Skip to main content
Top
Published in: Cognitive Computation 2/2021

14-07-2020

Brain-Inspired Active Learning Architecture for Procedural Knowledge Understanding Based on Human-Robot Interaction

Authors: Tielin Zhang, Yi Zeng, Ruihan Pan, Mengting Shi, Enmeng Lu

Published in: Cognitive Computation | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Improving robots with self-learning ability is one of the critical challenges for the researchers in the area of cognitive robotics and artificial general intelligence. This robot will decide when, where, and what to learn in a continuous visual environment by itself. Here we focus on the procedural knowledge learning, which is sequential and considered harder to understand compared with declarative knowledge in the cognitive system. Inspired by the architecture of the human brain which has integrated well different kinds of cognitive functions, a Brain-inspired Active Learning Architecture (BALA) is proposed for procedural knowledge understanding based on Baxter robot and human interaction. The BALA model contains four main parts: inspired by Primary Visual Pathway, a Convolutional Neural Network (CNN) is constructed for spatial information abstraction; inspired by the Hippocampus Pathway (especially the recurrent loops in CA3 sub-region), a Recurrent Neural Network (RNN) is built for sequential information processing related with procedural knowledge; inspired by the Prefrontal Cortex, a Knowledge Graph based on Bag Of Words (BOW) is constructed for declarative knowledge generation and association; inspired by the Basal Ganglia Pathway, we select Q matrix for Reinforcement Learning (RL). The CNN and RNN parts will be firstly pre-trained on ImageNet dataset and standard Youtube Video-Scene dataset respectively. Then, the RNN, Knowledge Graph, and Q matrix will be dynamically updated in the Baxter robot’s interactive learning procedure with human cooperators. The BALA could actively and incrementally recognize different kinds of procedural knowledge. In 22-type daily-life videos with procedure knowledge (e.g., opening the door, wiping the table, or taking the phone), the BALA model gets the best performance compared with standard CNN, RNN, RL, and other integrative methods. The BALA model is a small step on integrative intelligence interaction between the Baxter robot and human cooperator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shen Y-Y, Liu C-L. Incremental adaptive learning vector quantization for character recognition with continuous style adaptation. Cognitive Computation 2018;10(2):334–346.CrossRef Shen Y-Y, Liu C-L. Incremental adaptive learning vector quantization for character recognition with continuous style adaptation. Cognitive Computation 2018;10(2):334–346.CrossRef
2.
go back to reference Reyes O, Altalhi AH, Ventura S. Statistical comparisons of active learning strategies over multiple datasets. Knowl-Based Syst 2018;145:274–288.CrossRef Reyes O, Altalhi AH, Ventura S. Statistical comparisons of active learning strategies over multiple datasets. Knowl-Based Syst 2018;145:274–288.CrossRef
3.
go back to reference Zhu Z, Hu H. Robot learning from demonstration in robotic assembly: a survey. Robotics 2018;7(2):17.CrossRef Zhu Z, Hu H. Robot learning from demonstration in robotic assembly: a survey. Robotics 2018;7(2):17.CrossRef
4.
go back to reference Bhat AA, Mohan V. Goal-directed reasoning and cooperation in robots in shared workspaces: an internal simulation based neural framework. Cognitive Computation 2018;10(4):558–576.CrossRef Bhat AA, Mohan V. Goal-directed reasoning and cooperation in robots in shared workspaces: an internal simulation based neural framework. Cognitive Computation 2018;10(4):558–576.CrossRef
5.
go back to reference Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. 2019. Continual lifelong learning with neuralnetworks: a review. Neural Networks. Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. 2019. Continual lifelong learning with neuralnetworks: a review. Neural Networks.
6.
