Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Bubble Dynamics

Authors : Rachel Pflieger, Sergey I. Nikitenko, Carlos Cairós, Robert Mettin

Published in: Characterization of Cavitation Bubbles and Sonoluminescence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bubble dynamics and cavitation have been recognized as a relevant topic of physics and engineering for more than 100 years. Starting with erosion problems at ship propellers end of the nineteenth century [1, 2], experimental and theoretical research went on to intense ultrasound fields in liquids after World War I [3]. However, the phenomena are intrinsically difficult to investigate since the involved spatial scales span many orders of magnitude, the timescales are partly extremely fast, and the behavior includes important nonlinearities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
More realistic descriptions of bubbles might consider non-equilibrium conditions like heat conduction, inhomogeneous bubble interior, or dynamics of evaporation/condensation of liquid/vapor at the bubble wall.
 
2
Free submicron bubbles should dissolve quite rapidly because of surface tension, as suggested above. However, bubbles might be stabilized in crevices of solid particles [8] or be stabilized statically or dynamically when covered partly with hydrophobic material; see [8, 22].
 
3
The term “stable” for gas dominated bubble dynamics is somehow unfortunate since less strong collapsing bubbles can nevertheless exhibit instabilities (e.g., develop non-spherical shapes and splitting), while inertial cavitation bubbles can well oscillate in stable regimes. The older notion of “transient” cavitation for inertial cavitation is misleading in the same sense.
 
4
The unlimited expansion occurs theoretically in an unbounded liquid volume. In a real situation, the nucleus expansion will be stopped by boundary conditions, but it can reach a “macroscopic” bubble size.
 
5
In a way as a contrast, “top-down” descriptions of cavitation start from multiphase flow of liquid and vapor (for hydrodynamic cavitation, see [9, 39]) or from sound propagation in bubbly media (see [4045]).
 
6
Pressure gradients of the sound field are typically much larger than the hydrostatic pressure gradient, and therefore buoyancy can often be neglected in the discussion of acoustic cavitation bubbles. Only for larger bubbles and weak driving, buoyancy might supersede acoustic forces which leads to a rise of the bubble to the surface.
 
7
While secondary Bjerknes forces indeed decay with the squared distance like gravitational forces, there are differences in that stars move without friction and do typically not collide. Furthermore, the secondary Bjerknes force changes for very close or far distances, and the “mass” of a bubble depends on the driving pressure at its position. Nevertheless, partly interesting similarities exist visually between bubble structures and galactic structures.
 
8
Inactive larger bubbles can be trapped at pressure nodes of a standing acoustic wave.
 
9
Details of liquid injection are still subject of investigation. At least, three scenarios could take place: (I) During re-expansion of the bubble, the spherical shape is roughly restored, and remnants of the jet might disintegrate into droplets, remaining in the gas phase until the next collapse happens. (II) The jet impact onto the opposite bubble wall can cause nanosplashes that disintegrate into droplets [95]. (III) The rear side of the bubble might become unstable and split off droplets. In this context, note the non-smooth bubble backside in Fig. 1.17.
 
Literature
1.
go back to reference Silberrad D (1912) Propeller erosion. Engineering 33:33–35 Silberrad D (1912) Propeller erosion. Engineering 33:33–35
2.
go back to reference Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag Ser 6(34):94–98CrossRef Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag Ser 6(34):94–98CrossRef
3.
go back to reference Wood RW, Loomis AL (1927) XXXVIII The physical and biological effects of high-frequency sound-waves of great intensity. Lond, Edinb, Dublin Philos Mag J Sci 4(22):417–436CrossRef Wood RW, Loomis AL (1927) XXXVIII The physical and biological effects of high-frequency sound-waves of great intensity. Lond, Edinb, Dublin Philos Mag J Sci 4(22):417–436CrossRef
4.
go back to reference Flynn HG (1964) Physics of acoustic cavitation in liquids. In: Mason WP (ed) Physical acoustics, vol 1, Part B. Academic Press, New York, pp 57–172 Flynn HG (1964) Physics of acoustic cavitation in liquids. In: Mason WP (ed) Physical acoustics, vol 1, Part B. Academic Press, New York, pp 57–172
5.
