Skip to main content
Top
Published in: Journal of Computational Electronics 1/2021

19-09-2020

BSIM3 model parameter extraction and performance analysis of a strained p-MOSFET for digital applications

Authors: Soheil Ranjbar Maleki, Majid Shalchian, Mohammad Mahdi Khatami

Published in: Journal of Computational Electronics | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Strain is one of the conventional methods used to enhance the mobility of carriers in metal–oxide–semiconductor field-effect transistors (MOSFETs). The strain is generated due to the lattice mismatch between the thin Si layer and underlying SiGe layers and reduces the effective mass of holes and inter-subband scattering. A compact model for such devices is essential to promote the design of very large-scale integration (VLSI) circuits using strained p-MOSFETs. In this paper, for the first time we propose to use the BSIM3 model for biaxially strained p-MOSFETs, using a proper parameter extraction method. The extracted model parameters are validated by comparing the results with technology computer-aided design (TCAD) simulations and a simple analytical model. The average error in the direct-current (DC) and alternating-current (AC) characteristics of the model is estimated to be below 1.5%. Finally, the extracted model is used to analyze the performance of several digital gates, including inverter, NAND, NOR, and static random-access memory (SRAM) cells, based on the strained p-MOSFET as a key circuit component. The simulation results show significant performance improvements of the gates in terms of the area, propagation delay, dynamic power consumption, static noise margin, and functional symmetry. By using strained p-MOSFETs in the SRAM cell, the active area of transistors can be reduced by up to 28.8% while at the same the time static power consumption is reduced by 4.8%, the static noise margin is increased by 10.5%, and the write access time is reduced by about 15.6%. These results not only suggest that the strained Si p-MOSFET can improve the performance of VLSI circuits but also confirm that the BSIM3 model with an appropriate parameter extraction method can be used for the design of digital circuits using strained p-MOSFETs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices, 2nd edn, pp. 79–82. Cambridge University Press, Cambridge (2013) Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices, 2nd edn, pp. 79–82. Cambridge University Press, Cambridge (2013)
2.
go back to reference Oberhuber, R., Zandler, G., Vogl, P.: Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFETs. Phys. Rev. Lett. B 58(15), 9941–9948 (1998)CrossRef Oberhuber, R., Zandler, G., Vogl, P.: Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFETs. Phys. Rev. Lett. B 58(15), 9941–9948 (1998)CrossRef
3.
go back to reference Rim, K., Hoyt, J.L., Gibbons, J.F.: Fabrication and analysis of deep submicron strained-Si n-MOSFETs. IEEE Trans. Electron Devices 47, 1406–1415 (2000)CrossRef Rim, K., Hoyt, J.L., Gibbons, J.F.: Fabrication and analysis of deep submicron strained-Si n-MOSFETs. IEEE Trans. Electron Devices 47, 1406–1415 (2000)CrossRef
4.
go back to reference Driussi, F., Esseni, D., Selmi, L., Hellstrom, P.E.: On the electron mobility enhancement in biaxially strained Si MOSFETs. Solid-State Electron. 52, 498–505 (2008)CrossRef Driussi, F., Esseni, D., Selmi, L., Hellstrom, P.E.: On the electron mobility enhancement in biaxially strained Si MOSFETs. Solid-State Electron. 52, 498–505 (2008)CrossRef
5.
go back to reference Mizuno, T., Sugiyama, N., Tezuka, T., Moriyama, Y., Nakaharai, S., Takagi, S.: (110)-surface strained-SOI CMOS devices. IEEE Trans. Electron Devices 52(3), 367–374 (2005)CrossRef Mizuno, T., Sugiyama, N., Tezuka, T., Moriyama, Y., Nakaharai, S., Takagi, S.: (110)-surface strained-SOI CMOS devices. IEEE Trans. Electron Devices 52(3), 367–374 (2005)CrossRef
6.
