Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2018

16-05-2018

Buckling Modes of Structural Elements of Off-Axis Fiber-Reinforced Plastics

Authors: V. N. Paimushin, N. V. Polyakova, S. A. Kholmogorov, M. A. Shishov

Published in: Mechanics of Composite Materials | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structures of two types of unidirectional fiber-reinforced composites — with an ELUR-P carbon fiber tape, an XT-118 cold-cure binder with an HSE 180 REM prepreg, and a hot-cure binder — were investigated. The diameters of fibers and fiber bundles (threads) of both the types of composites were measured, and their mutual arrangement was examined both in the semifinished products (in the uncured state) and in the finished composites. The defects characteristic of both the types of binder and manufacturing technique were detected in the cured composites. Based on an analysis of the results obtained, linearized problems on the internal multiscale buckling modes of an individual fiber (with and without account of its interaction with the surrounding matrix) or of a fiber bundle are formulated. In the initial atate, these structural elements of the fibrous composites are in a subcritical (unperturbed) state under the action of shear stresses and tension (compression) in the transverse direction. Such an initial stress state is formed in them in tension and compression tests on flat specimens made of off-axis-reinforced composites with straight fibers. To formulate the problems, the equations derived earlier from a consistent variant of geometrically nonlinear equations of elasticity theory by reducing them to the one-dimensional equations of the theory of straight rods on the basis of a refined Timoshenko shear model with account of tensile-compressive strains in the transverse direction are used. It is shown that, in loading test specimens, a continuous rearrangement of composite structure can occur due to the realization and continuous change of internal buckling modes as the wave-formation parameter varies continuously, which apparently explain the decrease revealed in the tangential shear modulus of the fibrous composites with increasing shear strains.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. N. Guz, Stability of Elastic Bodies at Finite Strains [in Russian], Naukova Dumka, Kiev (1973). A. N. Guz, Stability of Elastic Bodies at Finite Strains [in Russian], Naukova Dumka, Kiev (1973).
2.
go back to reference V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayered Structures [in Russian], Mashinostoyenie, Moscow (1980). V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayered Structures [in Russian], Mashinostoyenie, Moscow (1980).
3.
go back to reference A. N. Polilov, Etudes on Mechanics of Composites [in Russian], Fizmatlit, Moscow (2015). A. N. Polilov, Etudes on Mechanics of Composites [in Russian], Fizmatlit, Moscow (2015).
4.
go back to reference M. A. Alimov, A. M. Dumanskii, and A. A. Radchenko, “An analysis of the nonlinear deformation of an angle-ply CFRP in uniaxial tension,” Probl. Mashinostr. Nadezhn. Mashin, No. 2, 39-44 (2012). M. A. Alimov, A. M. Dumanskii, and A. A. Radchenko, “An analysis of the nonlinear deformation of an angle-ply CFRP in uniaxial tension,” Probl. Mashinostr. Nadezhn. Mashin, No. 2, 39-44 (2012).
5.
go back to reference A. M. Dumanskii, M. A. Alimov, and A. A. Radchenko, “An analysis of the nonlinear behavior of a composite material in uniaxial tension,” Inform. Svyaz’, No. 1, 69-72 (2013). A. M. Dumanskii, M. A. Alimov, and A. A. Radchenko, “An analysis of the nonlinear behavior of a composite material in uniaxial tension,” Inform. Svyaz’, No. 1, 69-72 (2013).
6.
go back to reference V. N. Paimushin, D. V. Tarlakovskii, and C. A. Kholmogorov, “On a nonclassical buckling form and failure of composite tests-specimens in three-point bending,” Uch. Zap. Kazan Universitiy, Ser. Phys.-Mat. Nauki, 158, No. 3, 350-375 (2016). V. N. Paimushin, D. V. Tarlakovskii, and C. A. Kholmogorov, “On a nonclassical buckling form and failure of composite tests-specimens in three-point bending,” Uch. Zap. Kazan Universitiy, Ser. Phys.-Mat. Nauki, 158, No. 3, 350-375 (2016).
7.
go back to reference V. N. Paimushin and S. A. Kholmogorov, “Physical-mechanical properties of a fiber-reiforced composite based on an ELUR-P carbon tape and an ХТ-118 binder,” Mech. Compos. Mater., 54, No. 1, 2-12 (2017).CrossRef V. N. Paimushin and S. A. Kholmogorov, “Physical-mechanical properties of a fiber-reiforced composite based on an ELUR-P carbon tape and an ХТ-118 binder,” Mech. Compos. Mater., 54, No. 1, 2-12 (2017).CrossRef
8.
go back to reference B. W. Rosen, “Mechanics of composite strengthening in fiber composite materials,” Am. Soc. Metals, Metals Park, Ohio, 37-75 (1965). B. W. Rosen, “Mechanics of composite strengthening in fiber composite materials,” Am. Soc. Metals, Metals Park, Ohio, 37-75 (1965).
9.
go back to reference B. Budiansky and N. A. Fleck, “Compressive failure of fiber composites,” J. Mech. Phys. Solids, 41, No. 1, 183-211 (1993).CrossRef B. Budiansky and N. A. Fleck, “Compressive failure of fiber composites,” J. Mech. Phys. Solids, 41, No. 1, 183-211 (1993).CrossRef
10.