go back to reference Rozenberg LD (1971) High-intensity ultrasonic fields. Plenum Press, New YorkCrossRef Rozenberg LD (1971) High-intensity ultrasonic fields. Plenum Press, New YorkCrossRef
7.
go back to reference Young FR (1989) Cavitation. McGraw-Hill, London Young FR (1989) Cavitation. McGraw-Hill, London
8.
go back to reference Leighton TG (1994) The acoustic bubble. Academic Press, London Leighton TG (1994) The acoustic bubble. Academic Press, London
9.
go back to reference Brennen EG (1995) Cavitation and bubble dynamics. Oxford University Press, New York Brennen EG (1995) Cavitation and bubble dynamics. Oxford University Press, New York
10.
go back to reference Young FR (2005) Sonoluminescence. CRC Press, Boca Raton Young FR (2005) Sonoluminescence. CRC Press, Boca Raton
11.
go back to reference Mason TJ, Lorimer JP (1988) Sonochemistry. Wiley Mason TJ, Lorimer JP (1988) Sonochemistry. Wiley
12.
go back to reference Mason TJ (ed) (1999) Advances in sonochemistry, vol 5. Jai Press, Stamford Mason TJ (ed) (1999) Advances in sonochemistry, vol 5. Jai Press, Stamford
13.
go back to reference Lauterborn W, Kurz T, Mettin R, Ohl C-D (1999) Experimental and theoretical bubble dynamics. Adv Chem Phys 110: 295–380 Lauterborn W, Kurz T, Mettin R, Ohl C-D (1999) Experimental and theoretical bubble dynamics. Adv Chem Phys 110: 295–380
14.
go back to reference Ohl C-D, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Phil Trans R Soc Lond A 357:269–294CrossRef Ohl C-D, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Phil Trans R Soc Lond A 357:269–294CrossRef
15.
go back to reference Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitätsverlag Göttingen, Göttingen, pp 171–198 Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitätsverlag Göttingen, Göttingen, pp 171–198
16.
go back to reference Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73:106501CrossRef Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73:106501CrossRef
17.
go back to reference Lauterborn W, Mettin R (2015) Acoustic cavitation: bubble dynamics in high-power ultrasonic fields. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 37–78 Lauterborn W, Mettin R (2015) Acoustic cavitation: bubble dynamics in high-power ultrasonic fields. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 37–78
18.
go back to reference Mettin R, Cairós C (2016) Bubble dynamics and observations. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, SingaporeCrossRef Mettin R, Cairós C (2016) Bubble dynamics and observations. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, SingaporeCrossRef
19.
go back to reference Harvey EN, McElroy WD, Whiteley AH (1947) On cavity formation in water. J Appl Phys 18(2):162–172CrossRef Harvey EN, McElroy WD, Whiteley AH (1947) On cavity formation in water. J Appl Phys 18(2):162–172CrossRef
20.
go back to reference Fox FE, Herzfeld KF (1954) Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 26(6):984–989CrossRef Fox FE, Herzfeld KF (1954) Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 26(6):984–989CrossRef
21.
go back to reference Crum LA (1982) Nucleation and stabilization of microbubbles in liquids. Appl Sci Res 38(1):101–115CrossRef Crum LA (1982) Nucleation and stabilization of microbubbles in liquids. Appl Sci Res 38(1):101–115CrossRef
22.
go back to reference Yasui K, Tuziuti T, Kanematsu W, Kato K (2016) Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material. Langmuir 32(43):11101–11110PubMedCrossRef Yasui K, Tuziuti T, Kanematsu W, Kato K (2016) Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material. Langmuir 32(43):11101–11110PubMedCrossRef
23.
go back to reference Keller AP (1974) Investigations concerning scale effects of the inception of cavitation. In: Proceedings I mechanical engineering conference on cavitation, pp 109–117 Keller AP (1974) Investigations concerning scale effects of the inception of cavitation. In: Proceedings I mechanical engineering conference on cavitation, pp 109–117
25.
