Skip to main content
Top

11-11-2024

BRMPNet: bidirectional recurrent motion planning networks for generic robotic platforms in smart manufacturing

Authors: Bo-Han Feng, Bo-Yan Li, Xin-Ting Jiang, Qi Zhou, You-Yi Bi

Published in: Advances in Manufacturing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the era of Industry 4.0, robot motion planning faces unprecedented challenges in adapting those high-dimension dynamic working environments with rigorous real-time planning requirements. Traditional sampling-based planning algorithms can find solutions in high-dimensional spaces but often struggle with achieving the balance among computational efficiency, real-time adaptability, and solution optimality. To overcome these challenges and unlock the full potential of robotic automation in smart manufacturing, we propose bidirectional recurrent motion planning network (BRMPNet). As an imitation learning-based approach for robot motion planning, it leverages deep neural networks to learn the heuristics for approximate-optimal path planning. BRMPNet employs the refined PointNet++ network to incorporate raw point-cloud information from depth sensors and generates paths with a bidirectional strategy using long short-term memory (LSTM) network. It can also be integrated with traditional sampling-based planning algorithms, offering theoretical assurance of the probabilistic completeness for solutions. To validate the effectiveness of BRMPNet, we conduct a series of experiments, benchmarking its performance against the state-of-the-art motion planning algorithms. These experiments are specifically designed to simulate common operations encountered within generic robotic platforms in smart manufacturing such as mobile robots and multi-joint robotic arms. The results demonstrate BRMPNet’s superior performance on key metrics including solution quality and computational efficiency, suggesting the promising potential of learning-based planning in addressing complex motion planning challenges.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Strandhagen JW, Alfnes E, Strandhagen JO et al (2017) The fit of Industry 4.0 applications in manufacturing logistics: a multiple case study. Adv Manuf 5:344–358CrossRef Strandhagen JW, Alfnes E, Strandhagen JO et al (2017) The fit of Industry 4.0 applications in manufacturing logistics: a multiple case study. Adv Manuf 5:344–358CrossRef
2.
go back to reference Xie DJ, Zeng LD, Xu Z et al (2023) Base position planning of mobile manipulators for assembly tasks in construction environments. Adv Manuf 11:93–110CrossRef Xie DJ, Zeng LD, Xu Z et al (2023) Base position planning of mobile manipulators for assembly tasks in construction environments. Adv Manuf 11:93–110CrossRef
3.
go back to reference He B, Bai KJ (2021) Digital twin-based sustainable intelligent manufacturing: a review. Adv Manuf 9:1–21CrossRef He B, Bai KJ (2021) Digital twin-based sustainable intelligent manufacturing: a review. Adv Manuf 9:1–21CrossRef
4.
go back to reference Zhang Z, He R, Yang K (2022) A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm. Adv Manuf 10:114–130CrossRef Zhang Z, He R, Yang K (2022) A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm. Adv Manuf 10:114–130CrossRef
5.
go back to reference LaValle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Tech Rep 98:11 LaValle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Tech Rep 98:11
6.
go back to reference Kavraki LE, Svestka P, Latombe JC et al (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12:566–580CrossRef Kavraki LE, Svestka P, Latombe JC et al (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12:566–580CrossRef
7.
go back to reference Liao J, Huang F, Chen Z et al (2019) Optimization-based motion planning of mobile manipulator with high degree of kinematic redundancy. Int J Intell Robot Appl 3:115–130CrossRef Liao J, Huang F, Chen Z et al (2019) Optimization-based motion planning of mobile manipulator with high degree of kinematic redundancy. Int J Intell Robot Appl 3:115–130CrossRef
8.
go back to reference Ichter B, Pavone M (2019) Robot motion planning in learned latent spaces. IEEE Robot Autom Lett 4:2407–2414CrossRef Ichter B, Pavone M (2019) Robot motion planning in learned latent spaces. IEEE Robot Autom Lett 4:2407–2414CrossRef
9.
