Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Brain Tumor Segmentation from Multi-spectral MR Image Data Using Random Forest Classifier

Authors : Szabolcs Csaholczi, David Iclănzan, Levente Kovács, László Szilágyi

Published in: Neural Information Processing

Publisher: Springer International Publishing

share
SHARE

Abstract

The development of brain tumor segmentation techniques based on multi-spectral MR image data has relevant impact on the clinical practice via better diagnosis, radiotherapy planning and follow-up studies. This task is also very challenging due to the great variety of tumor appearances, the presence of several noise effects, and the differences in scanner sensitivity. This paper proposes an automatic procedure trained to distinguish gliomas from normal brain tissues in multi-spectral MRI data. The procedure is based on a random forest (RF) classifier, which uses 80 computed features beside the four observed ones, including morphological ones, gradients, and Gabor wavelet features. The intermediary segmentation outcome provided by the RF is fed to a twofold post-processing, which regularizes the shape of detected tumors and enhances the segmentation accuracy. The performance of the procedure was evaluated using the 274 records of the BraTS 2015 train data set. The achieved overall Dice scores between 85–86% represent highly accurate segmentation.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Mohan, G., Subashini, M.M.: MRI based medical image analysis: survey on brain tumor grade classification. Biomed. Signal Process. Control 39, 139–161 (2018) CrossRef Mohan, G., Subashini, M.M.: MRI based medical image analysis: survey on brain tumor grade classification. Biomed. Signal Process. Control 39, 139–161 (2018) CrossRef
2.
go back to reference Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. 34, 1993–2024 (2015) CrossRef Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. 34, 1993–2024 (2015) CrossRef
3.
go back to reference Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv:​ 1181.​02629v3, 23 Apr 2019 Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv:​ 1181.​02629v3, 23 Apr 2019
4.
go back to reference Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Res. Imaging 31, 1426–1438 (2013) CrossRef Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Res. Imaging 31, 1426–1438 (2013) CrossRef
5.
go back to reference Njeh, I., et al.: 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput. Med. Imaging Graph. 40, 108–119 (2015) CrossRef Njeh, I., et al.: 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput. Med. Imaging Graph. 40, 108–119 (2015) CrossRef
6.
go back to reference Rehman, Z.U., Naqvi, S.S., Khan, T.M., Khan, M.A., Bashir, T.: Fully automated multi-parametric brain tumour segmentation using superpixel based classification. Expert Syst. Appl. 118, 598–613 (2019) CrossRef Rehman, Z.U., Naqvi, S.S., Khan, T.M., Khan, M.A., Bashir, T.: Fully automated multi-parametric brain tumour segmentation using superpixel based classification. Expert Syst. Appl. 118, 598–613 (2019) CrossRef
7.
go back to reference Pei, L.M., Bakas, S., Vossough, A., Reza, S.M.S., Murala, C., Iftekharuddin, K.M.: Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion. Biomed. Signal Process. Control 55, 101648 (2020) CrossRef Pei, L.M., Bakas, S., Vossough, A., Reza, S.M.S., Murala, C., Iftekharuddin, K.M.: Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion. Biomed. Signal Process. Control 55, 101648 (2020) CrossRef
8.
go back to reference Tong, J.J., Zhao, Y.J., Zhang, P., Chen, L.Y., Jiang, L.R.: MRI brain tumor segmentation based on texture features and kernel sparse coding. Biomed. Signal Process. Control 47, 387–392 (2019) CrossRef Tong, J.J., Zhao, Y.J., Zhang, P., Chen, L.Y., Jiang, L.R.: MRI brain tumor segmentation based on texture features and kernel sparse coding. Biomed. Signal Process. Control 47, 387–392 (2019) CrossRef
9.
go back to reference Menze, B.H., van Leemput, K., Lashkari, D., Riklin-Raviv, T., Geremia, E., Alberts, E., et al.: A generative probabilistic model and discriminative extensions for brain lesion segmentation - with application to tumor and stroke. IEEE Trans. Med. Imaging 35, 933–946 (2016) CrossRef Menze, B.H., van Leemput, K., Lashkari, D., Riklin-Raviv, T., Geremia, E., Alberts, E., et al.: A generative probabilistic model and discriminative extensions for brain lesion segmentation - with application to tumor and stroke. IEEE Trans. Med. Imaging 35, 933–946 (2016) CrossRef
10.
go back to reference Szilágyi, L., Lefkovits, L., Benyó, B.: Automatic brain tumor segmentation in multispectral MRI volumes using a fuzzy \(c\)-means cascade algorithm. In: Proceedings 12th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 285–291. IEEE (2015) Szilágyi, L., Lefkovits, L., Benyó, B.: Automatic brain tumor segmentation in multispectral MRI volumes using a fuzzy \(c\)-means cascade algorithm. In: Proceedings 12th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 285–291. IEEE (2015)
11.
