Skip to main content
Top

2021 | OriginalPaper | Chapter

16. Bubbles Dynamics in Liquid

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The derivation of the generalized Rayleigh equation that describes the dynamics of a spherical gas bubble in a tube filled with an ideal liquid is given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34:94–98CrossRef Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34:94–98CrossRef
2.
go back to reference Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Ann Rev Fluid Mech 9:145–185CrossRef Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Ann Rev Fluid Mech 9:145–185CrossRef
3.
go back to reference d’Agostino L, Salvetti MV (2008) Fluid dynamics of cavitation and cavitating turbopumps. Springer, Vien, New York d’Agostino L, Salvetti MV (2008) Fluid dynamics of cavitation and cavitating turbopumps. Springer, Vien, New York
4.
go back to reference Zudin YB (1992) Analog of the Rayleigh equation for the bubble dynamics in a tube. Inzh-Fiz Zh 63(1):28–31 Zudin YB (1992) Analog of the Rayleigh equation for the bubble dynamics in a tube. Inzh-Fiz Zh 63(1):28–31
5.
go back to reference Zudin YB (1995) Calculation of the rise velocity of large gas bubbles. Inzh-Fiz Zh 68(1):13–17MathSciNet Zudin YB (1995) Calculation of the rise velocity of large gas bubbles. Inzh-Fiz Zh 68(1):13–17MathSciNet
6.
go back to reference Zudin YB (1998) Calculation of the drift velocity in bubbly flow in a vertical tube. Inzh-Fiz Zh 71(6):996–999 Zudin YB (1998) Calculation of the drift velocity in bubbly flow in a vertical tube. Inzh-Fiz Zh 71(6):996–999
7.
go back to reference Freeden W, Gutting M (2013) Special functions of mathematical (geo-)physics. Appl Numer Harmonic Anal. Springer, Basel Freeden W, Gutting M (2013) Special functions of mathematical (geo-)physics. Appl Numer Harmonic Anal. Springer, Basel
8.
go back to reference Klaseboer E, Khoo BC (2006) A modified Rayleigh-Plesset model for a nonspherically symmetric oscillating bubble with applications to boundary integral methods. Eng Anal Bound Elem 30(1):59–71CrossRef Klaseboer E, Khoo BC (2006) A modified Rayleigh-Plesset model for a nonspherically symmetric oscillating bubble with applications to boundary integral methods. Eng Anal Bound Elem 30(1):59–71CrossRef
9.
go back to reference Zudin YB, Isakov NS, Zenin VV (2014) Generalized Rayleigh equation for the bubble dynamics in a tube. J Eng Phys Thermophys 87(6):1487–1493CrossRef Zudin YB, Isakov NS, Zenin VV (2014) Generalized Rayleigh equation for the bubble dynamics in a tube. J Eng Phys Thermophys 87(6):1487–1493CrossRef
10.
go back to reference Scripov VP (1974) Metastable liquids. John Wiley & Sons, New York Scripov VP (1974) Metastable liquids. John Wiley & Sons, New York
11.
go back to reference Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton, New York Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton, New York
12.
go back to reference Perrot P (1998) A to Z of thermodynamics. Oxford University Press Perrot P (1998) A to Z of thermodynamics. Oxford University Press
13.
go back to reference Kashchiev D (2000) Nucleation: basic theory with applications. Butterworth-Heinemann, Oxford Kashchiev D (2000) Nucleation: basic theory with applications. Butterworth-Heinemann, Oxford
14.
go back to reference Horst JH, Kashchiev D (2008) Rate of two-dimensional nucleation: verifying classical and atomistic theories by Monte Carlo simulation. J Phys Chem B 112(29):8614–8618CrossRef Horst JH, Kashchiev D (2008) Rate of two-dimensional nucleation: verifying classical and atomistic theories by Monte Carlo simulation. J Phys Chem B 112(29):8614–8618CrossRef
15.
go back to reference Sekine M, Yasuoka K, Kinjo T, Matsumoto M (2008) Liquid–vapor nucleation simulation of Lennard-Jones fluid by molecular dynamics method. Fluid Dyn Res 40:597–605CrossRef Sekine M, Yasuoka K, Kinjo T, Matsumoto M (2008) Liquid–vapor nucleation simulation of Lennard-Jones fluid by molecular dynamics method. Fluid Dyn Res 40:597–605CrossRef
16.
go back to reference Chao L, Xiaobo W, Hualing Z (2010) Molecular dynamics simulation of bubble nucleation in superheated liquid. In: Proceedings of the 14th international heat transfer conference IHTC14, August 7–13, Washington. IHTC14-22129 Chao L, Xiaobo W, Hualing Z (2010) Molecular dynamics simulation of bubble nucleation in superheated liquid. In: Proceedings of the 14th international heat transfer conference IHTC14, August 7–13, Washington. IHTC14-22129
17.