go back to reference Hao W, Fan J, Zhang Z, Zhu G. End-to-end lifelong learning: a framework to achieve plasticities of both the feature and classifier constructions. Cognitive Computation 2018;10(2):321–333.CrossRef Hao W, Fan J, Zhang Z, Zhu G. End-to-end lifelong learning: a framework to achieve plasticities of both the feature and classifier constructions. Cognitive Computation 2018;10(2):321–333.CrossRef
7.
go back to reference Kaliukhovich DA, Beeck HO. Hierarchical stimulus processing in rodent primary and lateral visual cortex as assessed through neuronal selectivity and repetition suppression. Journal of Neurophysiology 2018;120(3):926–941.CrossRef Kaliukhovich DA, Beeck HO. Hierarchical stimulus processing in rodent primary and lateral visual cortex as assessed through neuronal selectivity and repetition suppression. Journal of Neurophysiology 2018;120(3):926–941.CrossRef
8.
go back to reference He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision; 2015. p. 1026–1034. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision; 2015. p. 1026–1034.
9.
go back to reference Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. 2009 IEEE conference on computer vision and pattern recognition. IEEE; 2009. p. 248–255. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. 2009 IEEE conference on computer vision and pattern recognition. IEEE; 2009. p. 248–255.
10.
go back to reference Zhang T, Zeng Y, Xu B. Hcnn: a neural network model for combining local and global features towards human-like classification. International Journal of Pattern Recognition and Artificial Intelligence 2016; 30(01):1655004.MathSciNetCrossRef Zhang T, Zeng Y, Xu B. Hcnn: a neural network model for combining local and global features towards human-like classification. International Journal of Pattern Recognition and Artificial Intelligence 2016; 30(01):1655004.MathSciNetCrossRef
11.
go back to reference Venugopalan S, Rohrbach M, Donahue J, Mooney R, Darrell T, Saenko K. Sequence to sequence-video to text. Proceedings of the IEEE international conference on computer vision; 2015 . p. 4534–4542. Venugopalan S, Rohrbach M, Donahue J, Mooney R, Darrell T, Saenko K. Sequence to sequence-video to text. Proceedings of the IEEE international conference on computer vision; 2015 . p. 4534–4542.
12.
go back to reference Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, et al. Human-level control through deep reinforcement learning. Nature 2015;518(7540):529.CrossRef Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, et al. Human-level control through deep reinforcement learning. Nature 2015;518(7540):529.CrossRef
13.
go back to reference Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, et al. Mastering the game of go with deep neural networks and tree search. Nature 2016;529(7587):484.CrossRef Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, et al. Mastering the game of go with deep neural networks and tree search. Nature 2016;529(7587):484.CrossRef
14.
go back to reference Oh J, Guo X, Lee H, Lewis RL, Singh S. Action-conditional video prediction using deep networks in atari games. Advances in neural information processing systems; 2015. p. 2863– 2871. Oh J, Guo X, Lee H, Lewis RL, Singh S. Action-conditional video prediction using deep networks in atari games. Advances in neural information processing systems; 2015. p. 2863– 2871.
15.
go back to reference Yang Y, Loog M. A benchmark and comparison of active learning for logistic regression. Pattern Recogn 2018;83:401–415.CrossRef Yang Y, Loog M. A benchmark and comparison of active learning for logistic regression. Pattern Recogn 2018;83:401–415.CrossRef
16.
go back to reference Tebbe J, Gao Y, Sastre-Rienietz M, Zell A . A table tennis robot system using an industrial kuka robot arm. German conference on pattern recognition. Springer; 2018. p. 33–45. Tebbe J, Gao Y, Sastre-Rienietz M, Zell A . A table tennis robot system using an industrial kuka robot arm. German conference on pattern recognition. Springer; 2018. p. 33–45.
17.
go back to reference Yang Y, Li Y, Fermuller C, Aloimonos Y . Robot learning manipulation action plans by watching unconstrained videos from the world wide web. Twenty-ninth AAAI conference on artificial intelligence; 2015. Yang Y, Li Y, Fermuller C, Aloimonos Y . Robot learning manipulation action plans by watching unconstrained videos from the world wide web. Twenty-ninth AAAI conference on artificial intelligence; 2015.