go back to reference Qureshi AH, Miao Y, Simeonov A et al (2021) Motion planning networks: bridging the gap between learning-based and classical motion planners. IEEE Trans Robot 37:48–66CrossRef Qureshi AH, Miao Y, Simeonov A et al (2021) Motion planning networks: bridging the gap between learning-based and classical motion planners. IEEE Trans Robot 37:48–66CrossRef
10.
go back to reference Kumar R, Mandalika A, Choudhury S et al (2019) LEGO: leveraging experience in roadmap generation for sampling-based planning. In: 2019 IEEE/RSJ International conference on intelligent robots and systems (IROS), Minneapolis, USA, pp 1488–1495 Kumar R, Mandalika A, Choudhury S et al (2019) LEGO: leveraging experience in roadmap generation for sampling-based planning. In: 2019 IEEE/RSJ International conference on intelligent robots and systems (IROS), Minneapolis, USA, pp 1488–1495
11.
go back to reference Wang J, Zhang T, Ma N et al (2021) A survey of learning-based robot motion planning. IET Cyber-Syst Robot 3:302–314CrossRef Wang J, Zhang T, Ma N et al (2021) A survey of learning-based robot motion planning. IET Cyber-Syst Robot 3:302–314CrossRef
12.
go back to reference Pfeiffer M, Schaeuble M, Nieto J et al (2017) From perception to decision: a data-driven approach to end-to-end motion planning for autonomous ground robots. In: 2017 IEEE International conference on robotics and automation (ICRA), Singapore, pp 1527–1533 Pfeiffer M, Schaeuble M, Nieto J et al (2017) From perception to decision: a data-driven approach to end-to-end motion planning for autonomous ground robots. In: 2017 IEEE International conference on robotics and automation (ICRA), Singapore, pp 1527–1533
13.
go back to reference Hamandi M, D’Arcy M, Fazli P (2019) DeepMoTIon: learning to navigate like humans. In 2019 IEEE international conference on robot and human interactive communication (RO-MAN), New Delhi, India, pp 1–7 Hamandi M, D’Arcy M, Fazli P (2019) DeepMoTIon: learning to navigate like humans. In 2019 IEEE international conference on robot and human interactive communication (RO-MAN), New Delhi, India, pp 1–7
14.
go back to reference Bency MJ, Qureshi AH, Yip MC (2019) Neural path planning: fixed time, near-optimal path generation via oracle imitation. In: 2019 IEEE/RSJ International conference on intelligent robots and systems (IROS), Macau, China, pp 3965–3972 Bency MJ, Qureshi AH, Yip MC (2019) Neural path planning: fixed time, near-optimal path generation via oracle imitation. In: 2019 IEEE/RSJ International conference on intelligent robots and systems (IROS), Macau, China, pp 3965–3972
15.
go back to reference Fishman A, Murali A, Eppner C et al (2022) Motion policy networks. In: Proceedings of the 6th conference on robot learning (CoRL), Auckland, New Zealand, pp 967–977 Fishman A, Murali A, Eppner C et al (2022) Motion policy networks. In: Proceedings of the 6th conference on robot learning (CoRL), Auckland, New Zealand, pp 967–977
16.
go back to reference Kurutach T, Tamar A, Yang G et al (2018) Learning plannable representations with causal InfoGAN. In: Proceedings of the 32nd international conference on neural information processing systems, Red Hook, USA, pp 8747–8758 Kurutach T, Tamar A, Yang G et al (2018) Learning plannable representations with causal InfoGAN. In: Proceedings of the 32nd international conference on neural information processing systems, Red Hook, USA, pp 8747–8758
17.
go back to reference Huh J, Isler V, Lee DD (2021) Cost-to-go function generating networks for high dimensional motion planning. In: 2021 IEEE international conference on robotics and automation (ICRA), Barcelona, Spain, pp 8480–8486 Huh J, Isler V, Lee DD (2021) Cost-to-go function generating networks for high dimensional motion planning. In: 2021 IEEE international conference on robotics and automation (ICRA), Barcelona, Spain, pp 8480–8486
18.
