Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

Brian Spalding: Some Contributions to Computational Fluid Dynamics During the Period 1993 to 2004

Author : Michael R. Malin

Published in: 50 Years of CFD in Engineering Sciences

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper describes some contributions to Computational Fluid Dynamics (CFD) made by Professor Brian Spalding whilst working at Concentration Heat and Momentum Limited (CHAM) during the period 1993–2004. The discussions focus principally on those areas with which the author had been directly involved with Brian and colleagues at CHAM. Some of the material is now well known in the field, and some not, but familiar material is not submitted as a new or original contribution, but rather to provide examples of Brian’s unique approach to solving practical CFD problems and to explain their origin. The following areas of work are described together with their influence in the field, where this is appropriate: the differential-equation wall-distance calculator; the LVEL model of turbulence; the IMMERSOL model of thermal radiation; virtual mass modelling in Eulerian–Eulerian descriptions of two-phase flow; a space-marching method for hyperbolic and transonic flow; and an automatic convergence-promoting algorithm for SIMPLE-based CFD codes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Spalding, D. B. (1981). A general-purpose computer program for multi-dimensional one- and two-phase flow. Mathematics and Computers in Simulation, 23, 267–276.CrossRef Spalding, D. B. (1981). A general-purpose computer program for multi-dimensional one- and two-phase flow. Mathematics and Computers in Simulation, 23, 267–276.CrossRef
2.
go back to reference Patankar, S. V., Pollard, A., Singhal, A. K., & Vanka, S. P. (1983). Numerical prediction of flow, heat transfer, turbulence and combustion: selected works of Professor D. Brian Spalding. Oxford: Pergamon Press. Patankar, S. V., Pollard, A., Singhal, A. K., & Vanka, S. P. (1983). Numerical prediction of flow, heat transfer, turbulence and combustion: selected works of Professor D. Brian Spalding. Oxford: Pergamon Press.
3.
go back to reference Artemov, V., Escudier, M. P., Fueyo, N., Launder, B. E., Leonardi, E., Malin, M. R., et al. (2009). A tribute to D.B. Spalding and his contributions in science and engineering. International Journal of Heat and Mass Transfer, 52, 3884–3905.MATH Artemov, V., Escudier, M. P., Fueyo, N., Launder, B. E., Leonardi, E., Malin, M. R., et al. (2009). A tribute to D.B. Spalding and his contributions in science and engineering. International Journal of Heat and Mass Transfer, 52, 3884–3905.MATH
4.
go back to reference Runchal, A. K. (2009). Brian Spalding: CFD and reality—A personal recollection. International Journal of Heat and Mass Transfer, 52, 4063–4073.MATHCrossRef Runchal, A. K. (2009). Brian Spalding: CFD and reality—A personal recollection. International Journal of Heat and Mass Transfer, 52, 4063–4073.MATHCrossRef
5.
go back to reference Runchal, A. K. (2013). Emergence of computational fluid dynamics at Imperial College (1965–1975): A personal recollection. ASME Journal of Heat Transfer, 135(1), 011009-1. Runchal, A. K. (2013). Emergence of computational fluid dynamics at Imperial College (1965–1975): A personal recollection. ASME Journal of Heat Transfer, 135(1), 011009-1.
6.
go back to reference Runchal, A. K.(2017). Origins and development of the finite volume CFD method at Imperial College. In CHT-17, 29 May–2 June, Naples, Italy. Runchal, A. K.(2017). Origins and development of the finite volume CFD method at Imperial College. In CHT-17, 29 May–2 June, Naples, Italy.
7.
go back to reference Launder, B. E., Patankar, S. V., & Pollard, A. (2019). Dudley Brian Spalding. 9 January 1923–27 November 2016. Biographical Memoirs of Fellows of the Royal Society, 66, Article ID: 20180024. Launder, B. E., Patankar, S. V., & Pollard, A. (2019). Dudley Brian Spalding. 9 January 1923–27 November 2016. Biographical Memoirs of Fellows of the Royal Society, 66, Article ID: 20180024.
8.
go back to reference Spalding, D. B. (1993). A turbulence length-scale formulation. CHAM Technical Note 4/9/93, CHAM, Wimbledon, London. Spalding, D. B. (1993). A turbulence length-scale formulation. CHAM Technical Note 4/9/93, CHAM, Wimbledon, London.
9.
go back to reference Spalding, D. B. (1994). Calculation of turbulent heat transfer in cluttered spaces. Presented at the 10th International Heat Transfer Conference, Brighton, UK. Spalding, D. B. (1994). Calculation of turbulent heat transfer in cluttered spaces. Presented at the 10th International Heat Transfer Conference, Brighton, UK.
10.
go back to reference Tucker, P. G. (1998). Assessment of geometric multilevel convergence robustness and a wall distance method for flows with multiple internal boundaries. Applied Mathematical Modelling, 22, 293–311.MATHCrossRef Tucker, P. G. (1998). Assessment of geometric multilevel convergence robustness and a wall distance method for flows with multiple internal boundaries. Applied Mathematical Modelling, 22, 293–311.MATHCrossRef
11.
go back to reference Fares, E., & Schroder, W. A. (2002). Differential equation to determine the wall distance. International Journal for Numerical Methods in Fluids, 39, 743–762.MathSciNetMATHCrossRef Fares, E., & Schroder, W. A. (2002). Differential equation to determine the wall distance. International Journal for Numerical Methods in Fluids, 39, 743–762.MathSciNetMATHCrossRef
12.
go back to reference Tucker, P. G. (2003). Differential equation-based wall distance computation for DES and RANS. Journal of Computational Physics, 190(1), 229–248.MATHCrossRef Tucker, P. G. (2003). Differential equation-based wall distance computation for DES and RANS. Journal of Computational Physics, 190(1), 229–248.MATHCrossRef
13.
go back to reference Tucker P. G, Rumsey, C. L, Bartels R. E., & Biedron R. T. (2003). Transport equation-based wall distance computations aimed at flows with time-dependent geometry. NASA TM-2003-212680, December. Tucker P. G, Rumsey, C. L, Bartels R. E., & Biedron R. T. (2003). Transport equation-based wall distance computations aimed at flows with time-dependent geometry. NASA TM-2003-212680, December.
