Skip to main content
Top

2025 | OriginalPaper | Chapter

Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging

Authors : Peirong Liu, Oula Puonti, Xiaoling Hu, Daniel C. Alexander, Juan E. Iglesias

Published in: Computer Vision – ECCV 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent learning-based approaches have made astonishing advances in calibrated medical imaging like computerized tomography (CT). Yet, they struggle to generalize in uncalibrated modalities – notably magnetic resonance (MR) imaging, where performance is highly sensitive to the differences in MR contrast, resolution, and orientation. This prevents broad applicability to diverse real-world clinical protocols. We introduce Brain-ID, an anatomical representation learning model for brain imaging. With the proposed “mild-to-severe” intra-subject generation, Brain-ID is robust to the subject-specific brain anatomy regardless of the appearance of acquired images. Trained entirely on synthetic inputs, Brain-ID readily adapts to various downstream tasks through one layer. We present new metrics to validate the intra/inter-subject robustness of Brain-ID features, and evaluate their performance on four downstream applications, covering contrast-independent (anatomy reconstruction, brain segmentation), and contrast-dependent (super-resolution, bias field estimation) tasks (Fig. 1). Extensive experiments on six public datasets demonstrate that Brain-ID achieves state-of-the-art performance in all tasks on different MR contrasts and CT, and more importantly, preserves its performance on low-resolution and small datasets. Code is available at https://​github.​com/​peirong26/​Brain-ID.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Adnan, M., Kalra, S., Cresswell, J.C., Taylor, G.W., Tizhoosh, H.R.: Federated learning and differential privacy for medical image analysis. Sci. Rep. (2022) Adnan, M., Kalra, S., Cresswell, J.C., Taylor, G.W., Tizhoosh, H.R.: Federated learning and differential privacy for medical image analysis. Sci. Rep. (2022)
2.
go back to reference Awais, M., Naseer, M., Khan, S.S., Anwer, R.M., Cholakkal, H., Shah, M., et al.: Foundational models defining a new era in vision: a survey and outlook. arXiv abs/2307.13721 (2023) Awais, M., Naseer, M., Khan, S.S., Anwer, R.M., Cholakkal, H., Shah, M., et al.: Foundational models defining a new era in vision: a survey and outlook. arXiv abs/2307.13721 (2023)
3.
go back to reference Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J.V., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging (2018) Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J.V., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging (2018)
4.
go back to reference Billot, B., Greve, D.N., Puonti, O., Thielscher, A., Leemput, K.V., Fischl, B., et al.: SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. (2021) Billot, B., Greve, D.N., Puonti, O., Thielscher, A., Leemput, K.V., Fischl, B., et al.: SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. (2021)
5.
go back to reference Billot, B., Magdamo, C., Cheng, Y., Arnold, S.E., Das, S., Iglesias, J.E.: Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets. Proc. Natl. Acad. Sci. (2023) Billot, B., Magdamo, C., Cheng, Y., Arnold, S.E., Das, S., Iglesias, J.E.: Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets. Proc. Natl. Acad. Sci. (2023)
6.
go back to reference Bischoff-Grethe, A., Ozyurt, I.B., Busa, E., Quinn, B.T., Fennema-Notestine, C., Clark, C.P., et al.: A technique for the deidentification of structural brain MR images. Hum. Brain Mapp. (2007) Bischoff-Grethe, A., Ozyurt, I.B., Busa, E., Quinn, B.T., Fennema-Notestine, C., Clark, C.P., et al.: A technique for the deidentification of structural brain MR images. Hum. Brain Mapp. (2007)
7.
go back to reference Bommasani, R., Hudson, D.A., Adeli, E., Altman, R., Arora, S., von Arx, S., et al.: On the opportunities and risks of foundation models. arXiv abs/2108.07258 (2021) Bommasani, R., Hudson, D.A., Adeli, E., Altman, R., Arora, S., von Arx, S., et al.: On the opportunities and risks of foundation models. arXiv abs/2108.07258 (2021)
8.
go back to reference Brant-Zawadzki, M.N., Gillan, G.D., Nitz, W.R.: MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence–initial experience in the brain. Radiology (1992) Brant-Zawadzki, M.N., Gillan, G.D., Nitz, W.R.: MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence–initial experience in the brain. Radiology (1992)
9.