go back to reference Euaruksakul, C., Li, Z.W., Zheng, F., Himpsel, F.J., Ritz, C.S., Tanto, B., Savage, D.E., Liu, X.S., Lagally, M.G.: Influence of strain on the conduction band structure of strained silicon nanomembranes. Phys. Rev. Lett. 101, 147403 (2008)CrossRef Euaruksakul, C., Li, Z.W., Zheng, F., Himpsel, F.J., Ritz, C.S., Tanto, B., Savage, D.E., Liu, X.S., Lagally, M.G.: Influence of strain on the conduction band structure of strained silicon nanomembranes. Phys. Rev. Lett. 101, 147403 (2008)CrossRef
7.
go back to reference Kuhn, K.J.: Considerations for Ultimate CMOS Scaling. IEEE Trans. Electron Devices 59(7), 1813–1828 (2012)CrossRef Kuhn, K.J.: Considerations for Ultimate CMOS Scaling. IEEE Trans. Electron Devices 59(7), 1813–1828 (2012)CrossRef
8.
go back to reference Namiuchi, D., Onogawa, A., Fujisawa, T., Sano, Y., Izumi, D., Yamanaka, J., Hara, K.O., Sawano, K., Nakagawa, K., Arimoto, K.: Hole mobility in strained Si/relaxed SiGe/Si(110) hetero structures studied by gated Hall measurements. Mater. Sci. Semicond. Process. 113, 105052 (2020)CrossRef Namiuchi, D., Onogawa, A., Fujisawa, T., Sano, Y., Izumi, D., Yamanaka, J., Hara, K.O., Sawano, K., Nakagawa, K., Arimoto, K.: Hole mobility in strained Si/relaxed SiGe/Si(110) hetero structures studied by gated Hall measurements. Mater. Sci. Semicond. Process. 113, 105052 (2020)CrossRef
9.
go back to reference Hashemi, P., Ando, T., Cartier, E.A., Lee, K-L., Bruley, J., Lee, C-H. and Narayanan, V.: High performance and reliable strained SiGe PMOS FinFETs enabled by advanced gate stack engineering. In: IEEE International Electron Devices Meeting (IEDM), pp. 37.3.1–37.3.4 (2017) Hashemi, P., Ando, T., Cartier, E.A., Lee, K-L., Bruley, J., Lee, C-H. and Narayanan, V.: High performance and reliable strained SiGe PMOS FinFETs enabled by advanced gate stack engineering. In: IEEE International Electron Devices Meeting (IEDM), pp. 37.3.1–37.3.4 (2017)
10.
go back to reference Lee, C.H., Mochizuki, S., Southwick, R.G., Li, J., Miao, X., Bao, R., Ando, T., Galatage, R., Siddiqui, S., Labelle, C. and Knorr, A., Stathis, J.H., Guo, D., Narayanan, V., Haran, B., Jagannathan, H.: A comparative study of strain and Ge content in Si\(_{1-\text{x}}\)Ge\(_{\text{ x }}\) channel using planar FETs, FinFETs, and strained relaxed buffer layer FinFETs. In: IEEE International Electron Devices Meeting (IEDM), pp. 37.2.1–37.2.4 (2017) Lee, C.H., Mochizuki, S., Southwick, R.G., Li, J., Miao, X., Bao, R., Ando, T., Galatage, R., Siddiqui, S., Labelle, C. and Knorr, A., Stathis, J.H., Guo, D., Narayanan, V., Haran, B., Jagannathan, H.: A comparative study of strain and Ge content in Si\(_{1-\text{x}}\)Ge\(_{\text{ x }}\) channel using planar FETs, FinFETs, and strained relaxed buffer layer FinFETs. In: IEEE International Electron Devices Meeting (IEDM), pp. 37.2.1–37.2.4 (2017)
11.
go back to reference Yu, W., Zhang, B., Zhao, Q.T., Hartmann, J.-M., Buca, D., Nichau, A., Lupták, R., Lopes, J.M., Lenk, S., Luysberg, M., Bourdelle, K.K., Wang, X., Mantl, S.: High mobility compressive strained \(\text{ Si}_{0.5}\text{ Ge}_{0.5}\) quantum well p-MOSFETs with higher-k/metal-gate. Solid-State Electron. 62(1), 185–188 (2011)CrossRef Yu, W., Zhang, B., Zhao, Q.T., Hartmann, J.-M., Buca, D., Nichau, A., Lupták, R., Lopes, J.M., Lenk, S., Luysberg, M., Bourdelle, K.K., Wang, X., Mantl, S.: High mobility compressive strained \(\text{ Si}_{0.5}\text{ Ge}_{0.5}\) quantum well p-MOSFETs with higher-k/metal-gate. Solid-State Electron. 62(1), 185–188 (2011)CrossRef
12.