go back to reference Minnaert M (1933) On musical air bubbles and the sounds of running water. Phil Mag Ser 7(16):235–248CrossRef Minnaert M (1933) On musical air bubbles and the sounds of running water. Phil Mag Ser 7(16):235–248CrossRef
26.
go back to reference Parlitz U, Englisch V, Scheffczyk C, Lauterborn W (1990) Bifurcation structure of bubble oscillators. J Acoust Soc Am 88:1061CrossRef Parlitz U, Englisch V, Scheffczyk C, Lauterborn W (1990) Bifurcation structure of bubble oscillators. J Acoust Soc Am 88:1061CrossRef
27.
go back to reference Hilgenfeldt S, Grossmann S, Lohse D (1999) Sonoluminescence light emission. Phys Fluids 11:1318CrossRef Hilgenfeldt S, Grossmann S, Lohse D (1999) Sonoluminescence light emission. Phys Fluids 11:1318CrossRef
28.
go back to reference Hilgenfeldt S, Brenner MP, Grossmann S, Lohse D (1998) Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. J Fluid Mech 365:171–204CrossRef Hilgenfeldt S, Brenner MP, Grossmann S, Lohse D (1998) Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. J Fluid Mech 365:171–204CrossRef
29.
go back to reference Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part 1. First-order theory. J Fluid Mech 168:457–478CrossRef Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part 1. First-order theory. J Fluid Mech 168:457–478CrossRef
30.
go back to reference Kamath V, Prosperetti A, Egolfopoulos FN (1993) A theoretical study of sonoluminescence. J Acoust Soc Am 94(1):248–260CrossRef Kamath V, Prosperetti A, Egolfopoulos FN (1993) A theoretical study of sonoluminescence. J Acoust Soc Am 94(1):248–260CrossRef
31.
go back to reference Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750CrossRef Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750CrossRef
32.
go back to reference Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68:628CrossRef Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68:628CrossRef
33.
go back to reference Mettin R, Cairós C, Troia A (2015) Sonochemistry and bubble dynamics. Ultrason Sonochem 25:24–30PubMedCrossRef Mettin R, Cairós C, Troia A (2015) Sonochemistry and bubble dynamics. Ultrason Sonochem 25:24–30PubMedCrossRef
34.
go back to reference Thiemann A, Holsteyns F, Cairos C, Mettin R (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676PubMedCrossRef Thiemann A, Holsteyns F, Cairos C, Mettin R (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676PubMedCrossRef
35.
go back to reference Blake FG (1949) Harvard University Acoustic Research Laboratory, Tech. Mem. No. 12, 1949 (unpublished) Blake FG (1949) Harvard University Acoustic Research Laboratory, Tech. Mem. No. 12, 1949 (unpublished)
36.
go back to reference Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc Lond, Sect B 63(9):674CrossRef Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc Lond, Sect B 63(9):674CrossRef
37.
go back to reference Louisnard O, Gomez F (2003) Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys Rev E 67:036610 Louisnard O, Gomez F (2003) Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys Rev E 67:036610
38.
go back to reference Lauterborn W, Mettin R (1999) Nonlinear bubble dynamics—response curves and more. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence; Proceedings of the NATO advanced study institute, Leavenworth (WA), USA, 18–29 Aug 1997. Kluwer Academic Publishers, Dordrecht, pp 63–72CrossRef Lauterborn W, Mettin R (1999) Nonlinear bubble dynamics—response curves and more. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence; Proceedings of the NATO advanced study institute, Leavenworth (WA), USA, 18–29 Aug 1997. Kluwer Academic Publishers, Dordrecht, pp 63–72CrossRef
39.
go back to reference Franc J-P, Michel J-M (2006) Fundamentals of cavitation. Springer science & Business media, Berlin Franc J-P, Michel J-M (2006) Fundamentals of cavitation. Springer science & Business media, Berlin
40.