go back to reference Brown, M.R.G., Sidhu, G.P.S., Greiner, R., Asgarian, N., Bastani, M., Silverstone, P.H., et al.: ADHD-200 global competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front. Syst. Neurosci. (2012) Brown, M.R.G., Sidhu, G.P.S., Greiner, R., Asgarian, N., Bastani, M., Silverstone, P.H., et al.: ADHD-200 global competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front. Syst. Neurosci. (2012)
10.
go back to reference Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., et al.: Language models are few-shot learners. In: NeurIPS (2020) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., et al.: Language models are few-shot learners. In: NeurIPS (2020)
11.
go back to reference Cardoso, M.J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv abs/2211.02701 (2022) Cardoso, M.J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv abs/2211.02701 (2022)
12.
go back to reference Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021) Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)
13.
go back to reference Cerri, S., et al.: A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis. NeuroImage (2020) Cerri, S., et al.: A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis. NeuroImage (2020)
14.
go back to reference Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., et al.: PaLM: scaling language modeling with pathways. JMLR (2022) Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., et al.: PaLM: scaling language modeling with pathways. JMLR (2022)
15.
go back to reference Chua, Y.Z.R., Dalca, A.V.: Contrast invariant feature representations for segmentation and registration of medical images. In: MIDL (2023) Chua, Y.Z.R., Dalca, A.V.: Contrast invariant feature representations for segmentation and registration of medical images. In: MIDL (2023)
16.
go back to reference Chua, Z.Y., Zheng, W., Chee, M.W.L., Zagorodnov, V.: Evaluation of performance metrics for bias field correction in MR brain images. J. Magn. Reson. Imaging (2009) Chua, Z.Y., Zheng, W., Chee, M.W.L., Zagorodnov, V.: Evaluation of performance metrics for bias field correction in MR brain images. J. Magn. Reson. Imaging (2009)
17.
go back to reference Darzidehkalani, E., Ghasemi-Rad, M., van Ooijen, P.: Federated learning in medical imaging: Part I: toward multicentral health care ecosystems. J. Am. Coll. Radiol. (2022) Darzidehkalani, E., Ghasemi-Rad, M., van Ooijen, P.: Federated learning in medical imaging: Part I: toward multicentral health care ecosystems. J. Am. Coll. Radiol. (2022)
18.
go back to reference Ding, Z., Han, X., Liu, P., Niethammer, M.: Local temperature scaling for probability calibration. In: ICCV (2021) Ding, Z., Han, X., Liu, P., Niethammer, M.: Local temperature scaling for probability calibration. In: ICCV (2021)
19.
go back to reference Essen, D.C.V., Uğurbil, K., Auerbach, E.J., Barch, D.M., Behrens, T.E.J., Bucholz, R.D., et al.: The human connectome project: a data acquisition perspective. NeuroImage (2012) Essen, D.C.V., Uğurbil, K., Auerbach, E.J., Barch, D.M., Behrens, T.E.J., Bucholz, R.D., et al.: The human connectome project: a data acquisition perspective. NeuroImage (2012)
20.
go back to reference Fischl, B., Salat, D.H., Busa, E., Albert, M.S., Dieterich, M., Haselgrove, C., et al.: Whole brain segmentation automated labeling of neuroanatomical structures in the human brain. Neuron (2002) Fischl, B., Salat, D.H., Busa, E., Albert, M.S., Dieterich, M., Haselgrove, C., et al.: Whole brain segmentation automated labeling of neuroanatomical structures in the human brain. Neuron (2002)
21.
go back to reference Fonov, V.S., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., et al.: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage (2011) Fonov, V.S., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., et al.: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage (2011)
22.
go back to reference Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage (2009) Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage (2009)
23.
go back to reference Fowler, C., Rainey-Smith, S.R., Bird, S., Bomke, J., Bourgeat, P., Brown, B.M., et al.: Fifteen years of the Australian imaging, biomarkers and lifestyle (AIBL) study: progress and observations from 2,359 older adults spanning the spectrum from cognitive normality to Alzheimer’s disease. J. Alzheimer’s Dis. Rep. (2021) Fowler, C., Rainey-Smith, S.R., Bird, S., Bomke, J., Bourgeat, P., Brown, B.M., et al.: Fifteen years of the Australian imaging, biomarkers and lifestyle (AIBL) study: progress and observations from 2,359 older adults spanning the spectrum from cognitive normality to Alzheimer’s disease. J. Alzheimer’s Dis. Rep. (2021)
24.
