Skip to main content
Top
Published in: Cognitive Neurodynamics 2/2020

27-11-2019 | Research Article

Brain activity during time to contact estimation: an EEG study

Authors: Asieh Daneshi, Hamed Azarnoush, Farzad Towhidkhah, Delphine Bernardin, Jocelyn Faubert

Published in: Cognitive Neurodynamics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Understanding the neural mechanisms associated with time to contact (TTC) estimation is an intriguing but challenging task. Despite the importance of TTC estimation in our everyday life, few studies have been conducted on it, and there are still a lot of unanswered questions and unknown aspects of this issue. In this study, we intended to address one of these unknown aspects. We used independent component analysis to systematically assess EEG substrates associated with TTC estimation using two experiments: (1) transversal motion experiment (when a moving object passes transversally in the frontoparallel plane from side to side in front of the observer), and (2) head-on motion experiment (when the observer is on the motion path of the moving object). We also studied the energy of all EEG sources in these two experiments. The results showed that brain regions involved in the transversal and head-on motion experiments were the same. However, the energy used by some brain regions in the head-on motion experiment, including some regions in left parietotemporal and left frontal lobes, was significantly higher than the energy used by those regions in the transversal motion experiment. These brain regions are dominantly associated with different kinds of visual attention, integration of visual information, and responding to visual motion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Battaglini L, Campana G, Camilleri R, Casco C (2015) Probing the involvement of the earliest levels of cortical processing in motion extrapolation with rapid forms of visual motion priming and adaptation. Atten Percept Psychophys 77:603–612CrossRefPubMed Battaglini L, Campana G, Camilleri R, Casco C (2015) Probing the involvement of the earliest levels of cortical processing in motion extrapolation with rapid forms of visual motion priming and adaptation. Atten Percept Psychophys 77:603–612CrossRefPubMed
go back to reference Beer J, Blakemore C, Previc FH, Liotti M (2002) Areas of the human brain activated by ambient visual motion, indicating three kinds of self-movement. Exp Brain Res 143:78–88CrossRefPubMed Beer J, Blakemore C, Previc FH, Liotti M (2002) Areas of the human brain activated by ambient visual motion, indicating three kinds of self-movement. Exp Brain Res 143:78–88CrossRefPubMed
go back to reference Bernard R, Goran D, Sakai S, Carr T, McFarlane D, Nordell B, Cooper T, Potchen E (2002) Cortical activation during rhythmic hand movements performed under three types of control: an fMRI study. Cognit Affect Behav Neurosci 2:271–281CrossRef Bernard R, Goran D, Sakai S, Carr T, McFarlane D, Nordell B, Cooper T, Potchen E (2002) Cortical activation during rhythmic hand movements performed under three types of control: an fMRI study. Cognit Affect Behav Neurosci 2:271–281CrossRef
go back to reference Billington J, Wilkie RM, Field DT, Wann JP (2010) Neural processing of imminent collision in humans. Proc R Soc B Biol Sci 278:1476–1481CrossRef Billington J, Wilkie RM, Field DT, Wann JP (2010) Neural processing of imminent collision in humans. Proc R Soc B Biol Sci 278:1476–1481CrossRef
go back to reference Cao Y, Towle VL, Levin DN, Balter JM (1993) Functional mapping of human motor cortical activation with conventional MR imaging at 1.5 T. J Magn Reson Imaging 3:869–875CrossRefPubMed Cao Y, Towle VL, Levin DN, Balter JM (1993) Functional mapping of human motor cortical activation with conventional MR imaging at 1.5 T. J Magn Reson Imaging 3:869–875CrossRefPubMed