go back to reference Hashemi, Pouya, Ando, Takashi: SiGe Devices. In: Woodhead Publishing Series in Electronic and Optical Materials, High Mobility Materials for CMOS Applications, pp. 205–229. Woodhead Publishing (2018) Hashemi, Pouya, Ando, Takashi: SiGe Devices. In: Woodhead Publishing Series in Electronic and Optical Materials, High Mobility Materials for CMOS Applications, pp. 205–229. Woodhead Publishing (2018)
13.
go back to reference Rim, K., Hoyt, J.L., Gibbons, J.F.: Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs. In: IEEE International Electron Devices Meeting (IEDM), pp. 517–520 (1995) Rim, K., Hoyt, J.L., Gibbons, J.F.: Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs. In: IEEE International Electron Devices Meeting (IEDM), pp. 517–520 (1995)
14.
go back to reference Sugii, N., Yamaguchi, S., Nakagawa, K.: Elimination of parasitic channels in strained-Si p-channel metal-oxide-semiconductor field- effect transistors. Semicond. Sci. Technol. 16, 155–159 (2001)CrossRef Sugii, N., Yamaguchi, S., Nakagawa, K.: Elimination of parasitic channels in strained-Si p-channel metal-oxide-semiconductor field- effect transistors. Semicond. Sci. Technol. 16, 155–159 (2001)CrossRef
15.
go back to reference Chandrasekaran, K., Zhou, X., Ben Chiah, S., Shangguan, W., See, G.H., Bera, L.K., Balasubramanian, N., Rustagi, S.C.: Effect of substrate doping on the capacitance—voltage characteristics of strained-silicon pMOSFETs. IEEE Electron Device Lett. 27(1), 62–64 (2006)CrossRef Chandrasekaran, K., Zhou, X., Ben Chiah, S., Shangguan, W., See, G.H., Bera, L.K., Balasubramanian, N., Rustagi, S.C.: Effect of substrate doping on the capacitance—voltage characteristics of strained-silicon pMOSFETs. IEEE Electron Device Lett. 27(1), 62–64 (2006)CrossRef
16.
go back to reference Khatami, M., Shalchian, M., Kolahdooz, M.: Impacts of virtual substrate doping on high frequency characteristics of biaxially strained Si pMOSFET. Superlattices Microstruct. 85, 82–91 (2015)CrossRef Khatami, M., Shalchian, M., Kolahdooz, M.: Impacts of virtual substrate doping on high frequency characteristics of biaxially strained Si pMOSFET. Superlattices Microstruct. 85, 82–91 (2015)CrossRef
17.
go back to reference Khatami, M., Shalchian, M., Kolahdouz, M.: Analysis and improvement of off-state current in biaxially strained Si nano p-MOSFET by virtual substrate’s doping control. J. Iran. Assoc. Electr. Electron. Eng. 13, 41–50 (2017) Khatami, M., Shalchian, M., Kolahdouz, M.: Analysis and improvement of off-state current in biaxially strained Si nano p-MOSFET by virtual substrate’s doping control. J. Iran. Assoc. Electr. Electron. Eng. 13, 41–50 (2017)
18.
go back to reference De, S., Tewari, S., Biswas, A., Mallik, A.: Improved digital performance of hybrid CMOS inverter with Si p-MOSFET and InGaAs n-MOSFET in the nanometer regime. Microelectron. Eng. 211, 18–25 (2019)CrossRef De, S., Tewari, S., Biswas, A., Mallik, A.: Improved digital performance of hybrid CMOS inverter with Si p-MOSFET and InGaAs n-MOSFET in the nanometer regime. Microelectron. Eng. 211, 18–25 (2019)CrossRef
19.