go back to reference Henschel, L., Kügler, D., Reuter, M.: FastSurferVINN: building resolution-independence into deep learning segmentation methods - a solution for highres brain MRI. NeuroImage (2022) Henschel, L., Kügler, D., Reuter, M.: FastSurferVINN: building resolution-independence into deep learning segmentation methods - a solution for highres brain MRI. NeuroImage (2022)
25.
go back to reference Hoffmann, M., Billot, B., Greve, D.N., Iglesias, J.E., Fischl, B., Dalca, A.V.: SynthMorph: learning contrast-invariant registration without acquired images. IEEE Trans. Med. Imaging (2020) Hoffmann, M., Billot, B., Greve, D.N., Iglesias, J.E., Fischl, B., Dalca, A.V.: SynthMorph: learning contrast-invariant registration without acquired images. IEEE Trans. Med. Imaging (2020)
26.
go back to reference Hoopes, A., Mora, J.S., Dalca, A.V., Fischl, B., Hoffmann, M.: SynthStrip: skull-stripping for any brain image. NeuroImage (2022) Hoopes, A., Mora, J.S., Dalca, A.V., Fischl, B., Hoffmann, M.: SynthStrip: skull-stripping for any brain image. NeuroImage (2022)
27.
go back to reference Iglesias, J.E., Billot, B., Balbastre, Y., Magdamo, C.G., Arnold, S., Das, S., et al.: SynthSR: a public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry. Sci. Adv. (2023) Iglesias, J.E., Billot, B., Balbastre, Y., Magdamo, C.G., Arnold, S., Das, S., et al.: SynthSR: a public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry. Sci. Adv. (2023)
28.
go back to reference Iglesias, J.E., Billot, B., Balbastre, Y., Tabari, A., Conklin, J., Alexander, D.C., et al.: Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast. NeuroImage (2020) Iglesias, J.E., Billot, B., Balbastre, Y., Tabari, A., Conklin, J., Alexander, D.C., et al.: Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast. NeuroImage (2020)
29.
go back to reference Iglesias, J.E., Schleicher, R., Laguna, S., Billot, B., Schaefer, P., McKaig, B., et al.: Quantitative brain morphometry of portable low-field-strength MRI using super-resolution machine learning. Radiology (2022) Iglesias, J.E., Schleicher, R., Laguna, S., Billot, B., Schaefer, P., McKaig, B., et al.: Quantitative brain morphometry of portable low-field-strength MRI using super-resolution machine learning. Radiology (2022)
30.
go back to reference Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P.M., Alexander, G.E., Harvey, D.J., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging (2008) Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P.M., Alexander, G.E., Harvey, D.J., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging (2008)
31.
go back to reference Juntu, J., Sijbers, J., Dyck, D.V., Gielen, J.: Bias field correction for MRI images. In: CORES (2005) Juntu, J., Sijbers, J., Dyck, D.V., Gielen, J.: Bias field correction for MRI images. In: CORES (2005)
32.
go back to reference Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. (2016) Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. (2016)
33.
go back to reference Kapkiç, M., Sağiroğlu, Ş.: Privacy issues in magnetic resonance images. Int. J. Inf. Secur. Sci. (2023) Kapkiç, M., Sağiroğlu, Ş.: Privacy issues in magnetic resonance images. Int. J. Inf. Secur. Sci. (2023)
34.
go back to reference Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., et al.: Segment anything. arXiv abs/2304.02643 (2023) Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., et al.: Segment anything. arXiv abs/2304.02643 (2023)
35.
go back to reference LaMontagne, P.J., Keefe, S.J., Lauren, W., Xiong, C., Grant, E.A., Moulder, K.L., et al.: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer’s disease. Alzheimer’s & Dementia (2018) LaMontagne, P.J., Keefe, S.J., Lauren, W., Xiong, C., Grant, E.A., Moulder, K.L., et al.: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer’s disease. Alzheimer’s & Dementia (2018)
36.
go back to reference Laso, P., Cerri, S., Sorby-Adams, A., Guo, J., Mateen, F., Goebl, P., et al.: Quantifying white matter hyperintensity and brain volumes in heterogeneous clinical and low-field portable MRI. arXiv abs/2312.05119 (2023) Laso, P., Cerri, S., Sorby-Adams, A., Guo, J., Mateen, F., Goebl, P., et al.: Quantifying white matter hyperintensity and brain volumes in heterogeneous clinical and low-field portable MRI. arXiv abs/2312.05119 (2023)
37.
