Skip to main content
Top

2013 | OriginalPaper | Chapter

5. Brownian Models of Chemical Reactions in Microdomains

Author : Zeev Schuss

Published in: Brownian Dynamics at Boundaries and Interfaces

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biological microstructures such as synapses, dendritic spines, subcellular domains, sensor cells, and many other structures are regulated by chemical reactions that involve only a small number of molecules, that is, between a few and up to thousands of molecules. Traditional chemical kinetics theory may provide an inadequate description of chemical reactions in such microdomains. Models with a small number of diffusers can be used to describe noise due to gating of ionic channels by random binding and unbinding of ligands in biological sensor cells, such as olfactory cilia, photoreceptors, and hair cells in the cochlea. A chemical reaction that involves only 10–100 proteins can cause a qualitative transition in the physiological behavior of a given part of a cell. Large fluctuations should be expected in a reaction if so few molecules are involved, both in transient and persistent binding and unbinding reactions. In the latter case, large fluctuations in the number of bound molecules can force the physiological state to change all the time, unless there is a specific mechanism that prevents the switch and stabilizes the physiological state. Therefore, a theory of chemical kinetics of such reactions is needed to predict the threshold at which switches occur and to explain how the physiological function is regulated in molecular terms at a subcellular level.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Berne, B.J. and R. Pecora (1976), Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics. Wiley-Interscience NY. Berne, B.J. and R. Pecora (1976), Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics. Wiley-Interscience NY.
go back to reference Blomberg, F., R.S. Cohen, and P. Siekevitz (1977), “The structure of postsynaptic densities isolated from dog cerebral cortex, II. Characterization and arrangement of some of the major protein within the structure,” J. Cell Biol., 74 (1), 204–225. Blomberg, F., R.S. Cohen, and P. Siekevitz (1977), “The structure of postsynaptic densities isolated from dog cerebral cortex, II. Characterization and arrangement of some of the major protein within the structure,” J. Cell Biol., 74 (1), 204–225.
go back to reference Bonhoeffer, T. and R. Yuste (2002), “Spine motility: phenomenology, mechanisms, and function,” Neuron, 35 (6), 1019–1027.CrossRef Bonhoeffer, T. and R. Yuste (2002), “Spine motility: phenomenology, mechanisms, and function,” Neuron, 35 (6), 1019–1027.CrossRef
go back to reference Chandrasekhar, S. (1943), “Stochastic Problems In Physics and Astronomy,” Rev. Mod. Phys., 15, 2–89.CrossRef Chandrasekhar, S. (1943), “Stochastic Problems In Physics and Astronomy,” Rev. Mod. Phys., 15, 2–89.CrossRef
go back to reference Crick, F. “Do dendritic spines twitch?” Trends Neurosci, 5, 44–46. Crick, F. “Do dendritic spines twitch?” Trends Neurosci, 5, 44–46.
go back to reference Dunaevsky, A., A. Tashiro, A. Majewska, C. Mason, R. Yuste (1999), “Developmental regulation of spine motility in the mammalian central nervous system,” PNAS, 96 (23), 13438–13443.CrossRef Dunaevsky, A., A. Tashiro, A. Majewska, C. Mason, R. Yuste (1999), “Developmental regulation of spine motility in the mammalian central nervous system,” PNAS, 96 (23), 13438–13443.CrossRef
go back to reference Fischer, M., S. Kaech, D. Knutti, A. Matus (1998, “Rapid actin-based plasticity in dendritic spines,” Neuron, 20 (5), 847–854). Fischer, M., S. Kaech, D. Knutti, A. Matus (1998, “Rapid actin-based plasticity in dendritic spines,” Neuron, 20 (5), 847–854).
go back to reference Fischer, M., S. Kaech, U. Wagner, H. Brinkhaus, A. Matus (2000), “Glutamate receptors regulate actin-based plasticity in dendritic spines,” Nat. Neurosci., 3 (9), 887–894.CrossRef Fischer, M., S. Kaech, U. Wagner, H. Brinkhaus, A. Matus (2000), “Glutamate receptors regulate actin-based plasticity in dendritic spines,” Nat. Neurosci., 3 (9), 887–894.CrossRef
go back to reference Hänggi, P., P. Talkner, and M. Borkovec (1990), “50 years after Kramers,” Rev. Mod. Phys., 62, 251–341.CrossRef Hänggi, P., P. Talkner, and M. Borkovec (1990), “50 years after Kramers,” Rev. Mod. Phys., 62, 251–341.CrossRef