go back to reference Van Wijngaarden L (1972) One-dimensional flow of liquids containing small gas bubbles. Ann Rev Fluid Mech 4:369–394CrossRef Van Wijngaarden L (1972) One-dimensional flow of liquids containing small gas bubbles. Ann Rev Fluid Mech 4:369–394CrossRef
41.
go back to reference Caflisch RE, Miksis MJ, Papanicolaou GC, Ting L (1985) Effective equations for wave propagation in bubbly liquids. J Fluid Mech 153:259–273CrossRef Caflisch RE, Miksis MJ, Papanicolaou GC, Ting L (1985) Effective equations for wave propagation in bubbly liquids. J Fluid Mech 153:259–273CrossRef
42.
go back to reference Commander KW, Prosperetti A (1989) Linear pressure waves in bubbly liquids: comparison between theory and experiments. J Acoust Soc Am 85:732–746CrossRef Commander KW, Prosperetti A (1989) Linear pressure waves in bubbly liquids: comparison between theory and experiments. J Acoust Soc Am 85:732–746CrossRef
43.
go back to reference Akhatov I, Parlitz U, Lauterborn W (1996) Towards a theory of self-organization phenomena in bubble-liquid mixtures. Phys Rev E 54:4990CrossRef Akhatov I, Parlitz U, Lauterborn W (1996) Towards a theory of self-organization phenomena in bubble-liquid mixtures. Phys Rev E 54:4990CrossRef
44.
go back to reference Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation. Ultrason Sonochem 19:56–65PubMedCrossRef Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation. Ultrason Sonochem 19:56–65PubMedCrossRef
45.
go back to reference Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerknes force and bubble structures. Ultrason. Sonochem. 19:66–76PubMedCrossRef Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerknes force and bubble structures. Ultrason. Sonochem. 19:66–76PubMedCrossRef
46.
go back to reference Cairós C, Schneider J, Pflieger R, Mettin R (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044–2051PubMedCrossRef Cairós C, Schneider J, Pflieger R, Mettin R (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044–2051PubMedCrossRef
47.
go back to reference Mettin R, Cairós C (2019) Leuchtende Blasen. Phys Unserer Zeit 50(1):38–42CrossRef Mettin R, Cairós C (2019) Leuchtende Blasen. Phys Unserer Zeit 50(1):38–42CrossRef
48.
go back to reference Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc R Soc Lond A 201:192–196CrossRef Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc R Soc Lond A 201:192–196CrossRef
49.
go back to reference Plesset MS (1954) On the stability of fluid flows with spherical symmetry. J Appl Phys 25(1):96–98CrossRef Plesset MS (1954) On the stability of fluid flows with spherical symmetry. J Appl Phys 25(1):96–98CrossRef
50.
51.
go back to reference Birkhoff G (1956) Stability of spherical bubbles. Q Appl Math 13(4):451–453CrossRef Birkhoff G (1956) Stability of spherical bubbles. Q Appl Math 13(4):451–453CrossRef
52.
go back to reference Plesset MS, Mitchell TP (1956) On the stability of the spherical shape of a vapor cavity in a liquid. Q Appl Math 13(4):419–430CrossRef Plesset MS, Mitchell TP (1956) On the stability of the spherical shape of a vapor cavity in a liquid. Q Appl Math 13(4):419–430CrossRef
53.
go back to reference Strube HW (1971) Numerische Untersuchungen zur Stabilität nichtsphärisch schwingender Blasen. Acustica 25:289–303 Strube HW (1971) Numerische Untersuchungen zur Stabilität nichtsphärisch schwingender Blasen. Acustica 25:289–303
54.
go back to reference Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15(6):495–506CrossRef Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15(6):495–506CrossRef
55.
go back to reference Hilgenfeldt S, Lohse D, Brenner MP (1996) Phase diagrams for sonoluminescing bubbles. Phys Fluids 8:2808CrossRef Hilgenfeldt S, Lohse D, Brenner MP (1996) Phase diagrams for sonoluminescing bubbles. Phys Fluids 8:2808CrossRef
56.