go back to reference Chang C-J, Jazayeri M (2018) Integration of speed and time for estimating time to contact. Proc Natl Acad Sci 115:E2879–E2887CrossRefPubMed Chang C-J, Jazayeri M (2018) Integration of speed and time for estimating time to contact. Proc Natl Acad Sci 115:E2879–E2887CrossRefPubMed
go back to reference Chen Y-C, Duann J-R, Chuang S-W, Lin C-L, Ko L-W, Jung T-P, Lin C-T (2010) Spatial and temporal EEG dynamics of motion sickness. NeuroImage 49:2862–2870CrossRefPubMed Chen Y-C, Duann J-R, Chuang S-W, Lin C-L, Ko L-W, Jung T-P, Lin C-T (2010) Spatial and temporal EEG dynamics of motion sickness. NeuroImage 49:2862–2870CrossRefPubMed
go back to reference Cheng K, Fujita H, Kanno I, Miura S, Tanaka K (1995) Human cortical regions activated by wide-field visual motion: an H2 (15) O PET study. J Neurophysiol 74:413–427CrossRefPubMed Cheng K, Fujita H, Kanno I, Miura S, Tanaka K (1995) Human cortical regions activated by wide-field visual motion: an H2 (15) O PET study. J Neurophysiol 74:413–427CrossRefPubMed
go back to reference Ciaramitaro VM, Buracas GT, Boynton GM (2007) Spatial and cross-modal attention alter responses to unattended sensory information in early visual and auditory human cortex. J Neurophysiol 98:2399–2413CrossRefPubMed Ciaramitaro VM, Buracas GT, Boynton GM (2007) Spatial and cross-modal attention alter responses to unattended sensory information in early visual and auditory human cortex. J Neurophysiol 98:2399–2413CrossRefPubMed
go back to reference Coull JT, Vidal F, Goulon C, Nazarian B, Craig C (2008) Using time-to-contact information to assess potential collision modulates both visual and temporal prediction networks. Front Hum Neurosci 2:10CrossRefPubMedPubMedCentral Coull JT, Vidal F, Goulon C, Nazarian B, Craig C (2008) Using time-to-contact information to assess potential collision modulates both visual and temporal prediction networks. Front Hum Neurosci 2:10CrossRefPubMedPubMedCentral
go back to reference Dasdemir Y, Yildirim E, Yildirim S (2017) Analysis of functional brain connections for positive–negative emotions using phase locking value. Cognit Neurodyn 11:487–500CrossRef Dasdemir Y, Yildirim E, Yildirim S (2017) Analysis of functional brain connections for positive–negative emotions using phase locking value. Cognit Neurodyn 11:487–500CrossRef
go back to reference Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMed Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMed
go back to reference Deutschländer A, Bense S, Stephan T, Schwaiger M, Brandt T, Dieterich M (2002) Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum Brain Mapp 16:92–103CrossRefPubMed Deutschländer A, Bense S, Stephan T, Schwaiger M, Brandt T, Dieterich M (2002) Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum Brain Mapp 16:92–103CrossRefPubMed
go back to reference Dupont P, Orban G, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72:1420–1424CrossRefPubMed Dupont P, Orban G, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72:1420–1424CrossRefPubMed
go back to reference Field DT, Wann JP (2005) Perceiving time to collision activates the sensorimotor cortex. Curr Biol 15:453–458CrossRefPubMed Field DT, Wann JP (2005) Perceiving time to collision activates the sensorimotor cortex. Curr Biol 15:453–458CrossRefPubMed
go back to reference Freund H (1990) Premotor area and preparation of movement. Rev Neurol 146:543–547PubMed Freund H (1990) Premotor area and preparation of movement. Rev Neurol 146:543–547PubMed
go back to reference Gerlach C, Aaside C, Humphreys G, Gade A, Paulson OB, Law I (2002) Brain activity related to integrative processes in visual object recognition: bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia 40:1254–1267CrossRefPubMed Gerlach C, Aaside C, Humphreys G, Gade A, Paulson OB, Law I (2002) Brain activity related to integrative processes in visual object recognition: bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia 40:1254–1267CrossRefPubMed
