Skip to main content
Top
Published in: Meccanica 3/2019

07-02-2019

Boundary element method applied to topology optimization using the level set method and an alternative velocity regularization

Authors: Hugo Luiz Oliveira, Edson Denner Leonel

Published in: Meccanica | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The topology optimization (TO) is a valuable tool in the early stages of structural engineering design. It enables the determination of the structural layout accounting for the required performance and utilizing less amount of material. In this study, an algorithm for TO is proposed, which is based on two computational procedures. On one hand the boundary element method (BEM), which is efficient for mechanical modelling and remeshing due to its mesh dimension reduction. On the other hand, the level set method (LSM) is an efficient approach to parameterize the design domain. Moreover, it handles complex topology changes without difficulties. The new feature presented here is showing a different formulation of the problem and explore its benefits. The idea is based on the augmented Lagrangian method in which shape sensitivity is used to drive the topology search. The shape derivative takes advantage of conformal and invertible mappings contributing for global stability. To reduce the susceptibility to local minima, a topology perturbation scheme based on local stresses is also adopted. The normal boundary velocity field may be locally singular. In this case the Peng regularization is utilized to maintain stability. These improvements make the algorithm convergent even on the presence of local instabilities. The LSM provides the structural geometry from its zero-level-set curve. Then, this curve is discretised through the BEM. The classical upwind fashion respecting strict CFL conditions is utilised for solving LSM equations. Local holes may be included at each time step, which enables topology changes based on local stress. Classical benchmark examples are used to illustrate the efficiency of the numerical procedure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Michell AGM (1904) The limits of economy of material in frame-structures. Philos Mag Ser 6 8(47):589–597CrossRefMATH Michell AGM (1904) The limits of economy of material in frame-structures. Philos Mag Ser 6 8(47):589–597CrossRefMATH
3.
go back to reference Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224ADSMathSciNetCrossRefMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224ADSMathSciNetCrossRefMATH
5.
go back to reference Van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNetCrossRef Van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNetCrossRef
6.
go back to reference Huang X, Xie YM (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671–683CrossRef Huang X, Xie YM (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671–683CrossRef
7.
go back to reference Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetCrossRefMATH Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetCrossRefMATH
8.
go back to reference Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, 2nd edn. Springer, Berlin, HeidelbergMATH Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications, 2nd edn. Springer, Berlin, HeidelbergMATH
9.
go back to reference Gao T, Xu P, Zhang W (2016) Topology optimization of thermo-elastic structures with multiple materials under mass constraint. Comput Struct 173:150–160CrossRef Gao T, Xu P, Zhang W (2016) Topology optimization of thermo-elastic structures with multiple materials under mass constraint. Comput Struct 173:150–160CrossRef
10.
go back to reference Tsavdaridis KD, Kingman JJ, Toropov VV (2015) Application of structural topology optimisation to perforated steel beams. Comput Struct 158:108–123CrossRef Tsavdaridis KD, Kingman JJ, Toropov VV (2015) Application of structural topology optimisation to perforated steel beams. Comput Struct 158:108–123CrossRef
11.
go back to reference Yi S, Cheng G, Xu L (2016) Stiffness design of heterogeneous periodic beam by topology optimization with integration of commercial software. Comput Struct 172:71–80CrossRef Yi S, Cheng G, Xu L (2016) Stiffness design of heterogeneous periodic beam by topology optimization with integration of commercial software. Comput Struct 172:71–80CrossRef
12.
go back to reference Pedersen CBW, Allinger P (2006) Industrial implementation and applications of topology optimization and future needs. IUTAM Symp Topol Des Optim Struct Mach Mater 137:229–238 Pedersen CBW, Allinger P (2006) Industrial implementation and applications of topology optimization and future needs. IUTAM Symp Topol Des Optim Struct Mach Mater 137:229–238
13.