go back to reference Versluis M, Goertz DE, Palanchon P, Heitman IL, van der Meer SM, Dollet B, de Jong N, Lohse D (2010) Microbubble shape oscillations excited through ultrasonic parametric driving. Phys Rev E 82(2):026321CrossRef Versluis M, Goertz DE, Palanchon P, Heitman IL, van der Meer SM, Dollet B, de Jong N, Lohse D (2010) Microbubble shape oscillations excited through ultrasonic parametric driving. Phys Rev E 82(2):026321CrossRef
57.
go back to reference Eller A, Flynn HG (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37(3):493–503CrossRef Eller A, Flynn HG (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37(3):493–503CrossRef
58.
go back to reference Fyrillas MM, Szeri AJ (1994) Dissolution or growth of soluble spherical oscillating bubbles. J Fluid Mech 277:381–407CrossRef Fyrillas MM, Szeri AJ (1994) Dissolution or growth of soluble spherical oscillating bubbles. J Fluid Mech 277:381–407CrossRef
59.
go back to reference Bjerknes VFK (1906) Fields of force. Columbia University Press, New York Bjerknes VFK (1906) Fields of force. Columbia University Press, New York
60.
go back to reference Matula TJ, Cordry AM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527CrossRef Matula TJ, Cordry AM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527CrossRef
61.
go back to reference Akhatov I, Mettin R, Ohl C-D, Parlitz U, Lauterborn W (1997) Bjerknes force threshold for stable single bubble sonoluminescence. Phys Rev E 55:3747–3750CrossRef Akhatov I, Mettin R, Ohl C-D, Parlitz U, Lauterborn W (1997) Bjerknes force threshold for stable single bubble sonoluminescence. Phys Rev E 55:3747–3750CrossRef
62.
go back to reference Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924–2931CrossRef Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924–2931CrossRef
63.
go back to reference Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57(6):1363–1370CrossRef Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57(6):1363–1370CrossRef
64.
go back to reference Cairós C, Mettin R (2017) Simultaneous high-speed recording of sonoluminescence and bubble dynamics in multibubble fields. Phys Rev Lett 118(6):064301PubMedCrossRef Cairós C, Mettin R (2017) Simultaneous high-speed recording of sonoluminescence and bubble dynamics in multibubble fields. Phys Rev Lett 118(6):064301PubMedCrossRef
65.
go back to reference Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs
66.
go back to reference Klyachko LS (1934) Heating and ventilation. USSR J Otopl I Ventil (4) Klyachko LS (1934) Heating and ventilation. USSR J Otopl I Ventil (4)
67.
go back to reference Magnaudet J, Legendre D (1998) The viscous drag force on a spherical bubble with a time-dependent radius. Phys Fluids 10(3):550–554CrossRef Magnaudet J, Legendre D (1998) The viscous drag force on a spherical bubble with a time-dependent radius. Phys Fluids 10(3):550–554CrossRef
68.
go back to reference Krefting D, Mettin R, Lauterborn W (2002) Kräfte in akustischen Kavitationsfeldern (Forces in acoustic cavitation fields). In Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 260–261 Krefting D, Mettin R, Lauterborn W (2002) Kräfte in akustischen Kavitationsfeldern (Forces in acoustic cavitation fields). In Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 260–261
69.
go back to reference Apfel RE (1981) Acoustic cavitation prediction. J Acoust Soc Am 69(6):1624–1633CrossRef Apfel RE (1981) Acoustic cavitation prediction. J Acoust Soc Am 69(6):1624–1633CrossRef
70.
go back to reference Church CC (1988) Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. J Acoust Soc Am 83(6):2210–2217PubMedCrossRef Church CC (1988) Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. J Acoust Soc Am 83(6):2210–2217PubMedCrossRef
71.
go back to reference Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, pp 1–36 Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, pp 1–36
72.
go back to reference Gaitan D, Crum LA, Church CC, Roy RA (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166–3183CrossRef Gaitan D, Crum LA, Church CC, Roy RA (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166–3183CrossRef
73.
go back to reference Hiller R, Putterman SJ, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. Phys Rev Lett 69:1182PubMedCrossRef Hiller R, Putterman SJ, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. Phys Rev Lett 69:1182PubMedCrossRef
74.