go back to reference Haynes, L.W., A.R. Kay, K.W. Yau (1986), “Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane,” Nature, 321 (6065), 66–70.CrossRef Haynes, L.W., A.R. Kay, K.W. Yau (1986), “Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane,” Nature, 321 (6065), 66–70.CrossRef
go back to reference Holcman, D., Z. Schuss, and E. Korkotian (2004), “Calcium dynamics in dendritic spines and spine motility,” Biophys J., 87, 81–91.CrossRef Holcman, D., Z. Schuss, and E. Korkotian (2004), “Calcium dynamics in dendritic spines and spine motility,” Biophys J., 87, 81–91.CrossRef
go back to reference Kandel, E.R., J.H. Schwartz, T.M. Jessell (2000), Principles of Neural Science, McGraw-Hill, New York, 4th edition. Kandel, E.R., J.H. Schwartz, T.M. Jessell (2000), Principles of Neural Science, McGraw-Hill, New York, 4th edition.
go back to reference Koch, C. (1999), Biophysics of Computation, Oxford University Press, NY. Koch, C. (1999), Biophysics of Computation, Oxford University Press, NY.
go back to reference Koch, C. and A. Zador (1993), “The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization,” J. Neurosci., 13, 413–422. Koch, C. and A. Zador (1993), “The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization,” J. Neurosci., 13, 413–422.
go back to reference Koch, C. and I. Segev (editors) (2001), Methods in Neuronal Modeling (3rd printing), MIT Press, Cambridge, MA. Koch, C. and I. Segev (editors) (2001), Methods in Neuronal Modeling (3rd printing), MIT Press, Cambridge, MA.
go back to reference Korkotian, E. and M. Segal (2001), “Spike-associated fast contraction of dendritic spines in cultured hippocampal neurons,” Neuron, 30 (3), 751–758.CrossRef Korkotian, E. and M. Segal (2001), “Spike-associated fast contraction of dendritic spines in cultured hippocampal neurons,” Neuron, 30 (3), 751–758.CrossRef
go back to reference Landau, L.D. and E.M. Lifshitz (1975), Fluid Mechanics, Pergamon Press, Elmsford, NY. Landau, L.D. and E.M. Lifshitz (1975), Fluid Mechanics, Pergamon Press, Elmsford, NY.
go back to reference Lisman, J. (1994), “The CAM kinase II hypothesis for the storage of synaptic memory,” Trends Neurosci., 10, 406–412.CrossRef Lisman, J. (1994), “The CAM kinase II hypothesis for the storage of synaptic memory,” Trends Neurosci., 10, 406–412.CrossRef
go back to reference Lisman, J. (2003), “Long-term potentiation: outstanding questions and attempted synthesis,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 29 (358(1432)), 829–842. Lisman, J. (2003), “Long-term potentiation: outstanding questions and attempted synthesis,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 29 (358(1432)), 829–842.
go back to reference Majewska, A., A. Tashiro, and R. Yuste (2000a), “Regulation of spine calcium dynamics by rapid spine motility,” J. Neurosci., 20 (22), 8262–8268. Majewska, A., A. Tashiro, and R. Yuste (2000a), “Regulation of spine calcium dynamics by rapid spine motility,” J. Neurosci., 20 (22), 8262–8268.
go back to reference Majewska, A., E. Brown, J. Ross, R. Yuste (2000b), “Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization,” J. Neurosci., 20 (5), 1722–1734. Majewska, A., E. Brown, J. Ross, R. Yuste (2000b), “Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization,” J. Neurosci., 20 (5), 1722–1734.
go back to reference Malenka, R.C., J.A. Kauer, D.J. Perkel, and R.A. Nicoll (1989), “The impact of postsynaptic calcium on synaptic transmission—its role in long-term potentiation,” Trends Neurosci., 12 (11), 444–450.CrossRef Malenka, R.C., J.A. Kauer, D.J. Perkel, and R.A. Nicoll (1989), “The impact of postsynaptic calcium on synaptic transmission—its role in long-term potentiation,” Trends Neurosci., 12 (11), 444–450.CrossRef
go back to reference Matkowsky, B.J. and Z. Schuss (1977), “The exit problem for randomly perturbed dynamical systems,” SIAM J. Appl. Math., 33, 365–382.MathSciNetMATHCrossRef Matkowsky, B.J. and Z. Schuss (1977), “The exit problem for randomly perturbed dynamical systems,” SIAM J. Appl. Math., 33, 365–382.MathSciNetMATHCrossRef
go back to reference Morales, M., E. Fifkova (1989), “Distribution of MAP2 in dendritic spines and its colocalization with actin. An immunogold electron-microscope study,” Cell Tissue Res., 256 (3), 447–456. Morales, M., E. Fifkova (1989), “Distribution of MAP2 in dendritic spines and its colocalization with actin. An immunogold electron-microscope study,” Cell Tissue Res., 256 (3), 447–456.