go back to reference Schramm U, Zhou M (2006) Recent developments in the commercial implementation of topology optimization. IUTAM Symp Topol Des Optim Struct Mach Mater Status Perspect 137:239–248 Schramm U, Zhou M (2006) Recent developments in the commercial implementation of topology optimization. IUTAM Symp Topol Des Optim Struct Mach Mater Status Perspect 137:239–248
14.
go back to reference Carpentieri G, Modano M, Fabbrocino F, Feo L, Fraternali F (2017) On the minimal mass reinforcement of masonry structures with arbitrary shapes. Meccanica 52(7):1561–1576MathSciNetCrossRef Carpentieri G, Modano M, Fabbrocino F, Feo L, Fraternali F (2017) On the minimal mass reinforcement of masonry structures with arbitrary shapes. Meccanica 52(7):1561–1576MathSciNetCrossRef
15.
go back to reference Christiansen AN, Bærentzen JA, Sigmund O (2015) Combined shape and topology optimization. Technical University of Denmark (DTU), Kongens Lyngby Christiansen AN, Bærentzen JA, Sigmund O (2015) Combined shape and topology optimization. Technical University of Denmark (DTU), Kongens Lyngby
16.
go back to reference Svärd H (2013) Interior value extrapolation—a new method for stress evaluation during topology optimization. In: 10th-WCSMO Svärd H (2013) Interior value extrapolation—a new method for stress evaluation during topology optimization. In: 10th-WCSMO
17.
go back to reference Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch. Appl. Mech. (Ingenieur Arch) 69(9–10):635–654ADSMATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch. Appl. Mech. (Ingenieur Arch) 69(9–10):635–654ADSMATH
18.
go back to reference Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49ADSMathSciNetCrossRefMATH Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49ADSMathSciNetCrossRefMATH
19.
20.
go back to reference Allaire G, Dapogny C, Delgado G, Michailidis G (2013) Multi-phase structural optimization via a level set method. Hal 20:576–611MathSciNetMATH Allaire G, Dapogny C, Delgado G, Michailidis G (2013) Multi-phase structural optimization via a level set method. Hal 20:576–611MathSciNetMATH
23.
go back to reference Sethian J (1999) Level set methods and fast marching methods. Cambridge University Press, CambridgeMATH Sethian J (1999) Level set methods and fast marching methods. Cambridge University Press, CambridgeMATH
24.
go back to reference Osher S, Fedkiw R (2004) Level set methods and dynamic implicit surfaces. Springer, New YorkMATH Osher S, Fedkiw R (2004) Level set methods and dynamic implicit surfaces. Springer, New YorkMATH
25.
go back to reference Abe K, Kazama S, Koro K (2007) A boundary element approach for topology optimization problem using the level set method. Commun Numer Methods Eng 23(5):405–416MathSciNetCrossRefMATH Abe K, Kazama S, Koro K (2007) A boundary element approach for topology optimization problem using the level set method. Commun Numer Methods Eng 23(5):405–416MathSciNetCrossRefMATH
26.
go back to reference Ullah B, Trevelyan J, Matthews PC (2014) Structural optimisation based on the boundary element and level set methods. Comput Struct 137:14–30CrossRef Ullah B, Trevelyan J, Matthews PC (2014) Structural optimisation based on the boundary element and level set methods. Comput Struct 137:14–30CrossRef
27.
go back to reference Ullah B, Trevelyan J, Ivrissimtzis I (2015) A three-dimensional implementation of the boundary element and level set based structural optimisation. Eng Anal Bound Elem 58:176–194MathSciNetCrossRefMATH Ullah B, Trevelyan J, Ivrissimtzis I (2015) A three-dimensional implementation of the boundary element and level set based structural optimisation. Eng Anal Bound Elem 58:176–194MathSciNetCrossRefMATH
28.
go back to reference José Marczak R (2007) Topology optimization and boundary elements-a preliminary implementation for linear heat transfer. Eng Anal Bound Elem 31(9):793–802CrossRefMATH José Marczak R (2007) Topology optimization and boundary elements-a preliminary implementation for linear heat transfer. Eng Anal Bound Elem 31(9):793–802CrossRefMATH
29.
go back to reference Marczak RJ (2008) Optimization of elastic structures using boundary elements and a topological-shape sensitivity formulation. Lat Am J Solids Struct 5(2):99–117MathSciNet Marczak RJ (2008) Optimization of elastic structures using boundary elements and a topological-shape sensitivity formulation. Lat Am J Solids Struct 5(2):99–117MathSciNet
30.
go back to reference Jing G, Isakari H, Matsumoto T, Yamada T, Takahashi T (2015) Level set-based topology optimization for 2D heat conduction problems using BEM with objective function defined on design-dependent boundary with heat transfer boundary condition. Eng Anal Bound Elem 61:61–70MathSciNetCrossRefMATH Jing G, Isakari H, Matsumoto T, Yamada T, Takahashi T (2015) Level set-based topology optimization for 2D heat conduction problems using BEM with objective function defined on design-dependent boundary with heat transfer boundary condition. Eng Anal Bound Elem 61:61–70MathSciNetCrossRefMATH