go back to reference Barber BP, Hiller RA, Löfstedt R, Putterman SJ, Weninger KR (1997) Defining the unknowns of sonoluminescence. Phys Rep 281:65–143CrossRef Barber BP, Hiller RA, Löfstedt R, Putterman SJ, Weninger KR (1997) Defining the unknowns of sonoluminescence. Phys Rep 281:65–143CrossRef
76.
go back to reference Gompf B, Günther R, Nick G, Pecha R, Eisenmenger W (1997) Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys Rev Lett 79:1405CrossRef Gompf B, Günther R, Nick G, Pecha R, Eisenmenger W (1997) Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys Rev Lett 79:1405CrossRef
77.
go back to reference Chen W, Huang W, Liang Y, Gao X, Cui W (2008) Time-resolved spectra of single-bubble sonoluminescence in sulfuric acid with a streak camera. Phys Rev E 78(3):035301CrossRef Chen W, Huang W, Liang Y, Gao X, Cui W (2008) Time-resolved spectra of single-bubble sonoluminescence in sulfuric acid with a streak camera. Phys Rev E 78(3):035301CrossRef
78.
go back to reference Hiller R, Weninger K, Putterman SJ, Barber BP (1994) Effect of noble gas doping in single-bubble sonoluminescence. Science 266(5183):248–250PubMedCrossRef Hiller R, Weninger K, Putterman SJ, Barber BP (1994) Effect of noble gas doping in single-bubble sonoluminescence. Science 266(5183):248–250PubMedCrossRef
79.
go back to reference Schneider J, Pflieger R, Nikitenko SI, Shchukin D, Möhwald H (2010) Line emission of sodium and hydroxyl radicals in single-bubble sonoluminescence. J Phys Chem A 115(2):136–140PubMedCrossRef Schneider J, Pflieger R, Nikitenko SI, Shchukin D, Möhwald H (2010) Line emission of sodium and hydroxyl radicals in single-bubble sonoluminescence. J Phys Chem A 115(2):136–140PubMedCrossRef
80.
go back to reference Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95:044301PubMedCrossRef Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95:044301PubMedCrossRef
81.
go back to reference Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434(7029):52PubMedCrossRef Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434(7029):52PubMedCrossRef
82.
go back to reference Lepoint T, Lepoint-Mullie F, Henglein A (1999) Single bubble sonochemistry. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer Academic Publishers, Dordrecht, pp 285–290CrossRef Lepoint T, Lepoint-Mullie F, Henglein A (1999) Single bubble sonochemistry. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer Academic Publishers, Dordrecht, pp 285–290CrossRef
83.
go back to reference Verraes T, Lepoint-Mullie F, Lepoint T, Longuet-Higgins M (2000) Experimental study of the liquid flow near a single sonoluminescent bubble. J Acoust Soc Am 108:117PubMedCrossRef Verraes T, Lepoint-Mullie F, Lepoint T, Longuet-Higgins M (2000) Experimental study of the liquid flow near a single sonoluminescent bubble. J Acoust Soc Am 108:117PubMedCrossRef
84.
go back to reference Troia A, Madonna Ripa D, Lago S, Spagnolo R (2004) Evidence for liquid phase reactions during single bubble acoustic cavitation. Ultrason Sonochem 11:317PubMedCrossRef Troia A, Madonna Ripa D, Lago S, Spagnolo R (2004) Evidence for liquid phase reactions during single bubble acoustic cavitation. Ultrason Sonochem 11:317PubMedCrossRef
85.
go back to reference Didenko YT, Suslick KS (2002) The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418(6896):394PubMedCrossRef Didenko YT, Suslick KS (2002) The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418(6896):394PubMedCrossRef
86.
go back to reference Mettin R, Lindinger B, Lauterborn W (2002) Bjerknes-Instabilität levitierter Einzelblasen bei geringem statischen Druck (Bjerknes-instability of levitated single bubbles at low static pressure). In: Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 264–265 Mettin R, Lindinger B, Lauterborn W (2002) Bjerknes-Instabilität levitierter Einzelblasen bei geringem statischen Druck (Bjerknes-instability of levitated single bubbles at low static pressure). In: Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 264–265
87.