go back to reference Oh J, Singh S, Lee H (2017) Value prediction network. In: Proceedings of the 31st conference on neural information processing systems (NIPS), Long Beach, USA, pp 6118–6128 Oh J, Singh S, Lee H (2017) Value prediction network. In: Proceedings of the 31st conference on neural information processing systems (NIPS), Long Beach, USA, pp 6118–6128
19.
go back to reference Al-Hilo A, Samir M, Assi C et al (2021) UAV-assisted content delivery in intelligent transportation systems-joint trajectory planning and cache management. IEEE Trans Intell Transp Syst 22:5155–5167CrossRef Al-Hilo A, Samir M, Assi C et al (2021) UAV-assisted content delivery in intelligent transportation systems-joint trajectory planning and cache management. IEEE Trans Intell Transp Syst 22:5155–5167CrossRef
20.
go back to reference Strudel R, Pinel RG, Carpentier J et al (2021) Learning obstacle representations for neural motion planning. In: Proceedings of the 2020 conference on robot learning (CoRL), pp 355–364 Strudel R, Pinel RG, Carpentier J et al (2021) Learning obstacle representations for neural motion planning. In: Proceedings of the 2020 conference on robot learning (CoRL), pp 355–364
21.
go back to reference Khan A, Ribeiro A, Kumar V et al (2020) Graph neural networks for motion planning. arXiv 2006.06248 Khan A, Ribeiro A, Kumar V et al (2020) Graph neural networks for motion planning. arXiv 2006.06248
22.
go back to reference Wang J, Chi W, Li C et al (2020) Neural RRT*: learning-based optimal path planning. IEEE Trans Autom Sci Eng 17:1748–1758CrossRef Wang J, Chi W, Li C et al (2020) Neural RRT*: learning-based optimal path planning. IEEE Trans Autom Sci Eng 17:1748–1758CrossRef
23.
go back to reference Ying KC, Pourhejazy P, Cheng CY et al (2021) Deep learning-based optimization for motion planning of dual-arm assembly robots. Comput Ind Eng 160:107603CrossRef Ying KC, Pourhejazy P, Cheng CY et al (2021) Deep learning-based optimization for motion planning of dual-arm assembly robots. Comput Ind Eng 160:107603CrossRef
24.
go back to reference Qureshi AH, Yip MC (2018) Deeply informed neural sampling for robot motion planning. In: 2018 IEEE/RSJ International conference on intelligent robots and systems (IROS), Madrid, Spain, pp 6582–6588 Qureshi AH, Yip MC (2018) Deeply informed neural sampling for robot motion planning. In: 2018 IEEE/RSJ International conference on intelligent robots and systems (IROS), Madrid, Spain, pp 6582–6588
25.
go back to reference Elhafsi A, Ivanovic B, Janson L et al (2020) Map-predictive motion planning in unknown environments. In 2020 IEEE international conference on robotics and automation (ICRA), Paris, France, pp 8552–8558CrossRef Elhafsi A, Ivanovic B, Janson L et al (2020) Map-predictive motion planning in unknown environments. In 2020 IEEE international conference on robotics and automation (ICRA), Paris, France, pp 8552–8558CrossRef
26.
go back to reference Kim S, An B (2020) Learning heuristic a: efficient graph search using neural network. In 2020 IEEE international conference on robotics and automation (ICRA), Paris, France, pp 9542–9547CrossRef Kim S, An B (2020) Learning heuristic a: efficient graph search using neural network. In 2020 IEEE international conference on robotics and automation (ICRA), Paris, France, pp 9542–9547CrossRef
27.
go back to reference Guzzi J, Chavez-Garcia RO, Nava M et al (2020) Path planning with local motion estimations. IEEE Robot Autom Lett 5:2586–2593CrossRef Guzzi J, Chavez-Garcia RO, Nava M et al (2020) Path planning with local motion estimations. IEEE Robot Autom Lett 5:2586–2593CrossRef
28.
