Skip to main content
Top

2018 | OriginalPaper | Chapter

Brauer Graph Algebras

A Survey on Brauer Graph Algebras, Associated Gentle Algebras and Their Connections to Cluster Theory

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This survey starts with a motivation of the study of Brauer graph algebras by relating them to special biserial algebras. The definition of Brauer graph algebras is given in great detail with many examples to illustrate the concepts. An interpretation of Brauer graphs as decorated ribbon graphs is included. A section on gentle algebras and their associated ribbon graph, trivial extensions of gentle algebras, admissible cuts of Brauer graph algebras and a first connection of Brauer graph algebras with Jacobian algebras associated to triangulations of marked oriented surfaces follows. The interpretation of flips of diagonals in triangulations of marked oriented surfaces as derived equivalences of Brauer graph algebras and the comparison of derived equivalences of Brauer graph algebras with derived equivalences of frozen Jacobian algebras is the topic of the next section. In the last section, after defining Green’s walk around the Brauer graph, a complete description of the Auslander Reiten quiver of a Brauer graph algebra is given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
http://www.iaz.uni-stuttgart.de/LstAGeoAlg/Kuelshammer/topics/biserial.html
 
2
http://www.math.uni-bonn.de/people/schroer/fd-atlas.html
 
Literature
1.
4.
go back to reference Amiot, C.: On generalized cluster categories. In: A. Skowroński, K. Yamagata (eds.) Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., pp. 1–53. Eur. Math. Soc., Zürich (2011). DOI https://doi.org/10.4171/101-1/1 Amiot, C.: On generalized cluster categories. In: A. Skowroński, K. Yamagata (eds.) Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., pp. 1–53. Eur. Math. Soc., Zürich (2011). DOI https://​doi.​org/​10.​4171/​101-1/​1
8.
go back to reference Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory, London Math. Soc. Stud. Texts, vol. 65. Cambridge Univ. Press, Cambridge (2006). DOI https://doi.org/10.1017/CBO9780511614309 Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory, London Math. Soc. Stud. Texts, vol. 65. Cambridge Univ. Press, Cambridge (2006). DOI https://​doi.​org/​10.​1017/​CBO9780511614309​
9.
go back to reference Auslander, M., Reiten, I., Smalø, S.O.: Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., vol. 36. Cambridge Univ. Press, Cambridge (1997) Auslander, M., Reiten, I., Smalø, S.O.: Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., vol. 36. Cambridge Univ. Press, Cambridge (1997)
12.
go back to reference Benson, D.J.: Representations and Cohomology. I. Basic Representation Theory of Finite Groups and Associative Algebras, Cambridge Stud. Adv. Math., vol. 30, 2nd edn. Cambridge Univ. Press, Cambridge (1998) Benson, D.J.: Representations and Cohomology. I. Basic Representation Theory of Finite Groups and Associative Algebras, Cambridge Stud. Adv. Math., vol. 30, 2nd edn. Cambridge Univ. Press, Cambridge (1998)
27.
go back to reference Dlab, V., Gabriel, P. (eds.): Representation Theory. I (Ottawa, ON, 1979), Lecture Notes in Math., vol. 831. Springer, Berlin (1980) Dlab, V., Gabriel, P. (eds.): Representation Theory. I (Ottawa, ON, 1979), Lecture Notes in Math., vol. 831. Springer, Berlin (1980)
28.
go back to reference Dlab, V., Gabriel, P. (eds.): Representation Theory. II (Ottawa, ON, 1979), Lecture Notes in Math., vol. 832. Springer, Berlin (1980) Dlab, V., Gabriel, P. (eds.): Representation Theory. II (Ottawa, ON, 1979), Lecture Notes in Math., vol. 832. Springer, Berlin (1980)
39.
go back to reference Fernández, E.: Extensiones triviales y álgebras inclinadas iteradas. Ph.D. Thesis, Universidad Nacional del Sur (1999) Fernández, E.: Extensiones triviales y álgebras inclinadas iteradas. Ph.D. Thesis, Universidad Nacional del Sur (1999)
42.
go back to reference Gel\(^\prime \)fand, I.M., Ponomarev, V.A.: Indecomposable representations of the Lorentz group (Russian). Uspehi Mat. Nauk 23(2(140)), 3–60 (1968) Gel\(^\prime \)fand, I.M., Ponomarev, V.A.: Indecomposable representations of the Lorentz group (Russian). Uspehi Mat. Nauk 23(2(140)), 3–60 (1968)
51.
54.
go back to reference Kalck, M.: Derived categories of quasi-hereditary algebras and their derived composition series. In: Krause et al. [59], pp. 269–308 Kalck, M.: Derived categories of quasi-hereditary algebras and their derived composition series. In: Krause et al. [59], pp. 269–308
55.