go back to reference Khatami, M., Shalchian, M., Kolahdouz, M.: A symmetric CMOS inverterusing biaxially strained Si nano PMOSFET. In: 23rd Iranian Conference on Electrical Engineering, pp. 1282–1285 (2015) Khatami, M., Shalchian, M., Kolahdouz, M.: A symmetric CMOS inverterusing biaxially strained Si nano PMOSFET. In: 23rd Iranian Conference on Electrical Engineering, pp. 1282–1285 (2015)
20.
go back to reference Jankovic, N., Pesic-Brdjanin, T.: Spice modeling of oxide and interface trapped charge effects in fully-depleted double-gate FinFETs. J. Comput. Electron. 14, 844–851 (2015)CrossRef Jankovic, N., Pesic-Brdjanin, T.: Spice modeling of oxide and interface trapped charge effects in fully-depleted double-gate FinFETs. J. Comput. Electron. 14, 844–851 (2015)CrossRef
21.
go back to reference Ding, J., Asenov, A.: TCAD simulations and accurate extraction of reliability-aware statistical compact models. J. Comput. Electron. 19, 359–366 (2020)CrossRef Ding, J., Asenov, A.: TCAD simulations and accurate extraction of reliability-aware statistical compact models. J. Comput. Electron. 19, 359–366 (2020)CrossRef
22.
go back to reference Rathod, A., Thakker, R., Amalin Prince, A.: Parameter extraction of PSP MOSFET model in multi-core Zynq SoC platform. Procedia Comput. Sci. 171, 1027–1036 (2020)CrossRef Rathod, A., Thakker, R., Amalin Prince, A.: Parameter extraction of PSP MOSFET model in multi-core Zynq SoC platform. Procedia Comput. Sci. 171, 1027–1036 (2020)CrossRef
23.
go back to reference Xi, S., Zheng, Q., Lu, W., Cui, J., Wei, Y., Guo, Q.: Modeling of TID-induced leakage current in ultra-deep submicron SOI NMOSFETs. Microelectron. J. 102, 104829 (2020)CrossRef Xi, S., Zheng, Q., Lu, W., Cui, J., Wei, Y., Guo, Q.: Modeling of TID-induced leakage current in ultra-deep submicron SOI NMOSFETs. Microelectron. J. 102, 104829 (2020)CrossRef
24.
go back to reference Ren, Z., Taur, Y.: Non-GCA modeling of near threshold I–V characteristics of DG MOSFETs. Solid-State Electron. 166, 107766 (2020)CrossRef Ren, Z., Taur, Y.: Non-GCA modeling of near threshold I–V characteristics of DG MOSFETs. Solid-State Electron. 166, 107766 (2020)CrossRef
25.
go back to reference Liu, S., Li, X., Liu, C., Sun, W.: Improved metal oxide semiconductor field effect transistor models with wide temperature range including cryogenic temperature. Superlattices Microstruct. 109, 31–40 (2017)CrossRef Liu, S., Li, X., Liu, C., Sun, W.: Improved metal oxide semiconductor field effect transistor models with wide temperature range including cryogenic temperature. Superlattices Microstruct. 109, 31–40 (2017)CrossRef
26.
go back to reference Wang, J., Shen, Y.-J., Quitoriano, N.: Growth evolution of SiGe graded buffers during LPE cooling process. J. Cryst. Growth 502, 54–63 (2018)CrossRef Wang, J., Shen, Y.-J., Quitoriano, N.: Growth evolution of SiGe graded buffers during LPE cooling process. J. Cryst. Growth 502, 54–63 (2018)CrossRef
27.
go back to reference Yang, L., Watling, J.R., Wilkins, R.C.W., Barker, J.R., Asenov, A., Roy, S.: Si/SiGe heterostructure parameters for device simulations. Semicond. Sci. Technol. 19, 1174–1182 (2004)CrossRef Yang, L., Watling, J.R., Wilkins, R.C.W., Barker, J.R., Asenov, A., Roy, S.: Si/SiGe heterostructure parameters for device simulations. Semicond. Sci. Technol. 19, 1174–1182 (2004)CrossRef
28.