14.
go back to reference Tucker, P. G., Rumsey, C. L., Spalart, P. R., Bartels, R. E., & Biedron, R. T. (2005). Computations of wall distances based on differential equations. AIAA Journal, 43(3), 539–549.CrossRef Tucker, P. G., Rumsey, C. L., Spalart, P. R., Bartels, R. E., & Biedron, R. T. (2005). Computations of wall distances based on differential equations. AIAA Journal, 43(3), 539–549.CrossRef
15.
go back to reference Tucker, P. G. (2011). Hybrid Hamilton–Jacobi–Poisson wall distance function model. Computers & Fluids, 44, 130–142.MATHCrossRef Tucker, P. G. (2011). Hybrid Hamilton–Jacobi–Poisson wall distance function model. Computers & Fluids, 44, 130–142.MATHCrossRef
16.
go back to reference Xu, J., Yan, C., & Fan, J. (2011). Computations of wall distances by solving a transport equation. Applied Mathematics and Mechanics, 32(2), 141–150.MathSciNetMATHCrossRef Xu, J., Yan, C., & Fan, J. (2011). Computations of wall distances by solving a transport equation. Applied Mathematics and Mechanics, 32(2), 141–150.MathSciNetMATHCrossRef
17.
go back to reference Belyaev, A. G., & Fayolle, P. A. (2015). On variational and PDE-based distance function approximations. Computer Graphics Forum, 34(8), 104–118.CrossRef Belyaev, A. G., & Fayolle, P. A. (2015). On variational and PDE-based distance function approximations. Computer Graphics Forum, 34(8), 104–118.CrossRef
18.
go back to reference Wukie, N. A., & Orkwis, P. D. (2017). A p-Poisson wall distance approach for turbulence modelling. In AIAA 2017-3945, 23rd AIAA CFD Conference, 5–9 June, Denver, Colorado, USA. Wukie, N. A., & Orkwis, P. D. (2017). A p-Poisson wall distance approach for turbulence modelling. In AIAA 2017-3945, 23rd AIAA CFD Conference, 5–9 June, Denver, Colorado, USA.
19.
go back to reference Jefferson-Loveday, R. J. (2017). Differential-equation based specification of turbulence integral length scales for cavity flows. Journal of Engineering for Gas Turbines and Power, 139(6). Jefferson-Loveday, R. J. (2017). Differential-equation based specification of turbulence integral length scales for cavity flows. Journal of Engineering for Gas Turbines and Power, 139(6).
20.
go back to reference Watson, R. A., Trojak, W., & Tucker, P. G. (2018). A simple flux reconstruction approach to solving a Poisson equation to find wall distances for turbulence modelling. In 2018 Fluid Dynamics Conference, AIAA Aviation Forum (AIAA 2018-4261), Atlanta, Georgia. Watson, R. A., Trojak, W., & Tucker, P. G. (2018). A simple flux reconstruction approach to solving a Poisson equation to find wall distances for turbulence modelling. In 2018 Fluid Dynamics Conference, AIAA Aviation Forum (AIAA 2018-4261), Atlanta, Georgia.
21.
go back to reference Boger, D. A. (2001). Efficient method for calculating wall proximity. AIAA Journal, 39(12), 2404–2406.CrossRef Boger, D. A. (2001). Efficient method for calculating wall proximity. AIAA Journal, 39(12), 2404–2406.CrossRef
22.
go back to reference Van der Weide, E., Kalitzin, G., Schluter, J., & Alonso, J. J. (2006). Unsteady turbomachinery computations using massively parallel platforms. In 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2006-0421, Reno, NV. Van der Weide, E., Kalitzin, G., Schluter, J., & Alonso, J. J. (2006). Unsteady turbomachinery computations using massively parallel platforms. In 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2006-0421, Reno, NV.
23.
go back to reference Roget, B., & Sitataman, J. (2012). Wall distance search algorithm using voxelised marching spheres. In 7th International Conference on CFD (ICCFD7), Big Island, Hawaii, July 9–13. Roget, B., & Sitataman, J. (2012). Wall distance search algorithm using voxelised marching spheres. In 7th International Conference on CFD (ICCFD7), Big Island, Hawaii, July 9–13.
24.
go back to reference Lohner, R., Sharov, D., Luo, H., & Ramamurthi, R. (2001). Overlapping unstructured grids. In AIAA 2001-0439, Reno, NV. Lohner, R., Sharov, D., Luo, H., & Ramamurthi, R. (2001). Overlapping unstructured grids. In AIAA 2001-0439, Reno, NV.
25.
go back to reference Tucker, P. G. (2016). Section 7.6.3 Nearest wall distance. In Advanced computational fluid and aerodynamics. Cambridge: Cambridge University Press. Tucker, P. G. (2016). Section 7.6.3 Nearest wall distance. In Advanced computational fluid and aerodynamics. Cambridge: Cambridge University Press.
26.
go back to reference Agonafer, D., Gan-Li, L., & Spalding, D. B. (1996). The LVEL turbulence model for conjugate heat transfer at low Reynolds numbers. In Proceedings of the EEP Application of CAE/CAD to Electronic Systems, ASME International Mechanical Engineering Congress and Exposition, Atlanta, GA. Agonafer, D., Gan-Li, L., & Spalding, D. B. (1996). The LVEL turbulence model for conjugate heat transfer at low Reynolds numbers. In Proceedings of the EEP Application of CAE/CAD to Electronic Systems, ASME International Mechanical Engineering Congress and Exposition, Atlanta, GA.
27.
go back to reference Spalding, D. B. (1961). A single formula for the law of the wall. ASME Journal of Applied Mechanics, 28(3), 455–458.MATHCrossRef Spalding, D. B. (1961). A single formula for the law of the wall. ASME Journal of Applied Mechanics, 28(3), 455–458.MATHCrossRef
28.
go back to reference Dhinsa, K. K., Bailey, C. J., & Pericleous, K. A. (2004). Turbulence modelling and its impact on CFD predictions for cooling of electronic components. In Proceedings of 9th Intersociety Conference Thermal and Thermomechanical Phenomena in Electronic Systems. Dhinsa, K. K., Bailey, C. J., & Pericleous, K. A. (2004). Turbulence modelling and its impact on CFD predictions for cooling of electronic components. In Proceedings of 9th Intersociety Conference Thermal and Thermomechanical Phenomena in Electronic Systems.
29.
go back to reference Dhinsa, K. K. (2006). Development and application of low Reynolds number turbulence models for air-cooled electronics. Ph.D. thesis, University of Greenwich, London, UK. Dhinsa, K. K. (2006). Development and application of low Reynolds number turbulence models for air-cooled electronics. Ph.D. thesis, University of Greenwich, London, UK.
30.
go back to reference Rodgers, P., Lohan, J., Eveloy, V., Fager, C. M., & Rantala, J. (1999). Validating numerical predictions of component thermal interaction on electronic printed circuit boards in forced convection air flows by experimental analysis. Advanced Electronic Packaging, 1, 999–1008. Rodgers, P., Lohan, J., Eveloy, V., Fager, C. M., & Rantala, J. (1999). Validating numerical predictions of component thermal interaction on electronic printed circuit boards in forced convection air flows by experimental analysis. Advanced Electronic Packaging, 1, 999–1008.
31.
go back to reference Eveloy, V. C. (2003). An experimental assessment of CFD predictive accuracy for electronic component operational temperatures. Ph.D. thesis, Dublin City University, Ireland. Eveloy, V. C. (2003). An experimental assessment of CFD predictive accuracy for electronic component operational temperatures. Ph.D. thesis, Dublin City University, Ireland.
