Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

08-06-2019 | Regular Paper | Issue 3/2019

International Journal of Multimedia Information Retrieval 3/2019

Brain disease diagnosis using local binary pattern and steerable pyramid

Journal:
International Journal of Multimedia Information Retrieval > Issue 3/2019
Authors:
Vandana V. Kale, Satish T. Hamde, Raghunath S. Holambe
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Brain diseases can cause invisible disorders, cognitive and behavioral changes. Their symptoms vary widely. In some cases, treatment can improve the symptoms while in other cases injuries become permanent. Many disorders are progressive. Therefore, early and accurate diagnosis of disorder is essential for improving disorder condition and patient’s quality of life. This paper presents the brain disease diagnosis system in which two feature extraction methods are compared. One of the feature extraction methods uses local binary pattern and steerable pyramid (SP) to decompose magnetic resonance (MR) brain images into subbands which are termed as LBPSP subbands. Another feature extraction method uses SP solely to decompose MR images into SP subbands. Energies over LBPSP and SP subbands are calculated. The features are subjected to backpropagation neural network classifier. To prove the effectiveness of the proposed system, multi-class disease classification is carried out on four MR image datasets. Also, ‘one-vs-all’ binary classification is performed on one of the datasets. Energy features of LBPSP subbands achieve multi-class classification accuracies of 97.67%, 97.27%, 94.67% and 85.01% on datasets DS-200, DS-310, DS-255 and DS-612, respectively. The performance measures of ‘one-vs-all’ binary class classification prove the competency and efficiency of LBPSP subband features over the existing methods.The comparative results of two feature extraction methods indicate that the energy features of LBPSP subbands have more discriminating potential than energy features of SP subbands. Experimental results reveal that energy features of LBPSP subbands lead to the existing classification methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2019

International Journal of Multimedia Information Retrieval 3/2019 Go to the issue

Premium Partner

    Image Credits