go back to reference Rosselló JM, Dellavale D, Bonetto FJ (2013) Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures. Phys Rev E 88:033026CrossRef Rosselló JM, Dellavale D, Bonetto FJ (2013) Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures. Phys Rev E 88:033026CrossRef
88.
go back to reference Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602PubMedCrossRef Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602PubMedCrossRef
89.
go back to reference Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil Trans Roy Soc Lond A 260:221–240CrossRef Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil Trans Roy Soc Lond A 260:221–240CrossRef
90.
go back to reference Calvisi M, Lindau O, Blake JR, Szeri AJ (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101CrossRef Calvisi M, Lindau O, Blake JR, Szeri AJ (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101CrossRef
91.
go back to reference Vuong VQ, Szeri AJ, Young DA (1999) Shock formation within sonoluminescence bubbles. Phys Fluids 11:10–17CrossRef Vuong VQ, Szeri AJ, Young DA (1999) Shock formation within sonoluminescence bubbles. Phys Fluids 11:10–17CrossRef
92.
go back to reference Schanz D, Metten B, Kurz T, Lauterborn W (2012) Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence. New J Phys 14:113019CrossRef Schanz D, Metten B, Kurz T, Lauterborn W (2012) Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence. New J Phys 14:113019CrossRef
93.
go back to reference Xu H, Eddingsaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131:6060–6061PubMedCrossRef Xu H, Eddingsaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131:6060–6061PubMedCrossRef
94.
go back to reference Xu H, Glumac NG, Suslick KS (2010) Temperature inhomogeneity during multibubble sonoluminescence. Angew. Chemie 122(6):1097–1100CrossRef Xu H, Glumac NG, Suslick KS (2010) Temperature inhomogeneity during multibubble sonoluminescence. Angew. Chemie 122(6):1097–1100CrossRef
95.
go back to reference Lechner C, Koch M, Lauterborn W, Mettin R (2017) Pressure and tension waves from bubble collapse near a solid boundary: a numerical approach. J Acoust Soc Am 142(6):3649–3659PubMedCrossRef Lechner C, Koch M, Lauterborn W, Mettin R (2017) Pressure and tension waves from bubble collapse near a solid boundary: a numerical approach. J Acoust Soc Am 142(6):3649–3659PubMedCrossRef
96.
go back to reference Blake JR, Hooton MC, Robinson PB, Tong RP (1997) Collapsing cavities, toroidal bubbles and jet impact. Phil Trans Roy Soc Lond A 355:537–550CrossRef Blake JR, Hooton MC, Robinson PB, Tong RP (1997) Collapsing cavities, toroidal bubbles and jet impact. Phil Trans Roy Soc Lond A 355:537–550CrossRef
97.
go back to reference Reuter F, Gonzalez-Avila SR, Mettin R, Ohl C-D (2017) Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys Rev Fluids 2:064202CrossRef Reuter F, Gonzalez-Avila SR, Mettin R, Ohl C-D (2017) Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys Rev Fluids 2:064202CrossRef
98.
go back to reference Reuter F, Mettin R (2018) Electrochemical wall shear rate microscopy of collapsing bubbles. Phys Rev Fluids 3:063601CrossRef Reuter F, Mettin R (2018) Electrochemical wall shear rate microscopy of collapsing bubbles. Phys Rev Fluids 3:063601CrossRef
99.
go back to reference Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 47(2):283–290CrossRef Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 47(2):283–290CrossRef
100.
go back to reference Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72(2):391–399CrossRef Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72(2):391–399CrossRef
101.
go back to reference Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116CrossRef Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116CrossRef
102.
go back to reference Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119–123PubMedCrossRef Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119–123PubMedCrossRef
103.
go back to reference Fuchs FJ (2015) Ultrasonic cleaning and washing of surfaces. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 577–610 Fuchs FJ (2015) Ultrasonic cleaning and washing of surfaces. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 577–610
104.