31.
go back to reference Kublik C, Tanushev NM, Tsai R (2013) An implicit interface boundary integral method for Poisson’s equation on arbitrary domains. J Comput Phys 247:279–311ADSMathSciNetCrossRefMATH Kublik C, Tanushev NM, Tsai R (2013) An implicit interface boundary integral method for Poisson’s equation on arbitrary domains. J Comput Phys 247:279–311ADSMathSciNetCrossRefMATH
32.
go back to reference Yamasaki S, Yamada T, Matsumoto T (2012) An immersed boundary element method for level-set based topology optimization. Int J Numer Methods Eng 93(9):960–988MathSciNetCrossRefMATH Yamasaki S, Yamada T, Matsumoto T (2012) An immersed boundary element method for level-set based topology optimization. Int J Numer Methods Eng 93(9):960–988MathSciNetCrossRefMATH
33.
go back to reference Aliabadi MH (2002) The boundary element method, volume 2, applications in solids and structures. Wiley, New York Aliabadi MH (2002) The boundary element method, volume 2, applications in solids and structures. Wiley, New York
34.
go back to reference Canelas A, Herskovits J, Telles JCF (2008) Shape optimization using the boundary element method and a SAND interior point algorithm for constrained optimization. Comput Struct 86(13–14):1517–1526CrossRef Canelas A, Herskovits J, Telles JCF (2008) Shape optimization using the boundary element method and a SAND interior point algorithm for constrained optimization. Comput Struct 86(13–14):1517–1526CrossRef
35.
go back to reference Lian H, Kerfriden P, Bordas SPA (2017) Shape optimization directly from CAD: an isogeometric boundary element approach using T-splines. Comput Methods Appl Mech Eng 317:1–41ADSMathSciNetCrossRef Lian H, Kerfriden P, Bordas SPA (2017) Shape optimization directly from CAD: an isogeometric boundary element approach using T-splines. Comput Methods Appl Mech Eng 317:1–41ADSMathSciNetCrossRef
36.
go back to reference Ullah B, Trevelyan J (2016) A boundary element and level set based topology optimisation using sensitivity analysis. Eng Anal Bound Elem 70:80–98MathSciNetCrossRefMATH Ullah B, Trevelyan J (2016) A boundary element and level set based topology optimisation using sensitivity analysis. Eng Anal Bound Elem 70:80–98MathSciNetCrossRefMATH
37.
go back to reference Brebbia CA, Telles JCF, Wrobel LC (1985) Boundary element techniques. theory and applications in engineering. Springer, New YorkCrossRefMATH Brebbia CA, Telles JCF, Wrobel LC (1985) Boundary element techniques. theory and applications in engineering. Springer, New YorkCrossRefMATH
38.
40.
go back to reference Piegl L, Tiller W (1996) The NURBS book. Comput Aided Des 28(8):665–666MATH Piegl L, Tiller W (1996) The NURBS book. Comput Aided Des 28(8):665–666MATH
41.
go back to reference Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891ADSMathSciNetCrossRefMATH Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891ADSMathSciNetCrossRefMATH
42.
go back to reference Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51CrossRef Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51CrossRef
43.
go back to reference Rozvany GIN, Lewiński T (2012) Topology optimization in structural and continuum mechanics. CISM Advanced Course, Udine, pp 1–36 Rozvany GIN, Lewiński T (2012) Topology optimization in structural and continuum mechanics. CISM Advanced Course, Udine, pp 1–36
44.
go back to reference Vitório PC, Leonel ED (2017) Topology optimization analysis based on the direct coupling of the boundary element method and the level set method. Int J Adv Struct Eng 9(4):397–407CrossRef Vitório PC, Leonel ED (2017) Topology optimization analysis based on the direct coupling of the boundary element method and the level set method. Int J Adv Struct Eng 9(4):397–407CrossRef
45.
go back to reference Tai K, Fenner RT (1999) Optimum shape and topology design using the boundary element method. Int J Solids Struct 36(14):2021–2040CrossRefMATH Tai K, Fenner RT (1999) Optimum shape and topology design using the boundary element method. Int J Solids Struct 36(14):2021–2040CrossRefMATH
46.
go back to reference Kim H, Querin OM, Steven GP, Xie YM (2003) Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh. Struct Multidiscip Optim 24(6):441–448CrossRef Kim H, Querin OM, Steven GP, Xie YM (2003) Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh. Struct Multidiscip Optim 24(6):441–448CrossRef
Metadata
Title
Boundary element method applied to topology optimization using the level set method and an alternative velocity regularization
Authors
Hugo Luiz Oliveira
Edson Denner Leonel
Publication date
07-02-2019
Publisher
Springer Netherlands
Published in
Meccanica / Issue 3/2019
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-019-00954-z

Other articles of this Issue 3/2019

Meccanica 3/2019 Go to the issue

Premium Partners