32.
go back to reference Eveloy, V., Rodgers, P., & Hashmi, M. S. J. (2003). An experimental assessment of computational fluid dynamics predictive accuracy for electronic component operational temperature. In Proceedings of the ASME Heat Transfer Conference, Las Vegas, Nevada, USA, Paper Number HT2003-47282. Eveloy, V., Rodgers, P., & Hashmi, M. S. J. (2003). An experimental assessment of computational fluid dynamics predictive accuracy for electronic component operational temperature. In Proceedings of the ASME Heat Transfer Conference, Las Vegas, Nevada, USA, Paper Number HT2003-47282.
33.
go back to reference Rodgers, P., Eveloy, V., & Davies, M. (2003). An experimental assessment of numerical predictive accuracy for electronic component heat transfer in forced convection: Parts I and II. Transactions of the ASME, Journal of Electronic Packaging, 125(l), 67–83. Rodgers, P., Eveloy, V., & Davies, M. (2003). An experimental assessment of numerical predictive accuracy for electronic component heat transfer in forced convection: Parts I and II. Transactions of the ASME, Journal of Electronic Packaging, 125(l), 67–83.
34.
go back to reference Choi, J., Kim, Y., Sivasubramaniam, A., Srebic, J., Wang, Q., & Lee, J. (2008). A CFD-based tool for studying temperatures in rack-mounted servers. IEEE Transactions on Computers, 57(8) 1129–1142. Choi, J., Kim, Y., Sivasubramaniam, A., Srebic, J., Wang, Q., & Lee, J. (2008). A CFD-based tool for studying temperatures in rack-mounted servers. IEEE Transactions on Computers, 57(8) 1129–1142.
35.
go back to reference De Marchi Neto, I., & Altemani, C. A. C. (2017). A matrix to evaluate the conjugate cooling of a heaters’ array. International Journal of Thermal Sciences, 118, 278–291. De Marchi Neto, I., & Altemani, C. A. C. (2017). A matrix to evaluate the conjugate cooling of a heaters’ array. International Journal of Thermal Sciences, 118, 278–291.
36.
go back to reference Dhoot, P., Healey, C. M., Pardey, Z., & van Gilder, J. W. (2017). Zero-equation turbulence models for large electrical and electronics enclosure applications. LV-17-C078. In ASHRAE Winter Conference, Las Vegas, NV, USA. Dhoot, P., Healey, C. M., Pardey, Z., & van Gilder, J. W. (2017). Zero-equation turbulence models for large electrical and electronics enclosure applications. LV-17-C078. In ASHRAE Winter Conference, Las Vegas, NV, USA.
37.
go back to reference Wang, S., & Zu, D. (2003). Application of CFD in retrofitting air-conditioning systems in industrial buildings. Energy and Buildings, 35, 893–902.CrossRef Wang, S., & Zu, D. (2003). Application of CFD in retrofitting air-conditioning systems in industrial buildings. Energy and Buildings, 35, 893–902.CrossRef
38.
go back to reference Favarolo, P. A., & Manz, H. (2005). Temperature-driven single-sided ventilation through a large rectangular opening. Building and Environment, 40, 689–699.CrossRef Favarolo, P. A., & Manz, H. (2005). Temperature-driven single-sided ventilation through a large rectangular opening. Building and Environment, 40, 689–699.CrossRef
39.
go back to reference Pfeiffer, A., Dorer, V., & Weber, A. (2008). Modelling of cowl performance in building simulation tools using experimental data and computational fluid dynamics. Building and Environment, 43, 1361–1372.CrossRef Pfeiffer, A., Dorer, V., & Weber, A. (2008). Modelling of cowl performance in building simulation tools using experimental data and computational fluid dynamics. Building and Environment, 43, 1361–1372.CrossRef
40.
go back to reference Myhren, J. A., & Holmberg, S. (2008). Flow patterns and thermal comfort in a room with panel, floor and wall heating. Energy and Buildings, 40, 524–536.CrossRef Myhren, J. A., & Holmberg, S. (2008). Flow patterns and thermal comfort in a room with panel, floor and wall heating. Energy and Buildings, 40, 524–536.CrossRef
41.
go back to reference Myhren, J. A., & Holmberg, S. (2009). Design considerations with ventilation-radiators: Comparisons to traditional two-panel radiators. Energy and Buildings, 41, 92–100.CrossRef Myhren, J. A., & Holmberg, S. (2009). Design considerations with ventilation-radiators: Comparisons to traditional two-panel radiators. Energy and Buildings, 41, 92–100.CrossRef
42.
go back to reference Yoo, S.-H., & Manz, H. (2011). Available remodelling simulation for a BIPV as a shading device. Solar Energy Materials and Solar Cells, 95, 394–397.CrossRef Yoo, S.-H., & Manz, H. (2011). Available remodelling simulation for a BIPV as a shading device. Solar Energy Materials and Solar Cells, 95, 394–397.CrossRef
43.
go back to reference Wang, F., Manzanares-Bennett, A., Tucker, J., Roaf, S., & Heath, N. (2012). Feasibility study on solar-wall systems for domestic heating—An affordable solution for fuel poverty. Solar Energy, 86, 2405–2415.CrossRef Wang, F., Manzanares-Bennett, A., Tucker, J., Roaf, S., & Heath, N. (2012). Feasibility study on solar-wall systems for domestic heating—An affordable solution for fuel poverty. Solar Energy, 86, 2405–2415.CrossRef
44.
go back to reference Jurelionis, A., Gagytea, L., Seduikytea, L., Prasauskas, T., Ciuzas, D., & Martuzevicius, D. (2016). Combined air heating and ventilation increases risk of personal exposure to airborne pollutants released at the floor level. Energy and Buildings, 116, 263–273.CrossRef Jurelionis, A., Gagytea, L., Seduikytea, L., Prasauskas, T., Ciuzas, D., & Martuzevicius, D. (2016). Combined air heating and ventilation increases risk of personal exposure to airborne pollutants released at the floor level. Energy and Buildings, 116, 263–273.CrossRef
45.
go back to reference Mathioulakis, E., Karathanos, V. T., & Belessiotis, V. G. (1998). Simulation of air movement in a dryer by computational fluid dynamics: Application for the drying of fruits. Journal of Food Engineering, 36, 183–200.CrossRef Mathioulakis, E., Karathanos, V. T., & Belessiotis, V. G. (1998). Simulation of air movement in a dryer by computational fluid dynamics: Application for the drying of fruits. Journal of Food Engineering, 36, 183–200.CrossRef
46.
go back to reference Tchouveleva, A. V., Cheng, Z., Agranat, V. M., & Zhubrin, S. V. (2007). Effectiveness of small barriers as means to reduce clearance distances. International Journal of Hydrogen Energy, 32, 1409–1415.CrossRef Tchouveleva, A. V., Cheng, Z., Agranat, V. M., & Zhubrin, S. V. (2007). Effectiveness of small barriers as means to reduce clearance distances. International Journal of Hydrogen Energy, 32, 1409–1415.CrossRef
47.