go back to reference Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: A unifying framework for partial volume segmentation of brain MR images. IEEE Trans. Med. Imaging (2003) Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: A unifying framework for partial volume segmentation of brain MR images. IEEE Trans. Med. Imaging (2003)
38.
go back to reference Li, Z., et al.: SAMConvex: fast discrete optimization for CT registration using self-supervised anatomical embedding and correlation pyramid. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14229, pp. 559–569. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43999-5_53 Li, Z., et al.: SAMConvex: fast discrete optimization for CT registration using self-supervised anatomical embedding and correlation pyramid. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14229, pp. 559–569. Springer, Cham (2023). https://​doi.​org/​10.​1007/​978-3-031-43999-5_​53
39.
go back to reference Liu, P., Lee, Y., Aylward, S., Niethammer, M.: Deep decomposition for stochastic normal-abnormal transport. In: CVPR (2022) Liu, P., Lee, Y., Aylward, S., Niethammer, M.: Deep decomposition for stochastic normal-abnormal transport. In: CVPR (2022)
40.
go back to reference Liu, P., Tian, L., Zhang, Y., Aylward, S., Lee, Y., Niethammer, M.: Discovering hidden physics behind transport dynamics. In: CVPR (2021) Liu, P., Tian, L., Zhang, Y., Aylward, S., Lee, Y., Niethammer, M.: Discovering hidden physics behind transport dynamics. In: CVPR (2021)
41.
go back to reference Liu, P., Wang, R., Cao, X., Zhou, Y., Shah, A., Lim, S.N.: Differential motion evolution for fine-grained motion deformation in unsupervised image animation. arXiv abs/2110.04658 (2021) Liu, P., Wang, R., Cao, X., Zhou, Y., Shah, A., Lim, S.N.: Differential motion evolution for fine-grained motion deformation in unsupervised image animation. arXiv abs/2110.04658 (2021)
42.
go back to reference Milletarì, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. 3DV (2016) Milletarì, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. 3DV (2016)
43.
go back to reference Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. (2010) Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. (2010)
44.
go back to reference Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature (2023) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature (2023)
45.
go back to reference Müller, R.A., Shih, P., Keehn, B., Deyoe, J.R., Leyden, K.M., Shukla, D.: Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cerebral Cortex (2011) Müller, R.A., Shih, P., Keehn, B., Deyoe, J.R., Leyden, K.M., Shukla, D.: Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cerebral Cortex (2011)
46.
go back to reference Puonti, O., Iglesias, J.E., Leemput, K.V.: Fast and sequence-adaptive whole-brain segmentation using parametric bayesian modeling. NeuroImage (2016) Puonti, O., Iglesias, J.E., Leemput, K.V.: Fast and sequence-adaptive whole-brain segmentation using parametric bayesian modeling. NeuroImage (2016)
48.
go back to reference Sheller, M.J., Edwards, B., Reina, G.A., Martin, J., Pati, S., Kotrotsou, A., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. (2020) Sheller, M.J., Edwards, B., Reina, G.A., Martin, J., Pati, S., Kotrotsou, A., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. (2020)
49.
go back to reference Shen, Z., et al.: Accurate point cloud registration with robust optimal transport. In: NeurIPS (2021) Shen, Z., et al.: Accurate point cloud registration with robust optimal transport. In: NeurIPS (2021)
50.
go back to reference Singhal, K., Azizi, S., Tu, T., Mahdavi, S., Wei, J., Chung, H.W., et al.: Large language models encode clinical knowledge. Nature (2022) Singhal, K., Azizi, S., Tu, T., Mahdavi, S., Wei, J., Chung, H.W., et al.: Large language models encode clinical knowledge. Nature (2022)
51.
go back to reference Symms, M.R., Jäger, H.R., Schmierer, K., Yousry, T.A.: A review of structural magnetic resonance neuroimaging. J. Neurol. Neurosurg. Psychiatry (2004) Symms, M.R., Jäger, H.R., Schmierer, K., Yousry, T.A.: A review of structural magnetic resonance neuroimaging. J. Neurol. Neurosurg. Psychiatry (2004)
52.