go back to reference Li, Q.N., et al.: Glioma segmentation with a unified algorithm in multimodal MRI images. IEEE Access 6, 9543–9553 (2018) Li, Q.N., et al.: Glioma segmentation with a unified algorithm in multimodal MRI images. IEEE Access 6, 9543–9553 (2018)
12.
go back to reference Islam, A., Reza, S.M.S., Iftekharuddin, K.M.: Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans. Biomed. Eng. 60, 3204–3215 (2013) CrossRef Islam, A., Reza, S.M.S., Iftekharuddin, K.M.: Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans. Biomed. Eng. 60, 3204–3215 (2013) CrossRef
13.
go back to reference Pinto, A., Pereira, S., Rasteiro, D., Silva, C.A.: Hierarchical brain tumour segmentation using extremely randomized trees. Pattern Recogn. 82, 105–117 (2018) CrossRef Pinto, A., Pereira, S., Rasteiro, D., Silva, C.A.: Hierarchical brain tumour segmentation using extremely randomized trees. Pattern Recogn. 82, 105–117 (2018) CrossRef
14.
go back to reference Imtiaz, T., Rifat, S., Fattah, S.A., Wahid, K.A.: Automated brain tumor segmentation based on multi-planar superpixel level features extracted from 3D MR images. IEEE Access 8, 25335–25349 (2020) CrossRef Imtiaz, T., Rifat, S., Fattah, S.A., Wahid, K.A.: Automated brain tumor segmentation based on multi-planar superpixel level features extracted from 3D MR images. IEEE Access 8, 25335–25349 (2020) CrossRef
15.
18.
go back to reference Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhou, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Understand. 115, 256–269 (2011) CrossRef Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhou, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Understand. 115, 256–269 (2011) CrossRef
19.
go back to reference Sert, E., Avci, D.: Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches. Biomed. Signal Process. Control 47, 276–287 (2019) CrossRef Sert, E., Avci, D.: Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches. Biomed. Signal Process. Control 47, 276–287 (2019) CrossRef
20.
go back to reference Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016) CrossRef Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016) CrossRef
21.
go back to reference Zhao, X.M., Wu, Y.H., Song, G.D., Li, Z.Y., Zhang, Y.Z., Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018) CrossRef Zhao, X.M., Wu, Y.H., Song, G.D., Li, Z.Y., Zhang, Y.Z., Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018) CrossRef
22.
go back to reference Nema, S., Dudhane, A., Murala, S., Naidu, S.: RescueNet: an unpaired GAN for brain tumor segmentation. Biomed. Signal Process. Control 55, 101641 (2020) CrossRef Nema, S., Dudhane, A., Murala, S., Naidu, S.: RescueNet: an unpaired GAN for brain tumor segmentation. Biomed. Signal Process. Control 55, 101641 (2020) CrossRef
23.
go back to reference Lê, M., et al.: Personalized radiotherapy planning based on a computational tumor growth model. IEEE Trans. Med. Imaging 36, 815–825 (2017) CrossRef Lê, M., et al.: Personalized radiotherapy planning based on a computational tumor growth model. IEEE Trans. Med. Imaging 36, 815–825 (2017) CrossRef
24.
go back to reference Vovk, U., Pernus̆, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26, 405–421 (2007) Vovk, U., Pernus̆, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26, 405–421 (2007)
25.
go back to reference Szilágyi, S.M., Szilágyi, L., Iclănzan, D., Dávid, L., Frigy, A.: Benyó, Z: Intensity inhomogeneity correction and segmentation of magnetic resonance images using a multi-stage fuzzy clustering approach. Neural Netw. World 09(5), 513–528 (2009) Szilágyi, S.M., Szilágyi, L., Iclănzan, D., Dávid, L., Frigy, A.: Benyó, Z: Intensity inhomogeneity correction and segmentation of magnetic resonance images using a multi-stage fuzzy clustering approach. Neural Netw. World 09(5), 513–528 (2009)
26.
go back to reference Szilágyi, L., Szilágyi, S.M., Benyó, B.: Efficient inhomogeneity compensation using fuzzy \(c\)-means clustering models. Comput. Methods Progr. Biomed. 108, 80–89 (2012) CrossRef Szilágyi, L., Szilágyi, S.M., Benyó, B.: Efficient inhomogeneity compensation using fuzzy \(c\)-means clustering models. Comput. Methods Progr. Biomed. 108, 80–89 (2012) CrossRef
27.
go back to reference Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010) CrossRef Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010) CrossRef
28.
go back to reference Szilágyi, L., Iclănzan, D., Kapás, Z., Szabó, Z., Győrfi, Á., Lefkovits, L.: Low and high grade glioma segmentation in multispectral brain MRI data. Acta Univ. Sapientia, Informatica 10(1), 110–132 (2018) Szilágyi, L., Iclănzan, D., Kapás, Z., Szabó, Z., Győrfi, Á., Lefkovits, L.: Low and high grade glioma segmentation in multispectral brain MRI data. Acta Univ. Sapientia, Informatica 10(1), 110–132 (2018)
Metadata
Title
Brain Tumor Segmentation from Multi-spectral MR Image Data Using Random Forest Classifier
Authors
Szabolcs Csaholczi
David Iclănzan
Levente Kovács
László Szilágyi
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-63830-6_15

Premium Partner