105.
106.
go back to reference Blake JR, Keen GS, Tong RP, Wilson M (1999) Acoustic cavitation: the fluid dynamics of non–spherical bubbles. Phil Trans R Soc Lond A 357:251CrossRef Blake JR, Keen GS, Tong RP, Wilson M (1999) Acoustic cavitation: the fluid dynamics of non–spherical bubbles. Phil Trans R Soc Lond A 357:251CrossRef
107.
go back to reference Pearson A, Blake JR, Otto SR (2004) Jets in bubbles. J Eng Math 48:391–412CrossRef Pearson A, Blake JR, Otto SR (2004) Jets in bubbles. J Eng Math 48:391–412CrossRef
108.
go back to reference Lauterborn W, Lechner C, Koch M, Mettin R (2018) Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid. IMA J. Appl. Math 83(4):556–589CrossRef Lauterborn W, Lechner C, Koch M, Mettin R (2018) Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid. IMA J. Appl. Math 83(4):556–589CrossRef
109.
go back to reference Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N, Farhat M (2016) Scaling laws for jets of single cavitation bubbles. J Fluid Mech 802:263–293CrossRef Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N, Farhat M (2016) Scaling laws for jets of single cavitation bubbles. J Fluid Mech 802:263–293CrossRef
110.
go back to reference Brujan EA, Noda T, Ishigami A, Ogasawara T, Takahira H (2018) Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. J Fluid Mech 841:28–49CrossRef Brujan EA, Noda T, Ishigami A, Ogasawara T, Takahira H (2018) Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. J Fluid Mech 841:28–49CrossRef
111.
go back to reference Ohl SW, Ohl CD (2016) Acoustic cavitation in a microchannel. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, Singapore, pp 99–135CrossRef Ohl SW, Ohl CD (2016) Acoustic cavitation in a microchannel. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, Singapore, pp 99–135CrossRef
112.
go back to reference Koch M, Lechner Ch, Reuter F, Köhler K, Mettin R, Lauterborn W (2016) Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput Fluids 126:71–90CrossRef Koch M, Lechner Ch, Reuter F, Köhler K, Mettin R, Lauterborn W (2016) Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput Fluids 126:71–90CrossRef
113.
go back to reference Lindau O, Lauterborn W (2003) Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J Fluid Mech 479:327–348CrossRef Lindau O, Lauterborn W (2003) Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J Fluid Mech 479:327–348CrossRef
114.
go back to reference Falkovich G (2011) Fluid mechanics, a short course for physicists. Cambridge University Press Falkovich G (2011) Fluid mechanics, a short course for physicists. Cambridge University Press
115.
116.
go back to reference Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191–224CrossRef Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191–224CrossRef
117.
go back to reference Nowak T, Mettin R (2014) Unsteady translation and repetitive jetting of acoustic cavitation bubbles. Phys Rev E 90:033016CrossRef Nowak T, Mettin R (2014) Unsteady translation and repetitive jetting of acoustic cavitation bubbles. Phys Rev E 90:033016CrossRef
118.
go back to reference Hatanaka S, Hayashi S, Choi P-K (2010) Sonoluminescence of alkali-metal atoms in sulfuric acid: comparison with that in water. Jpn J Appl Phys 49:07HE01CrossRef Hatanaka S, Hayashi S, Choi P-K (2010) Sonoluminescence of alkali-metal atoms in sulfuric acid: comparison with that in water. Jpn J Appl Phys 49:07HE01CrossRef
119.
go back to reference Yasui K (2018) Acoustic cavitation and bubble dynamics. Springer Briefs in Molecular Science—Ultrasound and Sonochemistry, Springer International Publishing Yasui K (2018) Acoustic cavitation and bubble dynamics. Springer Briefs in Molecular Science—Ultrasound and Sonochemistry, Springer International Publishing
Metadata
Title
Bubble Dynamics
Authors
Rachel Pflieger
Sergey I. Nikitenko
Carlos Cairós
Robert Mettin
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11717-7_1