Skip to main content
Top

2018 | OriginalPaper | Chapter

Brain Tumor Segmentation in MRI Scans Using Deeply-Supervised Neural Networks

Authors : Reza Pourreza, Ying Zhuge, Holly Ning, Robert Miller

Published in: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gliomas are the most frequent primary brain tumors in adults. Improved quantification of the various aspects of a glioma requires accurate segmentation of the tumor in magnetic resonance images (MRI). Since the manual segmentation is time-consuming and subject to human error and irreproducibility, automatic segmentation has received a lot of attention in recent years. This paper presents a fully automated segmentation method which is capable of automatic segmentation of brain tumor from multi-modal MRI scans. The proposed method is comprised of a deeply-supervised neural network based on Holistically-Nested Edge Detection (HED) network. The HED method, which is originally developed for the binary classification task of image edge detection, is extended for multiple-class segmentation. The classes of interest include the whole tumor, tumor core, and enhancing tumor. The dataset provided by 2017 Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) challenge is used in this work for training the neural network and performance evaluations. Experiments on BraTS 2017 challenge datasets demonstrate that the method performs well compared to the existing works. The assessments revealed the Dice scores of 0.86, 0.60, and 0.69 for whole tumor, tumor core, and enhancing tumor classes, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)CrossRef Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)CrossRef
2.
go back to reference Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)CrossRef Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)CrossRef
3.
go back to reference Njeh, I., Sallemi, L., Ayed, I.B., et al.: 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput. Med. Imaging Graph. 40, 108–119 (2015)CrossRef Njeh, I., Sallemi, L., Ayed, I.B., et al.: 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput. Med. Imaging Graph. 40, 108–119 (2015)CrossRef
4.
go back to reference Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-Cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imaging 31, 790–804 (2012)CrossRef Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-Cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imaging 31, 790–804 (2012)CrossRef
5.
go back to reference Raviv, T.R., Van Leemput, K., Menze, B.H., Wells 3rd, W.M., Golland, P.: Segmentation of image ensembles via latent atlases. Med. Image Anal. 14, 654–665 (2010)CrossRef Raviv, T.R., Van Leemput, K., Menze, B.H., Wells 3rd, W.M., Golland, P.: Segmentation of image ensembles via latent atlases. Med. Image Anal. 14, 654–665 (2010)CrossRef
6.
go back to reference Guo, X.G., Schwartz, L., Zhao, B.: Semi-automatic segmentation of multimodal brain tumor using active contours. In: Medical Image Computing and Computer Assisted Intervention, pp. 27–30 (2013) Guo, X.G., Schwartz, L., Zhao, B.: Semi-automatic segmentation of multimodal brain tumor using active contours. In: Medical Image Computing and Computer Assisted Intervention, pp. 27–30 (2013)
7.
go back to reference Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8, 275–283 (2004)CrossRef Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8, 275–283 (2004)CrossRef
8.
go back to reference Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., Gerig, G.: Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad. Radiol. 10, 1341–1348 (2003)CrossRef Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., Gerig, G.: Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad. Radiol. 10, 1341–1348 (2003)CrossRef
9.
go back to reference Cuadra, M.B., Pollo, C., Bardera, A., Cuisenaire, O., Villemure, J.G., Thiran, J.P.: Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Trans. Med. Imaging 23, 1301–1314 (2004)CrossRef Cuadra, M.B., Pollo, C., Bardera, A., Cuisenaire, O., Villemure, J.G., Thiran, J.P.: Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Trans. Med. Imaging 23, 1301–1314 (2004)CrossRef
10.
go back to reference Mohamed, A., Zacharaki, E.I., Shen, D., Davatzikos, C.: Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. Med. Image Anal. 10, 752–763 (2006)CrossRef Mohamed, A., Zacharaki, E.I., Shen, D., Davatzikos, C.: Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. Med. Image Anal. 10, 752–763 (2006)CrossRef
11.
go back to reference Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhu, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115, 256–259 (2011)CrossRef Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhu, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115, 256–259 (2011)CrossRef
13.
go back to reference Tustison, N.J., Shrinidhi, K.L., Wintermark, M., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)CrossRef Tustison, N.J., Shrinidhi, K.L., Wintermark, M., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)CrossRef
14.
go back to reference Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D.M., Silva, C.A.: Brain tumour segmentation based on extremely randomized forest with highlevel features. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society 2015, pp. 3037–3040 (2015) Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D.M., Silva, C.A.: Brain tumour segmentation based on extremely randomized forest with highlevel features. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society 2015, pp. 3037–3040 (2015)