go back to reference Hourri, A., Angers, B., Benard, P., Tchouvelev, A., & Agranat, V. (2011). Numerical investigation of the flammable extent of semi-confined hydrogen and methane jets. International Journal of Hydrogen Energy, 36, 2567–2570.CrossRef Hourri, A., Angers, B., Benard, P., Tchouvelev, A., & Agranat, V. (2011). Numerical investigation of the flammable extent of semi-confined hydrogen and methane jets. International Journal of Hydrogen Energy, 36, 2567–2570.CrossRef
48.
go back to reference Wang, H., Djambazov, G., Pericleous, K. A., Harding, R. A., & Wickins, M. (2011). Modelling the dynamics of the tilt-casting process and the effect of the mould design on the casting quality. Computers & Fluids, 42, 92–101.MATHCrossRef Wang, H., Djambazov, G., Pericleous, K. A., Harding, R. A., & Wickins, M. (2011). Modelling the dynamics of the tilt-casting process and the effect of the mould design on the casting quality. Computers & Fluids, 42, 92–101.MATHCrossRef
49.
go back to reference Wang, H., Wang, S., Wang, X., & Li, E. (2015). Numerical modelling of heat transfer through casting–mould with 3D/1D patched transient heat transfer model. International Journal of Heat and Mass Transfer, 81, 81–89.CrossRef Wang, H., Wang, S., Wang, X., & Li, E. (2015). Numerical modelling of heat transfer through casting–mould with 3D/1D patched transient heat transfer model. International Journal of Heat and Mass Transfer, 81, 81–89.CrossRef
50.
go back to reference Chen, C., Jonsson, L. T. I., Tilliander, A., Cheng, G., & Jönsson, P. G. (2015). A mathematical modelling study of the influence of small amounts of KCl solution tracer son mixing in water and residence time distribution of tracers in a continuous flow reactor-metallurgical tundish. Chemical Engineering Science, 137, 914–937.CrossRef Chen, C., Jonsson, L. T. I., Tilliander, A., Cheng, G., & Jönsson, P. G. (2015). A mathematical modelling study of the influence of small amounts of KCl solution tracer son mixing in water and residence time distribution of tracers in a continuous flow reactor-metallurgical tundish. Chemical Engineering Science, 137, 914–937.CrossRef
51.
go back to reference Solhed, H., Jonsson, L., & Jönsson, P. (2002). A theoretical and experimental study of continuous-casting tundishes focusing on slag-steel interaction. Metallurgical and Materials Transactions, B33B(2), 173–185.CrossRef Solhed, H., Jonsson, L., & Jönsson, P. (2002). A theoretical and experimental study of continuous-casting tundishes focusing on slag-steel interaction. Metallurgical and Materials Transactions, B33B(2), 173–185.CrossRef
52.
go back to reference Solhed, H., Jonsson, L., & Jönsson, P. (2008). Modelling of the steel/slag interface in a continuous casting tundish. Steel Research International, 79(5), 348–357.CrossRef Solhed, H., Jonsson, L., & Jönsson, P. (2008). Modelling of the steel/slag interface in a continuous casting tundish. Steel Research International, 79(5), 348–357.CrossRef
53.
go back to reference Artemov, V. I., Minko, K. B., & Yankov, G. G. (2015). Numerical simulation of fluid flow in an annular channel with outer transversally corrugated wall. International Journal of Heat and Mass Transfer, 90, 743–751.CrossRef Artemov, V. I., Minko, K. B., & Yankov, G. G. (2015). Numerical simulation of fluid flow in an annular channel with outer transversally corrugated wall. International Journal of Heat and Mass Transfer, 90, 743–751.CrossRef
54.
go back to reference Tucker, P. G., & Liu, Y. (2007). Turbulence modelling for flows around convex features giving rapid eddy distortion. International Journal of Heat and Fluid Flow, 28, 1073–1091.CrossRef Tucker, P. G., & Liu, Y. (2007). Turbulence modelling for flows around convex features giving rapid eddy distortion. International Journal of Heat and Fluid Flow, 28, 1073–1091.CrossRef
55.
go back to reference Spalding, D. B. (1994). Proposal for a diffusional radiation model for attachment to PHOENICS. CHAM Technical Note 18/10/94, CHAM, Wimbledon, London, UK. Spalding, D. B. (1994). Proposal for a diffusional radiation model for attachment to PHOENICS. CHAM Technical Note 18/10/94, CHAM, Wimbledon, London, UK.
56.
go back to reference Spalding, D. B. (1996). Radiation in PHOENICS HOTBOX, FLAIR, etc. CHAM Technical Note 4/9/96, CHAM, Wimbledon, London, UK. Spalding, D. B. (1996). Radiation in PHOENICS HOTBOX, FLAIR, etc. CHAM Technical Note 4/9/96, CHAM, Wimbledon, London, UK.
57.
go back to reference Spalding, D. B. (1996). Immersed-solid heat transfer. CHAM Technical Note 11/9/96, CHAM, Wimbledon, London, UK. Spalding, D. B. (1996). Immersed-solid heat transfer. CHAM Technical Note 11/9/96, CHAM, Wimbledon, London, UK.
58.
go back to reference Lockwood, F. C., & Shah, N. G. (1981). A new radiation method for incorporation in general combustion prediction procedures. In Proceedings of the 18th International Symposium on Combustion (pp. 1405–1414). London: The Combustion Institute. Lockwood, F. C., & Shah, N. G. (1981). A new radiation method for incorporation in general combustion prediction procedures. In Proceedings of the 18th International Symposium on Combustion (pp. 1405–1414). London: The Combustion Institute.
59.
go back to reference Rosseland, S. (1936). Theoretical astrophysics: Atomic theory and the analysis of stellar atmospheres and envelopes. Clarendon Press. Rosseland, S. (1936). Theoretical astrophysics: Atomic theory and the analysis of stellar atmospheres and envelopes. Clarendon Press.
60.
go back to reference Hamakar, H. C. (1947). Radiation and heat conduction in a light-scattering material. Philips Research Reports, 2, 55–67. Hamakar, H. C. (1947). Radiation and heat conduction in a light-scattering material. Philips Research Reports, 2, 55–67.
61.
go back to reference Schuster, A. (1905). Radiation through a foggy atmosphere. Astrophysical Journal, 21, 1–22.CrossRef Schuster, A. (1905). Radiation through a foggy atmosphere. Astrophysical Journal, 21, 1–22.CrossRef
62.
go back to reference Spalding, D. B (1980). Lecture 9, Idealisations of radiation. In Mathematical modelling of fluid-mechanics, heat-transfer and chemical-reaction processes: A lecture course. HTS/80/1, Mech. Eng. Dept., Imperial College, University of London. Spalding, D. B (1980). Lecture 9, Idealisations of radiation. In Mathematical modelling of fluid-mechanics, heat-transfer and chemical-reaction processes: A lecture course. HTS/80/1, Mech. Eng. Dept., Imperial College, University of London.