go back to reference Nadler, B., T. Naeh, and Z. Schuss (2002), “The stationary arrival process of diffusing particles from a continuum to an absorbing boundary is Poissonian,” SIAM J. Appl. Math., 62 (2), 433–447.MathSciNetCrossRef Nadler, B., T. Naeh, and Z. Schuss (2002), “The stationary arrival process of diffusing particles from a continuum to an absorbing boundary is Poissonian,” SIAM J. Appl. Math., 62 (2), 433–447.MathSciNetCrossRef
go back to reference Nimchinsky, E.A., B.L. Sabatini, K. Svoboda (2002), “Structure and function of dendritic spines,” Annu. Rev. Physiol., 64, 313–335.CrossRef Nimchinsky, E.A., B.L. Sabatini, K. Svoboda (2002), “Structure and function of dendritic spines,” Annu. Rev. Physiol., 64, 313–335.CrossRef
go back to reference Picones, A. and J.I. Korenbrot (1994), “Analysis of fluctuations in the CGMP-dependent currents of cone photoreceptor outer segments,” Biophys. J. 66, (2, Part 1), 360–365. Picones, A. and J.I. Korenbrot (1994), “Analysis of fluctuations in the CGMP-dependent currents of cone photoreceptor outer segments,” Biophys. J. 66, (2, Part 1), 360–365.
go back to reference Ramón y Cajal, S. (1909), “Les nouvelles idées sur la structure du système nerveux chez l’homme et chez les vertébrés,” Transl. L. Azouly, Malaine, Paris, France. “New ideas on the structure of the nervous system of man and vertebrates,” Transl. N. & N.L. Swanson, MIT Press, Cambridge, MA 1991. Ramón y Cajal, S. (1909), “Les nouvelles idées sur la structure du système nerveux chez l’homme et chez les vertébrés,” Transl. L. Azouly, Malaine, Paris, France. “New ideas on the structure of the nervous system of man and vertebrates,” Transl. N. & N.L. Swanson, MIT Press, Cambridge, MA 1991.
go back to reference Rieke, F. and D.A. Baylor (1996), “Molecular origin of continuous dark noise in rod photoreceptors,” Biophys J, 71, 2553–2572.CrossRef Rieke, F. and D.A. Baylor (1996), “Molecular origin of continuous dark noise in rod photoreceptors,” Biophys J, 71, 2553–2572.CrossRef
go back to reference Sabatini, B.L., M. Maravall, and K. Svoboda (2001), “Ca2 +  signalling in dendritic spines,” Curr. Opin. Neurobiol., 11 (3), 349–356.CrossRef Sabatini, B.L., M. Maravall, and K. Svoboda (2001), “Ca2 +  signalling in dendritic spines,” Curr. Opin. Neurobiol., 11 (3), 349–356.CrossRef
go back to reference Schuss, Z. (2010b), Theory and Applications of Stochastic Processes, and Analytical Approach, Springer series on Applied Mathematical Sciences 170, NY. Schuss, Z. (2010b), Theory and Applications of Stochastic Processes, and Analytical Approach, Springer series on Applied Mathematical Sciences 170, NY.
go back to reference Segev, I. and W. Rall (1988), “Computational study of an excitable dendritic spine,” J. Neurophysiology, 60 (6), 499–523. Segev, I. and W. Rall (1988), “Computational study of an excitable dendritic spine,” J. Neurophysiology, 60 (6), 499–523.
go back to reference Shepherd, G.M. (1996), “The dendritic spine: a multi-functional integrative unit,” J. Neurophysiology, 75 (6), 2197–2210. Shepherd, G.M. (1996), “The dendritic spine: a multi-functional integrative unit,” J. Neurophysiology, 75 (6), 2197–2210.
go back to reference Volfovsky, N., H. Parnas, M. Segal, and E. Korkotian (1999), “Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments,” J. Neurophysiol., 82, 450–454. Volfovsky, N., H. Parnas, M. Segal, and E. Korkotian (1999), “Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments,” J. Neurophysiol., 82, 450–454.
go back to reference Yuste, R. and W. Denk (1995), “Dendritic spines as basic functional units of neuronal integration,” Nature, 375 (6533), 682–684.CrossRef Yuste, R. and W. Denk (1995), “Dendritic spines as basic functional units of neuronal integration,” Nature, 375 (6533), 682–684.CrossRef
go back to reference Zador, A., C. Koch, and T.H. Brown (1990), “Biophysical model of a Hebbian synapse,” PNAS, 87, 6718–6722.CrossRef Zador, A., C. Koch, and T.H. Brown (1990), “Biophysical model of a Hebbian synapse,” PNAS, 87, 6718–6722.CrossRef
go back to reference Zucker, R.S. and W.G. Regehr (2002), “Short-term synaptic plasticity,” Ann. Rev. Physiol., 64, 355–405.CrossRef Zucker, R.S. and W.G. Regehr (2002), “Short-term synaptic plasticity,” Ann. Rev. Physiol., 64, 355–405.CrossRef
Metadata
Title
Brownian Models of Chemical Reactions in Microdomains
Author
Zeev Schuss
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-7687-0_5