go back to reference Gibson JJ (2014) The ecological approach to visual perception, classic edn. Psychology Press, LondonCrossRef Gibson JJ (2014) The ecological approach to visual perception, classic edn. Psychology Press, LondonCrossRef
go back to reference Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25CrossRefPubMed Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25CrossRefPubMed
go back to reference Hwang JH, Nam KW, Jang DP, Kim IY (2019) Effects of degree and symmetricity of bilateral spectral smearing, carrier frequency, and subject sex on amplitude of evoked auditory steady-state response signal. Cognit Neurodyn 13:151–160CrossRef Hwang JH, Nam KW, Jang DP, Kim IY (2019) Effects of degree and symmetricity of bilateral spectral smearing, carrier frequency, and subject sex on amplitude of evoked auditory steady-state response signal. Cognit Neurodyn 13:151–160CrossRef
go back to reference Jack AI, Shulman GL, Snyder AZ, McAvoy M, Corbetta M (2006) Separate modulations of human V1 associated with spatial attention and task structure. Neuron 51:135–147CrossRefPubMed Jack AI, Shulman GL, Snyder AZ, McAvoy M, Corbetta M (2006) Separate modulations of human V1 associated with spatial attention and task structure. Neuron 51:135–147CrossRefPubMed
go back to reference Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ (2000) Self-initiated versus externally triggered movements: II. the effect of movement predictability on regional cerebral blood flow. Brain 123:1216–1228CrossRefPubMed Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ (2000) Self-initiated versus externally triggered movements: II. the effect of movement predictability on regional cerebral blood flow. Brain 123:1216–1228CrossRefPubMed
go back to reference Jovicich J, Peters RJ, Koch C, Braun J, Chang L, Ernst T (2001) Brain areas specific for attentional load in a motion-tracking task. J Cognit Neurosci 13:1048–1058CrossRef Jovicich J, Peters RJ, Koch C, Braun J, Chang L, Ernst T (2001) Brain areas specific for attentional load in a motion-tracking task. J Cognit Neurosci 13:1048–1058CrossRef
go back to reference Jung T-P, Makeig S, McKeown MJ, Bell AJ, Lee T-W, Sejnowski TJ (2001a) Imaging brain dynamics using independent component analysis. Proc IEEE 89:1107–1122CrossRef Jung T-P, Makeig S, McKeown MJ, Bell AJ, Lee T-W, Sejnowski TJ (2001a) Imaging brain dynamics using independent component analysis. Proc IEEE 89:1107–1122CrossRef
go back to reference Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2001b) Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp 14:166–185CrossRefPubMed Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2001b) Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp 14:166–185CrossRefPubMed
go back to reference Knowles W (1958) Estimating time-to-collision. Am Psychol 13:405–406 Knowles W (1958) Estimating time-to-collision. Am Psychol 13:405–406
go back to reference Lamm C, Windischberger C, Leodolter U, Moser E, Bauer H (2001) Evidence for premotor cortex activity during dynamic visuospatial imagery from single-trial functional magnetic resonance imaging and event-related slow cortical potentials. Neuroimage 14:268–283CrossRefPubMed Lamm C, Windischberger C, Leodolter U, Moser E, Bauer H (2001) Evidence for premotor cortex activity during dynamic visuospatial imagery from single-trial functional magnetic resonance imaging and event-related slow cortical potentials. Neuroimage 14:268–283CrossRefPubMed
go back to reference Li Y, Mo L, Chen Q (2015) Differential contribution of velocity and distance to time estimation during self-initiated time-to-collision judgment. Neuropsychologia 73:35–47CrossRefPubMed Li Y, Mo L, Chen Q (2015) Differential contribution of velocity and distance to time estimation during self-initiated time-to-collision judgment. Neuropsychologia 73:35–47CrossRefPubMed