63.
go back to reference Siegel, R., & Howell, J. R. (1992). Thermal radiation heat transfer (3rd ed.). Washington DC, USA: Hemisphere Publishing Corporation. Siegel, R., & Howell, J. R. (1992). Thermal radiation heat transfer (3rd ed.). Washington DC, USA: Hemisphere Publishing Corporation.
64.
go back to reference Eddington, A. (1916). On the radiative equilibrium of the stars. Monthly Notices of the Royal Astronomical Society, 77, 16–35.MATHCrossRef Eddington, A. (1916). On the radiative equilibrium of the stars. Monthly Notices of the Royal Astronomical Society, 77, 16–35.MATHCrossRef
65.
go back to reference Marshak, R. E. (1947). Note on the spherical harmonics methods as applied to the Milne problem for a sphere. Physical Review, 71, 443–446.MathSciNetMATHCrossRef Marshak, R. E. (1947). Note on the spherical harmonics methods as applied to the Milne problem for a sphere. Physical Review, 71, 443–446.MathSciNetMATHCrossRef
66.
go back to reference Deissler, R. G. (1964). Diffusion approximation for thermal radiation in gases with jump boundary condition. ASME Journal Heat Transfer, 240–246.CrossRef Deissler, R. G. (1964). Diffusion approximation for thermal radiation in gases with jump boundary condition. ASME Journal Heat Transfer, 240–246.CrossRef
67.
go back to reference Liu, F. M., & Swithenbank, J. (1990). Modelling radiative heat transfer in pulverised coal-fired furnaces. In M. G. Carvalho, F. Lockwood, & J. Taine (Eds.), Heat transfer in radiating and combusting systems. Proceedings of the EUROTHERM (Vol. 17, pp. 358–373). Cascais, Portugal: Springer. Liu, F. M., & Swithenbank, J. (1990). Modelling radiative heat transfer in pulverised coal-fired furnaces. In M. G. Carvalho, F. Lockwood, & J. Taine (Eds.), Heat transfer in radiating and combusting systems. Proceedings of the EUROTHERM (Vol. 17, pp. 358–373). Cascais, Portugal: Springer.
68.
go back to reference Spalding, D. B. (1995). Modelling convective, conductive and radiative heat transfer. Lecture LE3-1 in Industrial Computational Fluid Dynamics. Lecture Series 1995-03, Von Karman Institute for Fluid Dynamics, Belgium, April 3–7. Spalding, D. B. (1995). Modelling convective, conductive and radiative heat transfer. Lecture LE3-1 in Industrial Computational Fluid Dynamics. Lecture Series 1995-03, Von Karman Institute for Fluid Dynamics, Belgium, April 3–7.
69.
go back to reference Spalding, D. B. (2013). Chapter 1, trends, tricks, and try ons in CFD/CHT, Section 3.1. The IMMERSOL radiation model. In E. M. Sparrow, Y. I. Cho, J. P. Abraham, & J. M. Gorman (Eds.), Advances in heat transfer (Vol. 45, pp. 1–78). Burlington: Academic Press. Spalding, D. B. (2013). Chapter 1, trends, tricks, and try ons in CFD/CHT, Section 3.1. The IMMERSOL radiation model. In E. M. Sparrow, Y. I. Cho, J. P. Abraham, & J. M. Gorman (Eds.), Advances in heat transfer (Vol. 45, pp. 1–78). Burlington: Academic Press.
70.
go back to reference Spalding, D. B. (1980). Numerical computation of multi-phase flow and heat transfer. In C. Taylor & K. Morgan (Eds.), Recent advances in numerical methods in fluids (pp. 139–167). Swansea: Pineridge Press. Spalding, D. B. (1980). Numerical computation of multi-phase flow and heat transfer. In C. Taylor & K. Morgan (Eds.), Recent advances in numerical methods in fluids (pp. 139–167). Swansea: Pineridge Press.
71.
go back to reference Spalding, D. B. (2002). PEA for IMMERSOL. CHAM Technical Notes 23/7/02 & 24/07/02, CHAM, Wimbledon, London, UK. Spalding, D. B. (2002). PEA for IMMERSOL. CHAM Technical Notes 23/7/02 & 24/07/02, CHAM, Wimbledon, London, UK.
72.
go back to reference Rasmussen, N. B. K. (2002). The composite radiosity and gap (CRG) model of thermal radiation. In: Proceedings of the 6th European Conference on Industrial Furnaces and Boilers (INFUB-6) 2002 Conference, Estoril, Lisbon, Portugal, 2002. (Also published as Danish Gas Technology Centre Report No. CO201, Hørsholm, Denmark.) Rasmussen, N. B. K. (2002). The composite radiosity and gap (CRG) model of thermal radiation. In: Proceedings of the 6th European Conference on Industrial Furnaces and Boilers (INFUB-6) 2002 Conference, Estoril, Lisbon, Portugal, 2002. (Also published as Danish Gas Technology Centre Report No. CO201, Hørsholm, Denmark.)
73.
go back to reference Osenbroch, J. (2006). CFD study of gas dispersion and jet fires in complex geometries. Ph.D. Thesis, The Faculty of Engineering and Science, Aalborg University, Denmark. Osenbroch, J. (2006). CFD study of gas dispersion and jet fires in complex geometries. Ph.D. Thesis, The Faculty of Engineering and Science, Aalborg University, Denmark.
74.
go back to reference Yang, Y., de Jong, R. A., & Reuter, M. (2005). Use of CFD to predict the performance of a heat treatment furnace, In Proceedings of the 4th International Conference on CFD in the Oil and Gas, Metallurgical and Process Industries, Trondheim, Norway (pp. 1–9). Yang, Y., de Jong, R. A., & Reuter, M. (2005). Use of CFD to predict the performance of a heat treatment furnace, In Proceedings of the 4th International Conference on CFD in the Oil and Gas, Metallurgical and Process Industries, Trondheim, Norway (pp. 1–9).
75.
go back to reference Yang, Y., de Jong, R. A., & Reuter, M. (2007). CFD prediction for the performance of a heat treatment furnace. Progress in Computational Fluid Dynamics, An International Journal, 7(2–4), 209–218.MATHCrossRef Yang, Y., de Jong, R. A., & Reuter, M. (2007). CFD prediction for the performance of a heat treatment furnace. Progress in Computational Fluid Dynamics, An International Journal, 7(2–4), 209–218.MATHCrossRef
76.
go back to reference Zhubrin, S. V. (2009). Discrete reaction model for composition of sooting flames. International Journal of Heat and Mass Transfer, 52, 4125–4133.MATHCrossRef Zhubrin, S. V. (2009). Discrete reaction model for composition of sooting flames. International Journal of Heat and Mass Transfer, 52, 4125–4133.MATHCrossRef
77.
go back to reference Aloqaily, A. M., & Chakrabarty, A. (2010). Jet flame length and thermal radiation: Evaluation with CFD simulations. In Global Congress on Process Safety. San Antonio, TX: AIChE. Aloqaily, A. M., & Chakrabarty, A. (2010). Jet flame length and thermal radiation: Evaluation with CFD simulations. In Global Congress on Process Safety. San Antonio, TX: AIChE.
