 (2014)CrossRef X.-F. Zhou, X. Dong, A.R. Oganov, Q. Zhu, Y. Tian, H.-T. Wang, Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 112, 085502 (2014)CrossRef
66.
go back to reference H. Liu, J. Gao, J. Zhao, From boron cluster to two-dimensional boron sheet on cu(111) surface: Growth mechanism and hole formation. Sci. Rep. 3, 3238 (2013)CrossRef H. Liu, J. Gao, J. Zhao, From boron cluster to two-dimensional boron sheet on cu(111) surface: Growth mechanism and hole formation. Sci. Rep. 3, 3238 (2013)CrossRef
67.
go back to reference V.I. Artyukhov, Y. Liu, B.I. Yakobson, Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. 109, 15136–15140 (2012)CrossRef V.I. Artyukhov, Y. Liu, B.I. Yakobson, Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. 109, 15136–15140 (2012)CrossRef
68.
go back to reference Z. Zhang, A.J. Mannix, X. Liu, Z. Hu, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Near-equilibrium growth from borophene edges on silver. Sci. Adv 5, eaax0246 (2019)CrossRef Z. Zhang, A.J. Mannix, X. Liu, Z. Hu, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Near-equilibrium growth from borophene edges on silver. Sci. Adv 5, eaax0246 (2019)CrossRef
69.
go back to reference Z. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional materials: Polyphony in B flat. Nat. Chem. 8, 525–527 (2016)CrossRef Z. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional materials: Polyphony in B flat. Nat. Chem. 8, 525–527 (2016)CrossRef
70.
go back to reference B. Feng, O. Sugino, R.-Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T.-C. Chiang, S. Meng, I. Matsuda, Dirac fermions in Borophene. Phys. Rev. Lett. 118, 096401 (2017)CrossRef B. Feng, O. Sugino, R.-Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T.-C. Chiang, S. Meng, I. Matsuda, Dirac fermions in Borophene. Phys. Rev. Lett. 118, 096401 (2017)CrossRef
71.
go back to reference H. Zhang, Y. Xie, Z. Zhang, C. Zhong, Y. Li, Z. Chen, Y. Chen, Dirac nodal lines and tilted semi-Dirac cones coexisting in a striped boron sheet. J. Phys. Chem. Lett. 8, 1707–1713 (2017)CrossRef H. Zhang, Y. Xie, Z. Zhang, C. Zhong, Y. Li, Z. Chen, Y. Chen, Dirac nodal lines and tilted semi-Dirac cones coexisting in a striped boron sheet. J. Phys. Chem. Lett. 8, 1707–1713 (2017)CrossRef
72.
go back to reference Z. Zhang, Y. Yang, E.S. Penev, B.I. Yakobson, Elasticity, flexibility, and ideal strength of Borophenes. Adv. Funct. Mater. 27, 1605059 (2017)CrossRef Z. Zhang, Y. Yang, E.S. Penev, B.I. Yakobson, Elasticity, flexibility, and ideal strength of Borophenes. Adv. Funct. Mater. 27, 1605059 (2017)CrossRef
73.
go back to reference C. Liu, Z. Dai, J. Zhang, Y. Jin, D. Li, C. Sun, Two-dimensional boron sheets as metal-free catalysts for hydrogen evolution reaction. J. Phys. Chem. C 122, 19051–19055 (2018)CrossRef C. Liu, Z. Dai, J. Zhang, Y. Jin, D. Li, C. Sun, Two-dimensional boron sheets as metal-free catalysts for hydrogen evolution reaction. J. Phys. Chem. C 122, 19051–19055 (2018)CrossRef
74.
go back to reference X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao, S.A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340–15347 (2016)CrossRef X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao, S.A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340–15347 (2016)CrossRef
75.
go back to reference Y. Huang, S.N. Shirodkar, B.I. Yakobson, Two-dimensional boron polymorphs for visible range Plasmonics: A first-principles exploration. J. Am. Chem. Soc. 139, 17181–17185 (2017)CrossRef Y. Huang, S.N. Shirodkar, B.I. Yakobson, Two-dimensional boron polymorphs for visible range Plasmonics: A first-principles exploration. J. Am. Chem. Soc. 139, 17181–17185 (2017)CrossRef
76.
go back to reference S. Gupta, S.N. Shirodkar, A. Kutana, B.I. Yakobson, In pursuit of 2D materials for maximum optical response. ACS Nano 12, 10880–10889 (2018)CrossRef S. Gupta, S.N. Shirodkar, A. Kutana, B.I. Yakobson, In pursuit of 2D materials for maximum optical response. ACS Nano 12, 10880–10889 (2018)CrossRef
Metadata
Title
Borophenes: Insights and Predictions From Computational Analyses
Authors
Naiwrit Karmodak
Eluvathingal D. Jemmis
Boris I. Yakobson
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-49999-0_2