go back to reference Arora, N.D., Hauser, J.R., Roulston, D.J.: Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Devices 29, 292–295 (1982)CrossRef Arora, N.D., Hauser, J.R., Roulston, D.J.: Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Devices 29, 292–295 (1982)CrossRef
29.
go back to reference Armstrong, G.A., Maiti, C.K.: Strained-Si channel heterojunction P-MOSFETS. Solid-State Electron. 42(4), 487–498 (1998)CrossRef Armstrong, G.A., Maiti, C.K.: Strained-Si channel heterojunction P-MOSFETS. Solid-State Electron. 42(4), 487–498 (1998)CrossRef
30.
go back to reference Nayfeh, H.M., Hoyt, J.L., Antoniadis, D.A.: A physically based analytical model for the threshold voltage of strained-Si n-MOSFETs. IEEE Trans. Electron Devices 51(12), 2069–2072 (2004)CrossRef Nayfeh, H.M., Hoyt, J.L., Antoniadis, D.A.: A physically based analytical model for the threshold voltage of strained-Si n-MOSFETs. IEEE Trans. Electron Devices 51(12), 2069–2072 (2004)CrossRef
31.
go back to reference Slotboom, J.W., de Graaff, H.C.: Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electron. 19(10), 857–862 (1976)CrossRef Slotboom, J.W., de Graaff, H.C.: Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electron. 19(10), 857–862 (1976)CrossRef
32.
go back to reference Das, S., Dash, T.P., Dey, S., Nanda, R.K., Maiti, C.K.: Reliability studies on biaxially tensile strained-Si channel p-MOSFETs. Int. J. Microstruct. Mater. Prop. 14(1), 28–46 (2019) Das, S., Dash, T.P., Dey, S., Nanda, R.K., Maiti, C.K.: Reliability studies on biaxially tensile strained-Si channel p-MOSFETs. Int. J. Microstruct. Mater. Prop. 14(1), 28–46 (2019)
33.
go back to reference SILVACO Int., Utmost-IV User’s Manual, Santa Clara (2015) SILVACO Int., Utmost-IV User’s Manual, Santa Clara (2015)
34.
go back to reference Sharma, A., Shelar, R., Kulkarni, R., Shenoy, A., Kalantri , P., Potnis, T., Limaye, A.: BSIM4 characterization of current enhancement in short channel s-Si/SiGe nMOS. In: Proceedings of the 8th Spanish Conference on Electron Devices, CDE (2011) Sharma, A., Shelar, R., Kulkarni, R., Shenoy, A., Kalantri , P., Potnis, T., Limaye, A.: BSIM4 characterization of current enhancement in short channel s-Si/SiGe nMOS. In: Proceedings of the 8th Spanish Conference on Electron Devices, CDE (2011)
35.
go back to reference Cheng, Y., Chenming, H.: MOSFET Modeling & BSIM3 User’s Guide. Springer, New York (2002) Cheng, Y., Chenming, H.: MOSFET Modeling & BSIM3 User’s Guide. Springer, New York (2002)
36.
go back to reference Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. J. Appl. Math. 2, 164–168 (1944)MathSciNetCrossRef Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. J. Appl. Math. 2, 164–168 (1944)MathSciNetCrossRef
37.
go back to reference SILVACO Int., SmartSpice User’ s Manual, Santa Clara (2015) SILVACO Int., SmartSpice User’ s Manual, Santa Clara (2015)
38.
go back to reference Sajjad, R.N., Radhakrishna, U., Antoniadis, D.A.: A tunnel FET compact model including non-idealities with verilog implementation. Solid-State Electron. 150, 16–22 (2018)CrossRef Sajjad, R.N., Radhakrishna, U., Antoniadis, D.A.: A tunnel FET compact model including non-idealities with verilog implementation. Solid-State Electron. 150, 16–22 (2018)CrossRef
Metadata
Title
BSIM3 model parameter extraction and performance analysis of a strained p-MOSFET for digital applications
Authors
Soheil Ranjbar Maleki
Majid Shalchian
Mohammad Mahdi Khatami
Publication date
19-09-2020
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2021
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01584-5

Other articles of this Issue 1/2021

Journal of Computational Electronics 1/2021 Go to the issue