15.
go back to reference LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRef
16.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 1, 1097–1115 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 1, 1097–1115 (2012)
17.
go back to reference Zhao, L., Jia, K.: Multiscale CNNs for brain tumor segmentation and diagnosis. Comput. Math. Methods Med. 2016, 8356291–8356297 (2016)CrossRef Zhao, L., Jia, K.: Multiscale CNNs for brain tumor segmentation and diagnosis. Comput. Math. Methods Med. 2016, 8356291–8356297 (2016)CrossRef
18.
go back to reference Havaei, M., Dutil, F., Pal, C., Larochelle, H., Jodoin, P.-M.: A convolutional neural network approach to brain tumor segmentation. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 29–33 (2015) Havaei, M., Dutil, F., Pal, C., Larochelle, H., Jodoin, P.-M.: A convolutional neural network approach to brain tumor segmentation. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 29–33 (2015)
19.
go back to reference Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)CrossRef Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)CrossRef
20.
go back to reference Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, Ç., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRef Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, Ç., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRef
21.
go back to reference Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data (2017, in press) Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data (2017, in press)
24.
go back to reference Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 31–35 (2014) Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 31–35 (2014)
25.
go back to reference Davy, A., Havaei, M., Warde-farley, D., et al.: Brain tumor segmentation with deep neural networks. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 1–5 (2014) Davy, A., Havaei, M., Warde-farley, D., et al.: Brain tumor segmentation with deep neural networks. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 1–5 (2014)
26.
go back to reference Rao, V., Sarabi, M.S., Jaiswal, A.: Brain tumor segmentation with deep learning. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 56–59 (2015) Rao, V., Sarabi, M.S., Jaiswal, A.: Brain tumor segmentation with deep learning. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 56–59 (2015)
27.
go back to reference Lun, T.K., Hsu, W.: Brain tumor segmentation using deep convolutional neural network. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 26–29 (2016) Lun, T.K., Hsu, W.: Brain tumor segmentation using deep convolutional neural network. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 26–29 (2016)
28.
go back to reference Zhao, X., Wu, Y., Song, G., Li, Z., Fan, Y., Zhang, Y.: Brain tumor segmentation using a fully convolutional neural network with conditional random fields. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 77–80 (2016) Zhao, X., Wu, Y., Song, G., Li, Z., Fan, Y., Zhang, Y.: Brain tumor segmentation using a fully convolutional neural network with conditional random fields. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 77–80 (2016)
29.
go back to reference Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Proceedings of AISTATS, pp. 562–570 (2015) Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Proceedings of AISTATS, pp. 562–570 (2015)
30.
go back to reference Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vision, 1–16 (2017) Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vision, 1–16 (2017)
31.
go back to reference Zhuge, Y., Krauze, A.V., Ning, H., Cheng, J.C., Arora, B.C., Camphausen, K., Miller, R.W.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44, 5234–5243 (2017)CrossRef Zhuge, Y., Krauze, A.V., Ning, H., Cheng, J.C., Arora, B.C., Camphausen, K., Miller, R.W.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44, 5234–5243 (2017)CrossRef
32.
go back to reference Guillemaud, R., Brady, M.: Estimating the bias field of MR images. IEEE Trans. Med. Imaging 16, 238–251 (1997)CrossRef Guillemaud, R., Brady, M.: Estimating the bias field of MR images. IEEE Trans. Med. Imaging 16, 238–251 (1997)CrossRef
33.
go back to reference Tustison, N.J., Avants, B.B., Cook, P.A., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)CrossRef Tustison, N.J., Avants, B.B., Cook, P.A., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)CrossRef
34.
go back to reference Zhuge, Y., Udupa, J.K.: Intensity standardization simplifies brain MR image segmentation. Comput. Vis. Image Underst. 113, 1095–1103 (2009)CrossRef Zhuge, Y., Udupa, J.K.: Intensity standardization simplifies brain MR image segmentation. Comput. Vis. Image Underst. 113, 1095–1103 (2009)CrossRef
35.
go back to reference Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19, 143–150 (2000)CrossRef Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19, 143–150 (2000)CrossRef
Metadata
Title
Brain Tumor Segmentation in MRI Scans Using Deeply-Supervised Neural Networks
Authors
Reza Pourreza
Ying Zhuge
Holly Ning
Robert Miller
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-75238-9_28

Premium Partner