go back to reference Makeig S, Bell AJ, Jung T-P, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. In: Advances in neural information processing systems, pp 145–151 Makeig S, Bell AJ, Jung T-P, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. In: Advances in neural information processing systems, pp 145–151
go back to reference Makeig S, Westerfield M, Jung T-P, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295:690–694CrossRefPubMed Makeig S, Westerfield M, Jung T-P, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295:690–694CrossRefPubMed
go back to reference Merchant H, De Lafuente V (2014) Introduction to the neurobiology of interval timing, Neurobiology of interval timing. Springer, Berlin, pp 1–13CrossRef Merchant H, De Lafuente V (2014) Introduction to the neurobiology of interval timing, Neurobiology of interval timing. Springer, Berlin, pp 1–13CrossRef
go back to reference Merchant H, Harrington DL, Meck WH (2013) Neural basis of the perception and estimation of time. Annu Rev Neurosci 36:313–336CrossRefPubMed Merchant H, Harrington DL, Meck WH (2013) Neural basis of the perception and estimation of time. Annu Rev Neurosci 36:313–336CrossRefPubMed
go back to reference Mort DJ, Perry RJ, Mannan SK, Hodgson TL, Anderson E, Quest R, McRobbie D, McBride A, Husain M, Kennard C (2003) Differential cortical activation during voluntary and reflexive saccades in man. Neuroimage 18:231–246CrossRefPubMed Mort DJ, Perry RJ, Mannan SK, Hodgson TL, Anderson E, Quest R, McRobbie D, McBride A, Husain M, Kennard C (2003) Differential cortical activation during voluntary and reflexive saccades in man. Neuroimage 18:231–246CrossRefPubMed
go back to reference Myers MH, Kozma R (2018) Mesoscopic neuron population modeling of normal/epileptic brain dynamics. Cognit Neurodyn 12:211–223CrossRef Myers MH, Kozma R (2018) Mesoscopic neuron population modeling of normal/epileptic brain dynamics. Cognit Neurodyn 12:211–223CrossRef
go back to reference Nakayama K (1997) Localization of the cortical motor area by functional magnetic resonance imaging with gradient echo and echo-planar methods, using clinical 1.5 Tesla MR imaging systems. Osaka City Med J 43:29–48PubMed Nakayama K (1997) Localization of the cortical motor area by functional magnetic resonance imaging with gradient echo and echo-planar methods, using clinical 1.5 Tesla MR imaging systems. Osaka City Med J 43:29–48PubMed
go back to reference Nobre AC, Sebestyen G, Gitelman D, Mesulam M, Frackowiak R, Frith C (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain J Neurol 120:515–533CrossRef Nobre AC, Sebestyen G, Gitelman D, Mesulam M, Frackowiak R, Frith C (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain J Neurol 120:515–533CrossRef
go back to reference Okuda J, Fujii T, Ohtake H, Tsukiura T, Yamadori A, Frith CD, Burgess PW (2007) Differential involvement of regions of rostral prefrontal cortex (Brodmann area 10) in time-and event-based prospective memory. Int J Psychophysiol 64:233–246CrossRefPubMed Okuda J, Fujii T, Ohtake H, Tsukiura T, Yamadori A, Frith CD, Burgess PW (2007) Differential involvement of regions of rostral prefrontal cortex (Brodmann area 10) in time-and event-based prospective memory. Int J Psychophysiol 64:233–246CrossRefPubMed
go back to reference Onton J, Makeig S (2006) Information-based modeling of event-related brain dynamics. Prog Brain Res 159:99–120CrossRefPubMed Onton J, Makeig S (2006) Information-based modeling of event-related brain dynamics. Prog Brain Res 159:99–120CrossRefPubMed
go back to reference Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, Staib LH (2006) BioImage Suite: an integrated medical image analysis suite: an update. Insight J 2006:209PubMedPubMedCentral Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, Staib LH (2006) BioImage Suite: an integrated medical image analysis suite: an update. Insight J 2006:209PubMedPubMedCentral