18.
go back to reference Zlatintsi A, Rodomagoulakis I, Koutras P, Dometios AC, Pitsikalis V, Tzafestas CS, Maragos P. Multimodal signal processing and learning aspects of human-robot interaction for an assistive bathing robot. IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2018; 2018. p. 3171–3175. Zlatintsi A, Rodomagoulakis I, Koutras P, Dometios AC, Pitsikalis V, Tzafestas CS, Maragos P. Multimodal signal processing and learning aspects of human-robot interaction for an assistive bathing robot. IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2018; 2018. p. 3171–3175.
19.
go back to reference Toprak S, Navarro-Guerrero N, Wermter S. Evaluating integration strategies for visuo-haptic object recognition. Cognitive computation 2018;10(3):408–425.CrossRef Toprak S, Navarro-Guerrero N, Wermter S. Evaluating integration strategies for visuo-haptic object recognition. Cognitive computation 2018;10(3):408–425.CrossRef
20.
go back to reference Camacho-Collados J, Pilehvar MT. From word to sense embeddings: a survey on vector representations of meaning. J Artif Intell Res 2018;63:743–788.MathSciNetCrossRef Camacho-Collados J, Pilehvar MT. From word to sense embeddings: a survey on vector representations of meaning. J Artif Intell Res 2018;63:743–788.MathSciNetCrossRef
21.
go back to reference Osa T, Pajarinen J, Neumann G, Bagnell JA, Abbeel P, Peters J, et al. An algorithmic perspective on imitation learning. Foundations and Trends®; in Robotics 2018;7(1-2):1–179.CrossRef Osa T, Pajarinen J, Neumann G, Bagnell JA, Abbeel P, Peters J, et al. An algorithmic perspective on imitation learning. Foundations and Trends®; in Robotics 2018;7(1-2):1–179.CrossRef
22.
go back to reference Amato C. Decision-making under uncertainty in multi-agent and multi-robot systems: planning and learning. IJCAI; 2018 . p. 5662–5666. Amato C. Decision-making under uncertainty in multi-agent and multi-robot systems: planning and learning. IJCAI; 2018 . p. 5662–5666.
23.
go back to reference Pérez-Sánchez B, Fontenla-Romero O, Guijarro-Berdiñas B. A review of adaptive online learning for artificial neural networks. Artif Intell Rev 2018;49(2):281–299.CrossRef Pérez-Sánchez B, Fontenla-Romero O, Guijarro-Berdiñas B. A review of adaptive online learning for artificial neural networks. Artif Intell Rev 2018;49(2):281–299.CrossRef
24.
go back to reference Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B, Horgan D, Quan J, Sendonaris A, Osband I, et al. Deep q-learning from demonstrations. Thirty-second AAAI conference on artificial intelligence; 2018. Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B, Horgan D, Quan J, Sendonaris A, Osband I, et al. Deep q-learning from demonstrations. Thirty-second AAAI conference on artificial intelligence; 2018.
25.
go back to reference Zhao F, Yi Z, Wang G, Bai J, Xu B. A brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous uav explorations. Cognitive Computation 2018;10(2):296–306.CrossRef Zhao F, Yi Z, Wang G, Bai J, Xu B. A brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous uav explorations. Cognitive Computation 2018;10(2):296–306.CrossRef
27.
go back to reference Zhou Z, Shin JY, Zhang L, Gurudu SR, Gotway MB, Liang J . Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017 . p. 4761–4772. Zhou Z, Shin JY, Zhang L, Gurudu SR, Gotway MB, Liang J . Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017 . p. 4761–4772.
28.
go back to reference Konyushkova K, Sznitman R, Fua P. 2017. Learning active learning from data. Neural Information Processing Systems, pp 4225–4235. Konyushkova K, Sznitman R, Fua P. 2017. Learning active learning from data. Neural Information Processing Systems, pp 4225–4235.
29.
go back to reference Cohn DA, Ghahramani Z, Jordan MI. Active learning with statistical models. J Artif Intell Res 1996;4(1):129–145.CrossRef Cohn DA, Ghahramani Z, Jordan MI. Active learning with statistical models. J Artif Intell Res 1996;4(1):129–145.CrossRef
30.
go back to reference Chernova S, Veloso MM. Interactive policy learning through confidence-based autonomy. J Artif Intell Res 2009;34(1):1–25.MathSciNetMATH Chernova S, Veloso MM. Interactive policy learning through confidence-based autonomy. J Artif Intell Res 2009;34(1):1–25.MathSciNetMATH