78.
go back to reference Chakrabarty, A., & Aloqaily, A. (2011). Using CFD to assist facilities comply with thermal hazard regulations such as new API RP-752 recommendations. Hazards XXII, AICheE. Symp. Series No. 156. Chakrabarty, A., & Aloqaily, A. (2011). Using CFD to assist facilities comply with thermal hazard regulations such as new API RP-752 recommendations. Hazards XXII, AICheE. Symp. Series No. 156.
79.
go back to reference Chakrabarty, A., Edel, M., Raibagkar, A., & Aloqaily, A. (2011). Thermal hazard evaluation for process buildings using CFD analysis techniques. In AIChE Annual Meeting, Conference Proceedings (Vol. 29). Chakrabarty, A., Edel, M., Raibagkar, A., & Aloqaily, A. (2011). Thermal hazard evaluation for process buildings using CFD analysis techniques. In AIChE Annual Meeting, Conference Proceedings (Vol. 29).
80.
go back to reference Agranat, V., & Perminov, V. (2016). Multiphase CFD model of wildland fire initiation and spread. In Proceedings of the 5th International Fire Behavior and Fuels Conference, April 11–15, Portland, Oregon, USA. Agranat, V., & Perminov, V. (2016). Multiphase CFD model of wildland fire initiation and spread. In Proceedings of the 5th International Fire Behavior and Fuels Conference, April 11–15, Portland, Oregon, USA.
81.
go back to reference Corbin, C. D., & Zhai, Z. J. (2010). Experimental and numerical investigation on thermal and electrical performance of a building integrated photovoltaic–thermal collector system. Energy and Buildings, 42, 76–82.CrossRef Corbin, C. D., & Zhai, Z. J. (2010). Experimental and numerical investigation on thermal and electrical performance of a building integrated photovoltaic–thermal collector system. Energy and Buildings, 42, 76–82.CrossRef
82.
go back to reference Chiang, W. H., Wang, C. Y., & Huang, J. S. (2012). Evaluation of cooling ceiling and mechanical ventilation systems on thermal comfort using CFD study in an office for subtropical region. Building and Environment, 48, 113–127.CrossRef Chiang, W. H., Wang, C. Y., & Huang, J. S. (2012). Evaluation of cooling ceiling and mechanical ventilation systems on thermal comfort using CFD study in an office for subtropical region. Building and Environment, 48, 113–127.CrossRef
83.
go back to reference Radhi, H., Fikiry, F., & Sharples, S. (2013). Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landscape and Urban Planning, 113, 47–61.CrossRef Radhi, H., Fikiry, F., & Sharples, S. (2013). Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landscape and Urban Planning, 113, 47–61.CrossRef
84.
go back to reference Maragkogiannis, K., Kolokotsa, D., Maravelakis, E., & Konstantara, A. (2014). Combining terrestrial laser scanning and computational fluid dynamics for the study of the urban thermal environment. Sustainable Cities and Society, 13, 207–216.CrossRef Maragkogiannis, K., Kolokotsa, D., Maravelakis, E., & Konstantara, A. (2014). Combining terrestrial laser scanning and computational fluid dynamics for the study of the urban thermal environment. Sustainable Cities and Society, 13, 207–216.CrossRef
85.
go back to reference Radhi, H., Sharples, S., & Assem, E. (2015). Impact of urban heat islands on the thermal comfort and cooling energy demand of artificial islands—A case study of AMWAJ Islands in Bahrain. Sustainable Cities and Society, 19, 310–318.CrossRef Radhi, H., Sharples, S., & Assem, E. (2015). Impact of urban heat islands on the thermal comfort and cooling energy demand of artificial islands—A case study of AMWAJ Islands in Bahrain. Sustainable Cities and Society, 19, 310–318.CrossRef
86.
go back to reference Zhang, L., Zhang, L., Jin, M., & Liu, J. (2017). Numerical study of outdoor thermal environment in a university campus in summer. Procedia Engineering, 205, 4052–4059.CrossRef Zhang, L., Zhang, L., Jin, M., & Liu, J. (2017). Numerical study of outdoor thermal environment in a university campus in summer. Procedia Engineering, 205, 4052–4059.CrossRef
87.
go back to reference Radhi, H., Sharples, S., & Fikiry, F. (2013). Will multi-facade systems reduce cooling energy in fully glazed buildings? A scoping study of UAE buildings. Energy and Buildings, 56, 179–188.CrossRef Radhi, H., Sharples, S., & Fikiry, F. (2013). Will multi-facade systems reduce cooling energy in fully glazed buildings? A scoping study of UAE buildings. Energy and Buildings, 56, 179–188.CrossRef
88.
go back to reference Zhang, L., Jin, M., Liu, J., & Zhang, L. (2017). Simulated study on the potential of building energy saving using the green roof. Procedia Engineering, 205, 1469–1476.CrossRef Zhang, L., Jin, M., Liu, J., & Zhang, L. (2017). Simulated study on the potential of building energy saving using the green roof. Procedia Engineering, 205, 1469–1476.CrossRef
89.
go back to reference Hien, H. N., & Istiadji, A.D. (2003). Effects of external shading devices on daylighting and natural ventilation. In Proceedings of the 8th International IBPSA Conference, Eindhoven, The Netherlands (pp. 475–482). Hien, H. N., & Istiadji, A.D. (2003). Effects of external shading devices on daylighting and natural ventilation. In Proceedings of the 8th International IBPSA Conference, Eindhoven, The Netherlands (pp. 475–482).
90.
go back to reference Vaidya, A. M., Maheshwari, N. K., & Vijayan, P. K. (2010). Estimation of fuel and clad temperature of a research reactor during dry period of de-fueling operation. Nuclear Engineering and Design, 240, 842–849.CrossRef Vaidya, A. M., Maheshwari, N. K., & Vijayan, P. K. (2010). Estimation of fuel and clad temperature of a research reactor during dry period of de-fueling operation. Nuclear Engineering and Design, 240, 842–849.CrossRef
91.
go back to reference Kuriyama, S., Takeda, T., & Funatani, S. (2015). Study on heat transfer characteristics of the one side-heated vertical channel with inserted porous materials applied as a vessel cooling system. Nuclear Engineering and Technology, l47, 534–545. Kuriyama, S., Takeda, T., & Funatani, S. (2015). Study on heat transfer characteristics of the one side-heated vertical channel with inserted porous materials applied as a vessel cooling system. Nuclear Engineering and Technology, l47, 534–545.