go back to reference Griffiths DJ (2005) Introduction to quantum mechanics, 2nd edn. Prentice Hall International Griffiths DJ (2005) Introduction to quantum mechanics, 2nd edn. Prentice Hall International
18.
go back to reference Guénault AM (2003) Basic superfluids. Taylor & Francis, LondonMATH Guénault AM (2003) Basic superfluids. Taylor & Francis, LondonMATH
20.
go back to reference Keith AC, Lazzati D (2011) Thermal fluctuations and nanoscale effects in the nucleation of carbonaceous dust grains. Mon Not R Astron Soc 410(1):685–693CrossRef Keith AC, Lazzati D (2011) Thermal fluctuations and nanoscale effects in the nucleation of carbonaceous dust grains. Mon Not R Astron Soc 410(1):685–693CrossRef
21.
go back to reference Zudin YB (1998) Calculation of the surface density of nucleation sites in nucleate boiling of a liquid. J Eng Phys Thermophys 71:178–183CrossRef Zudin YB (1998) Calculation of the surface density of nucleation sites in nucleate boiling of a liquid. J Eng Phys Thermophys 71:178–183CrossRef
22.
go back to reference Zudin YB (1998) The Distance between nucleate boiling sites. High Temp 36:662–663 Zudin YB (1998) The Distance between nucleate boiling sites. High Temp 36:662–663
24.
go back to reference Truesdell C (2018) The kinematics of vorticity. Courier Dover Publications Truesdell C (2018) The kinematics of vorticity. Courier Dover Publications
25.
go back to reference Bharucha-Reid AT (1960) Elements of the theory of Markov processes and their applications. McGraw-Hill, New YorkMATH Bharucha-Reid AT (1960) Elements of the theory of Markov processes and their applications. McGraw-Hill, New YorkMATH
26.
go back to reference Prigogine I, Stengers I (1984) Order out of Chaos. Bantam Books, University of Michigan Prigogine I, Stengers I (1984) Order out of Chaos. Bantam Books, University of Michigan
27.
go back to reference Prigogine I (1961) Introduction to thermodynamics of irreversible processes, 2nd edn. Interscience, New YorkMATH Prigogine I (1961) Introduction to thermodynamics of irreversible processes, 2nd edn. Interscience, New YorkMATH
28.
go back to reference Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press
29.
go back to reference Taylor G I (1935) Statistical theory of turbulence. In: Proceedings of the royal society of London. Series A, mathematical and physical sciences, vol 151, no 873, pp 421–444 Taylor G I (1935) Statistical theory of turbulence. In: Proceedings of the royal society of London. Series A, mathematical and physical sciences, vol 151, no 873, pp 421–444
30.
go back to reference Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. In: Proceedings of the USSR academy of sciences (in Russian), vol 30, pp 299–303 Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. In: Proceedings of the USSR academy of sciences (in Russian), vol 30, pp 299–303
31.
go back to reference Moulden TH (1977) Handbook of turbulence. fundamental and applications. In: Frost W, Moulden TH (eds) Plenum Press, New York Moulden TH (1977) Handbook of turbulence. fundamental and applications. In: Frost W, Moulden TH (eds) Plenum Press, New York
32.
go back to reference Spalart PR, Allmaras SR (1992) A one–equation turbulence model for aerodynamic flows. AIAA Paper 92–0439, Jan 1992 Spalart PR, Allmaras SR (1992) A one–equation turbulence model for aerodynamic flows. AIAA Paper 92–0439, Jan 1992
33.
go back to reference Menter FR (1993) Zonal two-equation k-x turbulence models for aerodynamic flows. AIAA Paper 93–2306, Jun 1993 Menter FR (1993) Zonal two-equation k-x turbulence models for aerodynamic flows. AIAA Paper 93–2306, Jun 1993
34.
go back to reference Kolmogorov AN (1949) On the disintegration of drops in turbulent flow. Dokl Akad Nauk 66:825–828 Kolmogorov AN (1949) On the disintegration of drops in turbulent flow. Dokl Akad Nauk 66:825–828
35.
go back to reference Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1(3):289–295CrossRef Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1(3):289–295CrossRef
36.
go back to reference Batchelor GK (1951) Pressure fluctuations in isotropic turbulence. Proc Cambridge Phil Soc 47:359–374CrossRef Batchelor GK (1951) Pressure fluctuations in isotropic turbulence. Proc Cambridge Phil Soc 47:359–374CrossRef
37.