go back to reference Chase KJ, Ichter B, Bandari M et al (2020) Neural collision clearance estimator for batched motion planning. In: 2020 International workshop on the algorithmic foundations of robotics (WAFR), Oulu, Finland, pp 73–89 Chase KJ, Ichter B, Bandari M et al (2020) Neural collision clearance estimator for batched motion planning. In: 2020 International workshop on the algorithmic foundations of robotics (WAFR), Oulu, Finland, pp 73–89
29.
go back to reference Zhang C, Huh J, Lee DD (2018) Learning implicit sampling distributions for motion planning. In: 2018 IEEE/RSJ International conference on intelligent robots and systems (IROS), Madrid, Spain, pp 3654–3661 Zhang C, Huh J, Lee DD (2018) Learning implicit sampling distributions for motion planning. In: 2018 IEEE/RSJ International conference on intelligent robots and systems (IROS), Madrid, Spain, pp 3654–3661
30.
go back to reference Tran T, Denny J, Ekenna C (2020) Predicting sample collision with neural networks. arXiv 2006.16868 Tran T, Denny J, Ekenna C (2020) Predicting sample collision with neural networks. arXiv 2006.16868
31.
go back to reference Yu C, Gao S (2021) Reducing collision checking for sampling-based motion planning using graph neural networks. Adv Neural Inf Process Syst 34:4274–4289 Yu C, Gao S (2021) Reducing collision checking for sampling-based motion planning using graph neural networks. Adv Neural Inf Process Syst 34:4274–4289
32.
go back to reference Qi CR, Yi L, Su H et al (2017) PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st international conference on neural information processing systems (NIPS), Red Hook, USA, pp 5105–5114 Qi CR, Yi L, Su H et al (2017) PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st international conference on neural information processing systems (NIPS), Red Hook, USA, pp 5105–5114
33.
go back to reference Zhou Y, Tuzel O (2017) VoxelNet: end-to-end learning for point cloud based 3d object detection. In: 2018 IEEE/CVF Conference on computer vision and pattern recognition (CVPR), Salt Lake City, UT, USA, pp 4490–4499 Zhou Y, Tuzel O (2017) VoxelNet: end-to-end learning for point cloud based 3d object detection. In: 2018 IEEE/CVF Conference on computer vision and pattern recognition (CVPR), Salt Lake City, UT, USA, pp 4490–4499
34.
go back to reference Charles RQ, Su H, Kaichun M et al (2017) PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR), Honolulu, HI, USA, pp 77–85 Charles RQ, Su H, Kaichun M et al (2017) PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR), Honolulu, HI, USA, pp 77–85
35.
go back to reference Kuffner JJ, LaValle SM (2000) RRT-connect: an efficient approach to single-query path planning. In: Proceedings of 2000 IEEE international conference on robotics and automation (ICRA), San Francisco, USA, pp 995–1001 Kuffner JJ, LaValle SM (2000) RRT-connect: an efficient approach to single-query path planning. In: Proceedings of 2000 IEEE international conference on robotics and automation (ICRA), San Francisco, USA, pp 995–1001
36.
go back to reference Gammell JD, Barfoot TD, Srinivasa SS (2020) Batch informed trees (BIT*): informed asymptotically optimal anytime search. Int J Rob Res 39:543–567CrossRef Gammell JD, Barfoot TD, Srinivasa SS (2020) Batch informed trees (BIT*): informed asymptotically optimal anytime search. Int J Rob Res 39:543–567CrossRef
37.
go back to reference Sucan IA, Moll M, Kavraki LE (2012) The open motion planning library. IEEE Robot Autom Mag 19:72–82CrossRef Sucan IA, Moll M, Kavraki LE (2012) The open motion planning library. IEEE Robot Autom Mag 19:72–82CrossRef
Metadata
Title
BRMPNet: bidirectional recurrent motion planning networks for generic robotic platforms in smart manufacturing
Authors
Bo-Han Feng
Bo-Yan Li
Xin-Ting Jiang
Qi Zhou
You-Yi Bi
Publication date
11-11-2024
Publisher
Shanghai University
Published in
Advances in Manufacturing
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-024-00529-6

Premium Partners