92.
go back to reference Zamora, B., & Kaiser, A. S. (2012). Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities. Heat and Mass Transfer, 48, 35–53. Zamora, B., & Kaiser, A. S. (2012). Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities. Heat and Mass Transfer, 48, 35–53.
93.
go back to reference Zamora, B., & Kaiser, A. S. (2016). Radiative effects on turbulent buoyancy-driven airflow in open square cavities. International Journal of Thermal Sciences, 100, 267–283.CrossRef Zamora, B., & Kaiser, A. S. (2016). Radiative effects on turbulent buoyancy-driven airflow in open square cavities. International Journal of Thermal Sciences, 100, 267–283.CrossRef
94.
go back to reference Zamora, B., & Kaiser, A. S. (2017). Radiative and variable thermophysical properties effects on turbulent convective flows in cavities with thermal passive configuration. International Journal of Heat and Mass Transfer, 109, 981–996. Zamora, B., & Kaiser, A. S. (2017). Radiative and variable thermophysical properties effects on turbulent convective flows in cavities with thermal passive configuration. International Journal of Heat and Mass Transfer, 109, 981–996.
95.
go back to reference Zamora, B. (2018). Heating intensity and radiative effects on turbulent buoyancy-driven airflow in open square cavities with a heated immersed body. International Journal of Thermal Sciences, 126, 218–237.CrossRef Zamora, B. (2018). Heating intensity and radiative effects on turbulent buoyancy-driven airflow in open square cavities with a heated immersed body. International Journal of Thermal Sciences, 126, 218–237.CrossRef
96.
go back to reference Budiyanto, M. A., Shinoda, T., & Nasruddin, N. (2017). Study on the CFD simulation of refrigerated container. IOP Conference Series: Materials Science and Engineering, 257(1), 012042.CrossRef Budiyanto, M. A., Shinoda, T., & Nasruddin, N. (2017). Study on the CFD simulation of refrigerated container. IOP Conference Series: Materials Science and Engineering, 257(1), 012042.CrossRef
97.
go back to reference Baltas, N., & Malin, M. R. (1997). The sudden release of gas from undersea pipelines. CHAM 2938/3, CHAM, Wimbledon, London. Baltas, N., & Malin, M. R. (1997). The sudden release of gas from undersea pipelines. CHAM 2938/3, CHAM, Wimbledon, London.
98.
go back to reference Spalding, D. B. (1997). The virtual mass force in two-phase flow. CHAM Technical File Note: IPSA. Spalding, D. B. (1997). The virtual mass force in two-phase flow. CHAM Technical File Note: IPSA.
99.
go back to reference Malin, M. R., & Spalding, D. B. (1998). Extensions to the PHOENICS parabolic solver for under-expanded jets. CHAM C/4366/1 & C/4366/2, CHAM, London. Malin, M. R., & Spalding, D. B. (1998). Extensions to the PHOENICS parabolic solver for under-expanded jets. CHAM C/4366/1 & C/4366/2, CHAM, London.
100.
go back to reference Patankar, S. V., & Spalding, D. B. (1966). A calculation procedure for heat transfer by forced convection through two-dimensional uniform-property turbulent boundary layers on smooth impermeable walls. In Proceedings of the 3rd International Heat Transfer Conference, Chicago (Vol. 2, pp. 50–63). Patankar, S. V., & Spalding, D. B. (1966). A calculation procedure for heat transfer by forced convection through two-dimensional uniform-property turbulent boundary layers on smooth impermeable walls. In Proceedings of the 3rd International Heat Transfer Conference, Chicago (Vol. 2, pp. 50–63).
101.
go back to reference Patankar, S. V., & Spalding, D. B. (1967). A finite-difference procedure for solving the equations of the two-dimensional boundary layer. International Journal of Heat and Mass Transfer, 10, 1339. Patankar, S. V., & Spalding, D. B. (1967). A finite-difference procedure for solving the equations of the two-dimensional boundary layer. International Journal of Heat and Mass Transfer, 10, 1339.
102.
go back to reference Patankar, S. V., & Spalding, D. B. (1970). Heat and mass transfer in boundary layers (2nd ed.). London: Intertext Books. Patankar, S. V., & Spalding, D. B. (1970). Heat and mass transfer in boundary layers (2nd ed.). London: Intertext Books.
103.
go back to reference Spalding, D. B. (1977). GENMIX: A general computer program for two-dimensional parabolic phenomena (1st ed.). Oxford: Pergamon Press. Spalding, D. B. (1977). GENMIX: A general computer program for two-dimensional parabolic phenomena (1st ed.). Oxford: Pergamon Press.
104.
go back to reference Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 787. Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 787.
105.
go back to reference Spalding, D. B., & Tatchell, D. G. (1973). A prediction procedure for flow, combustion and heat transfer close to the base of a rocket. HTS/73/42, Imperial College, London, UK. Spalding, D. B., & Tatchell, D. G. (1973). A prediction procedure for flow, combustion and heat transfer close to the base of a rocket. HTS/73/42, Imperial College, London, UK.
106.
go back to reference Issa, R. I., Spalding, D. B., & Tatchell, D. G. (1974). Guide to the computer program REP3. CHAM Report 631/2, CHAM, London, UK. Issa, R. I., Spalding, D. B., & Tatchell, D. G. (1974). Guide to the computer program REP3. CHAM Report 631/2, CHAM, London, UK.
107.
go back to reference Elgobashi, S., & Spalding, D. B. (1977). Equilibrium chemical reaction of supersonic hydrogen-air jets (The ALMA computer program). NASA CR-2725. Elgobashi, S., & Spalding, D. B. (1977). Equilibrium chemical reaction of supersonic hydrogen-air jets (The ALMA computer program). NASA CR-2725.
108.
go back to reference Markatos, N. C., Spalding, D. B., & Tatchell, D. G. (1977). Combustion of hydrogen injected into a supersonic air stream. NASA-CR 2802. Markatos, N. C., Spalding, D. B., & Tatchell, D. G. (1977). Combustion of hydrogen injected into a supersonic air stream. NASA-CR 2802.
109.
go back to reference Spalding, D. B. (1977). The PAM2 code: An introduction. CHAM/TR/40, CHAM, Wimbledon, London, UK. Spalding, D. B. (1977). The PAM2 code: An introduction. CHAM/TR/40, CHAM, Wimbledon, London, UK.
110.
go back to reference Jennions, I. K., Ma, A. S. C., & Spalding, D. B. (1977). A prediction procedure for 2-dimensional steady, supersonic flows (The GENMIX-H computer program). HTS/77/24, Imperial College, London. Jennions, I. K., Ma, A. S. C., & Spalding, D. B. (1977). A prediction procedure for 2-dimensional steady, supersonic flows (The GENMIX-H computer program). HTS/77/24, Imperial College, London.