go back to reference Qian D, McLaughlin JB, Sankaranarayanan K, Sundaresan S, Kontomaris K (2006) Simulation of bubble breakup dynamics in homogeneous turbulence. Chem Eng Commun 193:1038–1063CrossRef Qian D, McLaughlin JB, Sankaranarayanan K, Sundaresan S, Kontomaris K (2006) Simulation of bubble breakup dynamics in homogeneous turbulence. Chem Eng Commun 193:1038–1063CrossRef
38.
go back to reference Sankaranarayanan K, Shan X, Kevrekidis IG, Sundaresan S (1999) Bubble flow simulations with the lattice Boltzmann method. Chem Eng Sci 54:4817–4823CrossRef Sankaranarayanan K, Shan X, Kevrekidis IG, Sundaresan S (1999) Bubble flow simulations with the lattice Boltzmann method. Chem Eng Sci 54:4817–4823CrossRef
39.
go back to reference Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall
40.
go back to reference Baldyga J, Bourne JR (1995) Interpretation of turbulent mixing using fractals and multifractals. Chem Eng Sci 50:381–400CrossRef Baldyga J, Bourne JR (1995) Interpretation of turbulent mixing using fractals and multifractals. Chem Eng Sci 50:381–400CrossRef
41.
go back to reference Shinnar R (1961) On the behaviour of liquid dispersions in mixing vessels. J Fluid Mech 10:259–275CrossRef Shinnar R (1961) On the behaviour of liquid dispersions in mixing vessels. J Fluid Mech 10:259–275CrossRef
42.
go back to reference Hesketh RP, Russell TWF, Etchells AW (1987) Bubble size in horizontal pipelines. AIChE J 33(4):663–667CrossRef Hesketh RP, Russell TWF, Etchells AW (1987) Bubble size in horizontal pipelines. AIChE J 33(4):663–667CrossRef
43.
go back to reference Sevik M, Park SH (1973) The splitting of drops and bubbles by turbulent fluid flow. J Fluids Eng 95:53–60CrossRef Sevik M, Park SH (1973) The splitting of drops and bubbles by turbulent fluid flow. J Fluids Eng 95:53–60CrossRef
44.
go back to reference Risso F, Fabre J (1998) Oscillations and breakup of a bubble immersed in a turbulent field. J Fluid Mech 372:323–355CrossRef Risso F, Fabre J (1998) Oscillations and breakup of a bubble immersed in a turbulent field. J Fluid Mech 372:323–355CrossRef
45.
go back to reference Karabelas AJ (1978) Droplet size spectra generated in turbulent pipe flow of dilute liquid/liquid dispersions. A.I.C.E.J 24(2):170–180 Karabelas AJ (1978) Droplet size spectra generated in turbulent pipe flow of dilute liquid/liquid dispersions. A.I.C.E.J 24(2):170–180
46.
go back to reference Evans GM, Jameson GJ, Atkinson BW (1992) Prediction of the bubble size generated by a plunging liquid jet. Chem Eng Sci 47(13–14):3265–3272CrossRef Evans GM, Jameson GJ, Atkinson BW (1992) Prediction of the bubble size generated by a plunging liquid jet. Chem Eng Sci 47(13–14):3265–3272CrossRef
47.
go back to reference Andreussi P, Paglianti A, Silva FS (1999) Dispersed bubble flow in horizontal pipes. Chem Eng Sci 54(8):1101–1107CrossRef Andreussi P, Paglianti A, Silva FS (1999) Dispersed bubble flow in horizontal pipes. Chem Eng Sci 54(8):1101–1107CrossRef
48.
go back to reference Schlichting H, Gersten K (1997) Grenzschicht-Theorie. Springer, Berlin Heidelberg, New YorkCrossRef Schlichting H, Gersten K (1997) Grenzschicht-Theorie. Springer, Berlin Heidelberg, New YorkCrossRef
49.
go back to reference Hibiki T, Ishii M, Xiao Z (2001) Axial interfacial area transport of vertical bubbly flows. Int J Heat Mass Trans 44:1869–1888CrossRef Hibiki T, Ishii M, Xiao Z (2001) Axial interfacial area transport of vertical bubbly flows. Int J Heat Mass Trans 44:1869–1888CrossRef
50.
go back to reference Abdulmouti H (2014) Bubbly two-phase flow: Part I—characteristics, structures, behaviors and flow patterns. Am J Fluid Dyn 4(4):194–240 Abdulmouti H (2014) Bubbly two-phase flow: Part I—characteristics, structures, behaviors and flow patterns. Am J Fluid Dyn 4(4):194–240
Metadata
Title
Bubbles Dynamics in Liquid
Author
Dr. Yuri B. Zudin
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-67553-0_16

Premium Partners