go back to reference K. H. Lo and E. S. M. Chim, “Compressive strength of unidirectional composites,” J. Reinf. Plast. Compos., 11, No. 8, 838-896 (1992).CrossRef K. H. Lo and E. S. M. Chim, “Compressive strength of unidirectional composites,” J. Reinf. Plast. Compos., 11, No. 8, 838-896 (1992).CrossRef
11.
go back to reference Y. L. Xu and K. L. Reifsnider, “Micromechanical modeling of composite compressive strength,” J. Compos. Mater., 27, No. 6, 572-588 (1993).CrossRef Y. L. Xu and K. L. Reifsnider, “Micromechanical modeling of composite compressive strength,” J. Compos. Mater., 27, No. 6, 572-588 (1993).CrossRef
12.
go back to reference A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, No. 2, 295-305 (2010).CrossRef A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, No. 2, 295-305 (2010).CrossRef
13.
go back to reference M. Meng, H. R. Le, M. J. Rizvi, and S. M. Grove, “The effects of unequal compressive/tensile moduli of composites,” Compos. Struct., 126, 207-215 (2015).CrossRef M. Meng, H. R. Le, M. J. Rizvi, and S. M. Grove, “The effects of unequal compressive/tensile moduli of composites,” Compos. Struct., 126, 207-215 (2015).CrossRef
14.
go back to reference J. Ye, Y. Qiu, X. Chen, and J. Ma, “Initial and final failure strength analysis of composites based on a micromechanical method,” Compos. Struct., 125, 328-335 (2015).CrossRef J. Ye, Y. Qiu, X. Chen, and J. Ma, “Initial and final failure strength analysis of composites based on a micromechanical method,” Compos. Struct., 125, 328-335 (2015).CrossRef
15.
go back to reference T. J. Vaughan and C. T. McCarthy, “A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials,” Compos. Sci. Technol., 70, 291-297 (2010).CrossRef T. J. Vaughan and C. T. McCarthy, “A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials,” Compos. Sci. Technol., 70, 291-297 (2010).CrossRef
16.
go back to reference R. Talreja, “Assessment of the fundamentals of failure theories for composite materials,” Compos. Sci. Technol., 105, 190-201 (2014)CrossRef R. Talreja, “Assessment of the fundamentals of failure theories for composite materials,” Compos. Sci. Technol., 105, 190-201 (2014)CrossRef
17.
go back to reference M. Hojo, M. Mizuno, T. Hobbiebrunken, T. Adachi, M. Tanaka, and S. K. Ha, “Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded UD-CFRP from viewpoint of failure initiation,” Compos. Sci. Technol., 69, Nos. 11-12, 1726-1734 (2009).CrossRef M. Hojo, M. Mizuno, T. Hobbiebrunken, T. Adachi, M. Tanaka, and S. K. Ha, “Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded UD-CFRP from viewpoint of failure initiation,” Compos. Sci. Technol., 69, Nos. 11-12, 1726-1734 (2009).CrossRef
18.
go back to reference D790-03 2005. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Vol. 08.01, Plastics. ASTM Int., West Conshohocken, PA. D790-03 2005. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Vol. 08.01, Plastics. ASTM Int., West Conshohocken, PA.
19.
go back to reference D2344/D2344M-00, 2005. Standart Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and their Laminates, Vol. 15.03, Space Simulation; Aerospace and Aircraft; Composite Materials. ASTM Int., West Conshohocken, PA. D2344/D2344M-00, 2005. Standart Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and their Laminates, Vol. 15.03, Space Simulation; Aerospace and Aircraft; Composite Materials. ASTM Int., West Conshohocken, PA.
20.
go back to reference GOST 32659−2014. Polymer Composites. Test Methods. Determination of the Apparent Ultimate Strength in Interlaminar Shear by Testing a Short Beam. GOST 32659−2014. Polymer Composites. Test Methods. Determination of the Apparent Ultimate Strength in Interlaminar Shear by Testing a Short Beam.
21.
go back to reference V. N. Paimushin and V. I. Shalashilin, “The relations of deformation theory in the quadratic approximation and the problems of constructing improved versions of the geometrically non-linear theory of laminated structures,” J. Appl. Math. Mech., 69, No. 5, 773-791 (2005).CrossRef V. N. Paimushin and V. I. Shalashilin, “The relations of deformation theory in the quadratic approximation and the problems of constructing improved versions of the geometrically non-linear theory of laminated structures,” J. Appl. Math. Mech., 69, No. 5, 773-791 (2005).CrossRef
22.
go back to reference V. N. Paimushin, “Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns,” J. Appl. Math. Mech., 71, No. 5, 772-805 (2007).CrossRef V. N. Paimushin, “Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns,” J. Appl. Math. Mech., 71, No. 5, 772-805 (2007).CrossRef
23.
go back to reference V. N. Paimushin and N. V. Polyakova, “The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability,” J. Appl. Math. Mech., 73, No. 2, 220-236 (2009).CrossRef V. N. Paimushin and N. V. Polyakova, “The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability,” J. Appl. Math. Mech., 73, No. 2, 220-236 (2009).CrossRef
Metadata
Title
Buckling Modes of Structural Elements of Off-Axis Fiber-Reinforced Plastics
Authors
V. N. Paimushin
N. V. Polyakova
S. A. Kholmogorov
M. A. Shishov
Publication date
16-05-2018
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2018
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9726-8

Other articles of this Issue 2/2018

Mechanics of Composite Materials 2/2018 Go to the issue

Premium Partners