Branch-and-Bound Search for Training Cascades of Classifiers | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Branch-and-Bound Search for Training Cascades of Classifiers

Authors : Dariusz Sychel, Przemysław Klęsk, Aneta Bera

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

We propose a general algorithm that treats cascade training as a tree search process working according to the branch-and-bound technique. The algorithm allows to reduce the expected number of features used by an operating cascade—a key quantity we focus on in the paper. While searching, we observe suitable lower bounds on partial expectations and prune tree branches that cannot improve the best-so-far result. Both exact and approximate variants of the approach are formulated. Experiments pertain to cascades trained to be face or letter detectors with Haar-like features or Zernike moments being the input information, respectively. Results confirm shorter operating times of cascades obtained owing to the reduction in the number of extracted features.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Abbas, S., et al.: Crowd detection and management using cascade classifier on ARMv8 and OpenCV-Python. In: 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–6, March 2017 Abbas, S., et al.: Crowd detection and management using cascade classifier on ARMv8 and OpenCV-Python. In: 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–6, March 2017
2.
go back to reference Bera, A., Klęsk, P., Sychel, D.: Constant-time calculation of zernike moments for detection with rotational invariance. IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 537–551 (2019) CrossRef Bera, A., Klęsk, P., Sychel, D.: Constant-time calculation of zernike moments for detection with rotational invariance. IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 537–551 (2019) CrossRef
3.
go back to reference Bourdev, L., Brandt, J.: Robust object detection via soft cascade. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) - Volume 2, pp. 236–243. IEEE Computer Society (2005) Bourdev, L., Brandt, J.: Robust object detection via soft cascade. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) - Volume 2, pp. 236–243. IEEE Computer Society (2005)
4.
go back to reference Budiman, R.A.M., Achmad, B., Faridah, Arif, A., Nopriadi, Zharif, L.: Localization of white blood cell images using Haar cascade classifiers. In: 2016 1st International Conference on Biomedical Engineering (IBIOMED), pp. 1–5, October 2016 Budiman, R.A.M., Achmad, B., Faridah, Arif, A., Nopriadi, Zharif, L.: Localization of white blood cell images using Haar cascade classifiers. In: 2016 1st International Conference on Biomedical Engineering (IBIOMED), pp. 1–5, October 2016
5.
go back to reference de Campos, T.E., et al.: Character recognition in natural images. In: International Conference on Computer Vision Theory and Applications, Portugal, pp. 273–280 (2009) de Campos, T.E., et al.: Character recognition in natural images. In: International Conference on Computer Vision Theory and Applications, Portugal, pp. 273–280 (2009)
6.
go back to reference Setjo, C.H., et al.: Thermal image human detection using Haar-cascade classifier. In: 2017 7th International Annual Engineering Seminar (InAES), pp. 1–6 (2017) Setjo, C.H., et al.: Thermal image human detection using Haar-cascade classifier. In: 2017 7th International Annual Engineering Seminar (InAES), pp. 1–6 (2017)
7.
go back to reference Lu, J., et al.: Detection of bird’s nest in high power lines in the vicinity of remote campus based on combination features and cascade classifier. IEEE Access 6, 39063–39071 (2018) CrossRef Lu, J., et al.: Detection of bird’s nest in high power lines in the vicinity of remote campus based on combination features and cascade classifier. IEEE Access 6, 39063–39071 (2018) CrossRef
8.
go back to reference Jones, N., Pevzner, P.: An Introduction to Bioinformatics Algorithms. MIT Press, Cambridge (2002) Jones, N., Pevzner, P.: An Introduction to Bioinformatics Algorithms. MIT Press, Cambridge (2002)
9.
go back to reference Cuimei, L., et al.: Human face detection algorithm via Haar cascade classifier combined with three additional classifiers. In: 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI), pp. 483–487 (2017) Cuimei, L., et al.: Human face detection algorithm via Haar cascade classifier combined with three additional classifiers. In: 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI), pp. 483–487 (2017)
10.
go back to reference Li, J., Zhang, Y.: Learning SURF cascade for fast and accurate object detection. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3468–3475. CVPR 2013. IEEE Computer Society (2013) Li, J., Zhang, Y.: Learning SURF cascade for fast and accurate object detection. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3468–3475. CVPR 2013. IEEE Computer Society (2013)
11.
go back to reference Li, Y., Xu, X., Mu, N., Chen, L.: Eye-gaze tracking system by Haar cascade classifier. In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 564–567, June 2016 Li, Y., Xu, X., Mu, N., Chen, L.: Eye-gaze tracking system by Haar cascade classifier. In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 564–567, June 2016
12.
go back to reference Pham, M., Cham, T.: Fast training and selection of Haar features using statistics in boosting-based face detection. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–7 (2007) Pham, M., Cham, T.: Fast training and selection of Haar features using statistics in boosting-based face detection. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–7 (2007)
13.
go back to reference Rasolzadeh, B., et al.: Response binning: improved weak classifiers for boosting. In: IEEE Intelligent Vehicles Symposium, pp. 344–349 (2006) Rasolzadeh, B., et al.: Response binning: improved weak classifiers for boosting. In: IEEE Intelligent Vehicles Symposium, pp. 344–349 (2006)
14.
go back to reference Saberian, M., Vasconcelos, N.: Boosting algorithms for detector cascade learning. J. Mach. Learn. Res. 15, 2569–2605 (2014) MathSciNetMATH Saberian, M., Vasconcelos, N.: Boosting algorithms for detector cascade learning. J. Mach. Learn. Res. 15, 2569–2605 (2014) MathSciNetMATH
17.
go back to reference Vallez, N., Deniz, O., Bueno, G.: Sample selection for training cascade detectors. PLos ONE 10, e0133059 (2015) CrossRef Vallez, N., Deniz, O., Bueno, G.: Sample selection for training cascade detectors. PLos ONE 10, e0133059 (2015) CrossRef
Metadata
Title
Branch-and-Bound Search for Training Cascades of Classifiers
Authors
Dariusz Sychel
Przemysław Klęsk
Aneta Bera
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_2