go back to reference Kauer, M.: Derived equivalence of graph algebras. In: E.L. Green, B. Huisgen-Zimmermann (eds.) Trends in the Representation Theory of Finite-Dimensional Algebras (Seattle, WA, 1997), Contemp. Math., vol. 229, pp. 201–213. Amer. Math. Soc., Providence, RI (1998). DOI https://doi.org/10.1090/conm/229/03319 Kauer, M.: Derived equivalence of graph algebras. In: E.L. Green, B. Huisgen-Zimmermann (eds.) Trends in the Representation Theory of Finite-Dimensional Algebras (Seattle, WA, 1997), Contemp. Math., vol. 229, pp. 201–213. Amer. Math. Soc., Providence, RI (1998). DOI https://​doi.​org/​10.​1090/​conm/​229/​03319
57.
go back to reference König, S., Zimmermann, A.: Derived Equivalences for Group Rings, Lecture Notes in Math., vol. 1685. Springer, Berlin (1998)CrossRef König, S., Zimmermann, A.: Derived Equivalences for Group Rings, Lecture Notes in Math., vol. 1685. Springer, Berlin (1998)CrossRef
59.
go back to reference Krause, H., Littelmann, P., Malle, G., Neeb, K.-H., Schweigert, C. (eds.): Representation Theory—Current Trends and Perspectives. EMS Ser. Congr. Rep. Eur. Math. Soc., Zürich (2017) Krause, H., Littelmann, P., Malle, G., Neeb, K.-H., Schweigert, C. (eds.): Representation Theory—Current Trends and Perspectives. EMS Ser. Congr. Rep. Eur. Math. Soc., Zürich (2017)
62.
go back to reference Ladkani, S.: Derived equivalence classification of the gentle algebras arising from surface triangulations. Preprint Ladkani, S.: Derived equivalence classification of the gentle algebras arising from surface triangulations. Preprint
64.
go back to reference Ladkani, S.: From groups to clusters. In: Krause et al. [59], pp. 427–500 Ladkani, S.: From groups to clusters. In: Krause et al. [59], pp. 427–500
67.
68.
go back to reference Okuyama, T.: Some examples of derived equivalent blocks of finite groups. Unpublished Okuyama, T.: Some examples of derived equivalent blocks of finite groups. Unpublished
71.
go back to reference Rickard, J.: A derived equivalence for the principal 2-blocks of \({A}_4\) and \({A}_5\). Manuscript Rickard, J.: A derived equivalence for the principal 2-blocks of \({A}_4\) and \({A}_5\). Manuscript
78.
go back to reference Ringel, C.M.: On algorithms for solving vector space problems. II. Tame algebras. In: Dlab and Gabriel [27], pp. 137–287 Ringel, C.M.: On algorithms for solving vector space problems. II. Tame algebras. In: Dlab and Gabriel [27], pp. 137–287
79.
go back to reference Roggenkamp, K.W.: Biserial algebras and graphs. In: I. Reiten, S.O. Smalø, Ø. Solberg (eds.) Algebras and Modules. II (Geiranger, 1996), CMS Conf. Proc., vol. 24, pp. 481–496. Amer. Math. Soc., Providence, RI (1998) Roggenkamp, K.W.: Biserial algebras and graphs. In: I. Reiten, S.O. Smalø, Ø. Solberg (eds.) Algebras and Modules. II (Geiranger, 1996), CMS Conf. Proc., vol. 24, pp. 481–496. Amer. Math. Soc., Providence, RI (1998)
84.
go back to reference Skowroński, A.: Algebras of polynomial growth. In: S. Balcerzyk, T. Józefiak, J. Krempa, D. Simson, W. Vogel (eds.) Topics in Algebra. Part 1. Rings and Representations of Algebras (Warsaw, 1988), Banach Center Publ., vol. 26, pp. 535–568. PWN, Warsaw (1990) Skowroński, A.: Algebras of polynomial growth. In: S. Balcerzyk, T. Józefiak, J. Krempa, D. Simson, W. Vogel (eds.) Topics in Algebra. Part 1. Rings and Representations of Algebras (Warsaw, 1988), Banach Center Publ., vol. 26, pp. 535–568. PWN, Warsaw (1990)
85.
go back to reference Skowroński, A.: Selfinjective algebras: finite and tame type. In: J.A. de la Peña, R. Bautista (eds.) Trends in Representation Theory of Algebras and Related Topics (Querétaro, 2004), Contemp. Math., vol. 406, pp. 169–238. Amer. Math. Soc., Providence, RI (2006). DOI https://doi.org/10.1090/conm/406/07658 Skowroński, A.: Selfinjective algebras: finite and tame type. In: J.A. de la Peña, R. Bautista (eds.) Trends in Representation Theory of Algebras and Related Topics (Querétaro, 2004), Contemp. Math., vol. 406, pp. 169–238. Amer. Math. Soc., Providence, RI (2006). DOI https://​doi.​org/​10.​1090/​conm/​406/​07658
90.
go back to reference Zvonareva, A.: Two-term tilting complexes over algebras that correspond to Brauer trees (Russian). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 423(Vopr. Teor. Predts. Algebr. i Grupp. 26), 132–165 (2014). English transl., J. Math. Sci. (N.Y.) 209(4), 568–587 (2015) Zvonareva, A.: Two-term tilting complexes over algebras that correspond to Brauer trees (Russian). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 423(Vopr. Teor. Predts. Algebr. i Grupp. 26), 132–165 (2014). English transl., J. Math. Sci. (N.Y.) 209(4), 568–587 (2015)
Metadata
Title
Brauer Graph Algebras
Author
Sibylle Schroll
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-74585-5_6

Premium Partner