go back to reference Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, Di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16:7688–7698CrossRefPubMedPubMedCentral Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, Di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16:7688–7698CrossRefPubMedPubMedCentral
go back to reference Rijpkema G, Merx J, Horstink M, Thijssen H (1996) Functional MRI: imaging of motor cortex function. Ned Tijdschr Geneeskd 140:248–254PubMed Rijpkema G, Merx J, Horstink M, Thijssen H (1996) Functional MRI: imaging of motor cortex function. Ned Tijdschr Geneeskd 140:248–254PubMed
go back to reference Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F (1996) Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res 111:246–252CrossRefPubMed Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F (1996) Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res 111:246–252CrossRefPubMed
go back to reference Rubia K, Smith A (2004) The neural correlates of cognitive time management: a review. Acta Neurobiol Exp 64(3):329–340 Rubia K, Smith A (2004) The neural correlates of cognitive time management: a review. Acta Neurobiol Exp 64(3):329–340
go back to reference Ruby P, Sirigu A, Decety J (2002) Distinct areas in parietal cortex involved in long-term and short-term action planning: a PET investigation. Cortex 38:321–339CrossRefPubMed Ruby P, Sirigu A, Decety J (2002) Distinct areas in parietal cortex involved in long-term and short-term action planning: a PET investigation. Cortex 38:321–339CrossRefPubMed
go back to reference Schiff W, Oldak R (1990) Accuracy of judging time to arrival: effects of modality, trajectory, and gender. J Exp Psychol Hum Percept Perform 16:303CrossRefPubMed Schiff W, Oldak R (1990) Accuracy of judging time to arrival: effects of modality, trajectory, and gender. J Exp Psychol Hum Percept Perform 16:303CrossRefPubMed
go back to reference Senot P, Baillet S, Renault B, Berthoz A (2008) Cortical dynamics of anticipatory mechanisms in interception: a neuromagnetic study. J Cognit Neurosci 20:1827–1838CrossRef Senot P, Baillet S, Renault B, Berthoz A (2008) Cortical dynamics of anticipatory mechanisms in interception: a neuromagnetic study. J Cognit Neurosci 20:1827–1838CrossRef
go back to reference Sharma N, Jones PS, Carpenter T, Baron J-C (2008) Mapping the involvement of BA 4a and 4p during motor imagery. Neuroimage 41:92–99CrossRefPubMed Sharma N, Jones PS, Carpenter T, Baron J-C (2008) Mapping the involvement of BA 4a and 4p during motor imagery. Neuroimage 41:92–99CrossRefPubMed
go back to reference Shergill S, Tracy D, Seal M, Rubia K, McGuire P (2006) Timing of covert articulation: an fMRI study. Neuropsychologia 44:2573–2577CrossRefPubMed Shergill S, Tracy D, Seal M, Rubia K, McGuire P (2006) Timing of covert articulation: an fMRI study. Neuropsychologia 44:2573–2577CrossRefPubMed
go back to reference Silver MA, Ress D, Heeger DJ (2007) Neural correlates of sustained spatial attention in human early visual cortex. J Neurophysiol 97:229–237CrossRefPubMed Silver MA, Ress D, Heeger DJ (2007) Neural correlates of sustained spatial attention in human early visual cortex. J Neurophysiol 97:229–237CrossRefPubMed
go back to reference Simen P, Rivest F, Ludvig EA, Balci F, Killeen P (2013) Timescale invariance in the pacemaker-accumulator family of timing models. Timing Time Percept 1:159–188CrossRef Simen P, Rivest F, Ludvig EA, Balci F, Killeen P (2013) Timescale invariance in the pacemaker-accumulator family of timing models. Timing Time Percept 1:159–188CrossRef
go back to reference Smith AT, Cotillon-Williams NM, Williams AL (2006) Attentional modulation in the human visual cortex: the time-course of the BOLD response and its implications. Neuroimage 29:328–334CrossRefPubMed Smith AT, Cotillon-Williams NM, Williams AL (2006) Attentional modulation in the human visual cortex: the time-course of the BOLD response and its implications. Neuroimage 29:328–334CrossRefPubMed