111.
go back to reference Drummond, J. P. (2014). Methods for prediction of high-speed reacting flows in aerospace propulsion. AIAA Journal, 52(3), 465–485.MathSciNetCrossRef Drummond, J. P. (2014). Methods for prediction of high-speed reacting flows in aerospace propulsion. AIAA Journal, 52(3), 465–485.MathSciNetCrossRef
112.
go back to reference Cousins, J. M. (1981). Calculation of conditions in an axisymmetric rocket exhaust plume: The REP3 computer program. PERME Technical Report No.218, Westcott, UK. Cousins, J. M. (1981). Calculation of conditions in an axisymmetric rocket exhaust plume: The REP3 computer program. PERME Technical Report No.218, Westcott, UK.
113.
go back to reference Pratap, V. S., & Spalding, D. B. (1975). Numerical computations of flow in curved ducts. Aeronautical Quarterly, 26, 219–228. Pratap, V. S., & Spalding, D. B. (1975). Numerical computations of flow in curved ducts. Aeronautical Quarterly, 26, 219–228.
114.
go back to reference Singhal, A. K., & Spalding, D. B. (1978). A 2d partially-parabolic procedure for turbomachinery cascades. ARC R & M No. 3807, London, UK. Singhal, A. K., & Spalding, D. B. (1978). A 2d partially-parabolic procedure for turbomachinery cascades. ARC R & M No. 3807, London, UK.
115.
go back to reference Jennions, I. K. (1980). The impingement of axisymmetric supersonic jets on cones. Ph.D. thesis, Imperial College, University of London, UK. Jennions, I. K. (1980). The impingement of axisymmetric supersonic jets on cones. Ph.D. thesis, Imperial College, University of London, UK.
116.
go back to reference Spalding, D. B. (1978). Computer codes for rocket-plume analysis. CHAM TR/38, CHAM, Wimbledon, London. Spalding, D. B. (1978). Computer codes for rocket-plume analysis. CHAM TR/38, CHAM, Wimbledon, London.
117.
go back to reference Spalding, D. B., & Tatchell, D. G. (1973). The rocket base-flow computer program—BAFL, CHAM/640/1. CHAM, Wimbledon, London. Spalding, D. B., & Tatchell, D. G. (1973). The rocket base-flow computer program—BAFL, CHAM/640/1. CHAM, Wimbledon, London.
118.
go back to reference Jensen, D. E., Spalding, D. B., Tatchell, D. G., & Wilson, A. S. (1979). Computations of structures of flames with recirculating flow and radial pressure gradients. 34, 309–26. Jensen, D. E., Spalding, D. B., Tatchell, D. G., & Wilson, A. S. (1979). Computations of structures of flames with recirculating flow and radial pressure gradients. 34, 309–26.
119.
go back to reference Markatos, N. C., Spalding, D. B., Tatchell, D. G., & Mace, A. C. H. (1982). Flow and combustion in the base-wall region of rocket exhaust plumes. Combustion Science and Technology, 28, 15–29.CrossRef Markatos, N. C., Spalding, D. B., Tatchell, D. G., & Mace, A. C. H. (1982). Flow and combustion in the base-wall region of rocket exhaust plumes. Combustion Science and Technology, 28, 15–29.CrossRef
120.
go back to reference Markatos, N. C., Mace, A. C. H., & Tatchell, D. G. (1982). Analysis of combustion in recirculating flow for rocket exhausts in supersonic streams. Journal of Spacecraft and Rockets, 19(6), 557–563.CrossRef Markatos, N. C., Mace, A. C. H., & Tatchell, D. G. (1982). Analysis of combustion in recirculating flow for rocket exhausts in supersonic streams. Journal of Spacecraft and Rockets, 19(6), 557–563.CrossRef
121.
go back to reference Spalding, D. B. (1980). Lecture 25, Improved procedures for hydrodynamic problems. In Mathematical modelling of fluid-mechanics, heat-transfer and chemical-reaction processes: A lecture course. HTS/80/1, Imperial College, University of London. Spalding, D. B. (1980). Lecture 25, Improved procedures for hydrodynamic problems. In Mathematical modelling of fluid-mechanics, heat-transfer and chemical-reaction processes: A lecture course. HTS/80/1, Imperial College, University of London.
122.
go back to reference Spalding, D. B. (1982). Lecture 2, 4.2 SIMPLEST. In Four lectures on the PHOENICS computer code. CFD/82/5, Imperial College, University of London. Spalding, D. B. (1982). Lecture 2, 4.2 SIMPLEST. In Four lectures on the PHOENICS computer code. CFD/82/5, Imperial College, University of London.
123.
go back to reference Palacio, A., Malin, M. R., Proumen, N., & Sanchez, L. (1990). Numerical computations of steady transonic and supersonic flow fields. International Journal of Heat and Mass Transfer, 33(6), 1193–1204.CrossRef Palacio, A., Malin, M. R., Proumen, N., & Sanchez, L. (1990). Numerical computations of steady transonic and supersonic flow fields. International Journal of Heat and Mass Transfer, 33(6), 1193–1204.CrossRef
124.
go back to reference Malin, M. R., & Sanchez, L. (1988). One-dimensional steady transonic shocked flow in a nozzle. PHOENICS Journal, 1(2), 214–246 (CHAM, Wimbledon, London, UK). Malin, M. R., & Sanchez, L. (1988). One-dimensional steady transonic shocked flow in a nozzle. PHOENICS Journal, 1(2), 214–246 (CHAM, Wimbledon, London, UK).
125.
go back to reference Smith, A. G., & Taylor, K. (2000). Modelling of two-phase rocket exhaust plumes and other plume prediction development. PHOENICS Journal, 13(1) (CHAM, Wimbledon, London). Smith, A. G., & Taylor, K. (2000). Modelling of two-phase rocket exhaust plumes and other plume prediction development. PHOENICS Journal, 13(1) (CHAM, Wimbledon, London).
127.
go back to reference Spalding, D. B. (1992). The expert-system CFD code; problems and partial solutions. In Conference Proceedings. Basel World User Days CFD 1992, May 24–28. Spalding, D. B. (1992). The expert-system CFD code; problems and partial solutions. In Conference Proceedings. Basel World User Days CFD 1992, May 24–28.
128.
go back to reference Spalding, D. B. (2013). Chapter 1 trends, tricks, and try ons in CFD/CHT, Section 2.2.2 General remarks about linear-equation solvers. In E. M. Sparrow, Y. I. Cho, J. P. Abraham, & J. M. Gorman (Eds.), Advances in heat transfer (Vol. 45, pp. 1–78). Burlington: Academic Press. Spalding, D. B. (2013). Chapter 1 trends, tricks, and try ons in CFD/CHT, Section 2.2.2 General remarks about linear-equation solvers. In E. M. Sparrow, Y. I. Cho, J. P. Abraham, & J. M. Gorman (Eds.), Advances in heat transfer (Vol. 45, pp. 1–78). Burlington: Academic Press.
Metadata
Title
Brian Spalding: Some Contributions to Computational Fluid Dynamics During the Period 1993 to 2004
Author
Michael R. Malin
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2670-1_1

Premium Partners