go back to reference Tanno, R., Worrall, D.E., Kaden, E., Alexander, D.C.: Uncertainty modelling in deep learning for safer neuroimage enhancement: demonstration in diffusion MRI. NeuroImage (2020) Tanno, R., Worrall, D.E., Kaden, E., Alexander, D.C.: Uncertainty modelling in deep learning for safer neuroimage enhancement: demonstration in diffusion MRI. NeuroImage (2020)
53.
go back to reference Tian, Q., Bilgiç, B., Fan, Q., Ngamsombat, C., Zaretskaya, N., Fultz, N.E., et al.: Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution. Cerebral Cortex (2020) Tian, Q., Bilgiç, B., Fan, Q., Ngamsombat, C., Zaretskaya, N., Fultz, N.E., et al.: Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution. Cerebral Cortex (2020)
54.
go back to reference Tu, T., Azizi, S., Driess, D., Schaekermann, M., Amin, M., Chang, P.C., et al.: Towards generalist biomedical AI. arXiv abs/2307.14334 (2023) Tu, T., Azizi, S., Driess, D., Schaekermann, M., Amin, M., Chang, P.C., et al.: Towards generalist biomedical AI. arXiv abs/2307.14334 (2023)
55.
go back to reference de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. (2019) de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. (2019)
57.
go back to reference Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing (2018) Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing (2018)
58.
go back to reference Wang, T.C., Mallya, A., Liu, M.Y.: One-shot free-view neural talking-head synthesis for video conferencing. In: CVPR (2021) Wang, T.C., Mallya, A., Liu, M.Y.: One-shot free-view neural talking-head synthesis for video conferencing. In: CVPR (2021)
59.
go back to reference Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: ACSSC (2003) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: ACSSC (2003)
60.
go back to reference Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., et al.: The Alzheimer’s disease neuroimaging initiative 3: continued innovation for clinical trial improvement. Alzheimer’s & Dementia (2017) Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., et al.: The Alzheimer’s disease neuroimaging initiative 3: continued innovation for clinical trial improvement. Alzheimer’s & Dementia (2017)
61.
go back to reference White, T., Blok, E., Calhoun, V.D.: Data sharing and privacy issues in neuroimaging research: opportunities, obstacles, challenges, and monsters under the bed. Hum. Brain Mapp. (2022) White, T., Blok, E., Calhoun, V.D.: Data sharing and privacy issues in neuroimaging research: opportunities, obstacles, challenges, and monsters under the bed. Hum. Brain Mapp. (2022)
62.
go back to reference Xu, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., Chang, E.I.C.: Deep learning of feature representation with multiple instance learning for medical image analysis. In: ICASSP (2014) Xu, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., Chang, E.I.C.: Deep learning of feature representation with multiple instance learning for medical image analysis. In: ICASSP (2014)
63.
go back to reference Yan, K., Cai, J., Jin, D., Miao, S., Harrison, A.P., Guo, D., et al.: SAM: self-supervised learning of pixel-wise anatomical embeddings in radiological images. IEEE Trans. Med. Imaging (2020) Yan, K., Cai, J., Jin, D., Miao, S., Harrison, A.P., Guo, D., et al.: SAM: self-supervised learning of pixel-wise anatomical embeddings in radiological images. IEEE Trans. Med. Imaging (2020)
64.
go back to reference Yang, X., Kwitt, R., Niethammer, M.: Quicksilver: fast predictive image registration - a deep learning approach. NeuroImage (2017) Yang, X., Kwitt, R., Niethammer, M.: Quicksilver: fast predictive image registration - a deep learning approach. NeuroImage (2017)
65.
go back to reference You, C., Zhao, R., Staib, L.H., Duncan, J.S.: Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13434, pp. 639–652. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_61 You, C., Zhao, R., Staib, L.H., Duncan, J.S.: Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13434, pp. 639–652. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-16440-8_​61
66.
go back to reference Zhou, Y., Chia, M.A., Wagner, S.K., Ayhan, M.S., Williamson, D.J., Struyven, R.R., et al.: A foundation model for generalizable disease detection from retinal images. Nature (2023) Zhou, Y., Chia, M.A., Wagner, S.K., Ayhan, M.S., Williamson, D.J., Struyven, R.R., et al.: A foundation model for generalizable disease detection from retinal images. Nature (2023)
Metadata
Title
Brain-ID: Learning Contrast-Agnostic Anatomical Representations for Brain Imaging
Authors
Peirong Liu
Oula Puonti
Xiaoling Hu
Daniel C. Alexander
Juan E. Iglesias
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-73254-6_19

Premium Partner