go back to reference Stevens MC, Kiehl KA, Pearlson G, Calhoun VD (2007) Functional neural circuits for mental timekeeping. Hum Brain Mapp 28:394–408CrossRefPubMed Stevens MC, Kiehl KA, Pearlson G, Calhoun VD (2007) Functional neural circuits for mental timekeeping. Hum Brain Mapp 28:394–408CrossRefPubMed
go back to reference Sturm W, Schmenk B, Fimm B, Specht K, Weis S, Thron A, Willmes K (2006) Spatial attention: more than intrinsic alerting? Exp Brain Res 171:16–25CrossRefPubMed Sturm W, Schmenk B, Fimm B, Specht K, Weis S, Thron A, Willmes K (2006) Spatial attention: more than intrinsic alerting? Exp Brain Res 171:16–25CrossRefPubMed
go back to reference Subhani AR, Kamel N, Saad MNM, Nandagopal N, Kang K, Malik AS (2018) Mitigation of stress: new treatment alternatives. Cognit Neurodyn 12:1–20CrossRef Subhani AR, Kamel N, Saad MNM, Nandagopal N, Kang K, Malik AS (2018) Mitigation of stress: new treatment alternatives. Cognit Neurodyn 12:1–20CrossRef
go back to reference Tresilian J (1995) Perceptual and cognitive processes in time-to-contact estimation: analysis of prediction-motion and relative judgment tasks. Atten Percept Psychophys 57:231–245CrossRef Tresilian J (1995) Perceptual and cognitive processes in time-to-contact estimation: analysis of prediction-motion and relative judgment tasks. Atten Percept Psychophys 57:231–245CrossRef
go back to reference Van Der Meer AL, Svantesson M, Van Der Weel FR (2012) Longitudinal study of looming in infants with high-density EEG. Dev Neurosci 34:488–501CrossRefPubMed Van Der Meer AL, Svantesson M, Van Der Weel FR (2012) Longitudinal study of looming in infants with high-density EEG. Dev Neurosci 34:488–501CrossRefPubMed
go back to reference van der Weel FR, van der Meer AL (2009) Seeing it coming: infants’ brain responses to looming danger. Naturwissenschaften 96:1385CrossRefPubMed van der Weel FR, van der Meer AL (2009) Seeing it coming: infants’ brain responses to looming danger. Naturwissenschaften 96:1385CrossRefPubMed
go back to reference Waberski TD, Gobbelé R, Lamberty K, Buchner H, Marshall JC, Fink GR (2008) Timing of visuo-spatial information processing: electrical source imaging related to line bisection judgements. Neuropsychologia 46:1201–1210CrossRefPubMed Waberski TD, Gobbelé R, Lamberty K, Buchner H, Marshall JC, Fink GR (2008) Timing of visuo-spatial information processing: electrical source imaging related to line bisection judgements. Neuropsychologia 46:1201–1210CrossRefPubMed
go back to reference Wiese H, Stude P, Nebel K, de Greiff A, Forsting M, Diener HC, Keidel M (2004) Movement preparation in self-initiated versus externally triggered movements: an event-related fMRI-study. Neurosci Lett 371:220–225CrossRefPubMed Wiese H, Stude P, Nebel K, de Greiff A, Forsting M, Diener HC, Keidel M (2004) Movement preparation in self-initiated versus externally triggered movements: an event-related fMRI-study. Neurosci Lett 371:220–225CrossRefPubMed
go back to reference Yan J-J, Lorv B, Li H, Sun H-J (2011) Visual processing of the impending collision of a looming object: time to collision revisited. J Vis 11:7–7CrossRefPubMed Yan J-J, Lorv B, Li H, Sun H-J (2011) Visual processing of the impending collision of a looming object: time to collision revisited. J Vis 11:7–7CrossRefPubMed
Metadata
Title
Brain activity during time to contact estimation: an EEG study
Authors
Asieh Daneshi
Hamed Azarnoush
Farzad Towhidkhah
Delphine Bernardin
Jocelyn Faubert
Publication date
27-11-2019
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 2/2020
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-019-09563-8

Other articles of this Issue 2/2020

Cognitive Neurodynamics 2/2020 Go to the issue