31.
go back to reference Ugur E, Dogar MR, Cakmak M, Sahin E. Curiosity-driven learning of traversability affordance on a mobile robot. 2007 IEEE 6th international conference on development and learning; 2007. p. 13–18. Ugur E, Dogar MR, Cakmak M, Sahin E. Curiosity-driven learning of traversability affordance on a mobile robot. 2007 IEEE 6th international conference on development and learning; 2007. p. 13–18.
32.
go back to reference Oudeyer P-Y, Kaplan F, Hafner VV. Intrinsic motivation systems for autonomous mental development. IEEE Trans Evol Comput 2007;11(2):265–286.CrossRef Oudeyer P-Y, Kaplan F, Hafner VV. Intrinsic motivation systems for autonomous mental development. IEEE Trans Evol Comput 2007;11(2):265–286.CrossRef
33.
go back to reference Schembri M, Mirolli M, Baldassarre G. 2007. Evolving internal reinforcers for an intrinsically motivated reinforcement-learning robot, pp 282–287. Schembri M, Mirolli M, Baldassarre G. 2007. Evolving internal reinforcers for an intrinsically motivated reinforcement-learning robot, pp 282–287.
34.
go back to reference Zhang T, Yi Z, Xu B. A computational approach towards the microscale mouse brain connectome from the mesoscale. Journal of Integrative Neuroscience 2017;16(3):291–306.CrossRef Zhang T, Yi Z, Xu B. A computational approach towards the microscale mouse brain connectome from the mesoscale. Journal of Integrative Neuroscience 2017;16(3):291–306.CrossRef
35.
go back to reference Zhang T, Zeng Y, Zhao D, Wang L, Zhao Y, Xu B. Hmsnn: hippocampus inspired memory spiking neural network. 2016 IEEE international conference on systems, man, and cybernetics (SMC). IEEE; 2016. p. 002301–002306. Zhang T, Zeng Y, Zhao D, Wang L, Zhao Y, Xu B. Hmsnn: hippocampus inspired memory spiking neural network. 2016 IEEE international conference on systems, man, and cybernetics (SMC). IEEE; 2016. p. 002301–002306.
36.
go back to reference Zhang T, Zeng Y, Zhao D, Shi M . A plasticity-centric approach to train the non-differential spiking neural networks. Thirty-second AAAI conference on artificial intelligence; 2018. Zhang T, Zeng Y, Zhao D, Shi M . A plasticity-centric approach to train the non-differential spiking neural networks. Thirty-second AAAI conference on artificial intelligence; 2018.
37.
go back to reference Zhang T, Yi Z, Zhao D, Xu B. Brain-inspired balanced tuning for spiking neural networks. IJCAI; 2018. p. 1653–1659. Zhang T, Yi Z, Zhao D, Xu B. Brain-inspired balanced tuning for spiking neural networks. IJCAI; 2018. p. 1653–1659.
38.
go back to reference Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation 1997;9(8):1735–1780.CrossRef Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation 1997;9(8):1735–1780.CrossRef
39.
go back to reference Chen DL, Dolan WB. Collecting highly parallel data for paraphrase evaluation. Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies. Association for Computational Linguistics; 2011 . p. 190–200. Chen DL, Dolan WB. Collecting highly parallel data for paraphrase evaluation. Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies. Association for Computational Linguistics; 2011 . p. 190–200.
40.
go back to reference Torabi A, Pal C, Larochelle H, Courville A. 2015. Using descriptive video services to create a large data source for video annotation research. arXiv:1503.01070. Torabi A, Pal C, Larochelle H, Courville A. 2015. Using descriptive video services to create a large data source for video annotation research. arXiv:1503.​01070.
41.
go back to reference Rohrbach A, Rohrbach M, Tandon N, Schiele B. A dataset for movie description. Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3202–3212. Rohrbach A, Rohrbach M, Tandon N, Schiele B. A dataset for movie description. Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3202–3212.
Metadata
Title
Brain-Inspired Active Learning Architecture for Procedural Knowledge Understanding Based on Human-Robot Interaction
Authors
Tielin Zhang
Yi Zeng
Ruihan Pan
Mengting Shi
Enmeng Lu
Publication date
14-07-2020
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2021
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-020-09753-1

Other articles of this Issue 2/2021

Cognitive Computation 2/2021 Go to the issue

Premium Partner