Skip to main content
Top

2018 | OriginalPaper | Chapter

7. Buckling of Spherical Shells

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spherical shells, as part of structural systems, are frequently used in many structural design problems. This type of shells is capable to stand high internal or external pressures and is especially quite stable under external pressures. The behavior of deep spherical shells, in particular, under external pressure is quite unique and the bifurcation load is far from expectation. Ancient spherical domes with wide spans in historic buildings is a good example of such structure to show its remarkable stability feature. Spherical shells used in the industrial applications are exposed to different types of mechanical or thermal loads. Under these circumstances, it is necessary to predict the critical mechanical and/or thermal buckling loads of spherical shells. Closed form solutions for the buckling loads are valuable tools for designer in the design stage. This chapter presents the methods to calculate critical buckling temperatures or pressures in spherical shell made of isotropic and functionally graded materials for both perfect and imperfect shells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw-Hill.MATH Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates, and shells. New York: McGraw-Hill.MATH
2.
go back to reference Eslami, M. R. (2010). Thermo-mechanical buckling of composite plates and shells. Tehran: Amirkabir University Press. Eslami, M. R. (2010). Thermo-mechanical buckling of composite plates and shells. Tehran: Amirkabir University Press.
3.
go back to reference Ghaedi, P., Eslami, M. R., & Jahanbakhsh, J. (2012). Thermoelastic stability analysis of imperfect functionally graded shallow spherical shell. Journal of Nonlinear Engineering, 1(1), 11–24. Ghaedi, P., Eslami, M. R., & Jahanbakhsh, J. (2012). Thermoelastic stability analysis of imperfect functionally graded shallow spherical shell. Journal of Nonlinear Engineering, 1(1), 11–24.
4.
go back to reference Shahsiah, R., & Eslami, M. R. (2003). Thermal and mechanical istability of an imperfect shallow spherical cap. Journal of Thermal Stresses, 26, 723–737.CrossRef Shahsiah, R., & Eslami, M. R. (2003). Thermal and mechanical istability of an imperfect shallow spherical cap. Journal of Thermal Stresses, 26, 723–737.CrossRef
5.
go back to reference Donnell, L. H. (1977). Beams, plates and shells. New York: McGraw-Hill.MATH Donnell, L. H. (1977). Beams, plates and shells. New York: McGraw-Hill.MATH
6.
go back to reference Morris, N. F. (1996). Shell stability; the long road from theory to practice. Journal of Engineering Structures, 18, 801–806.CrossRef Morris, N. F. (1996). Shell stability; the long road from theory to practice. Journal of Engineering Structures, 18, 801–806.CrossRef
7.
go back to reference Eslami, M. R., Ghorbani, H. R., & Shakeri, M. (2001). Thermoelastic buckling of thin spherical shells. Journal of Thermal Stresses, 24(12), 1177–1198.CrossRef Eslami, M. R., Ghorbani, H. R., & Shakeri, M. (2001). Thermoelastic buckling of thin spherical shells. Journal of Thermal Stresses, 24(12), 1177–1198.CrossRef
8.
go back to reference Zoelly, R. (1915). Ueber ein Krichungra Problem und der Kugclschale, Thesis, Switzerland. Zoelly, R. (1915). Ueber ein Krichungra Problem und der Kugclschale, Thesis, Switzerland.
9.
go back to reference von Karman, T., & Tsien, H. S. (1939). The buckling of spherical shells by external pressure. Journal of the Aeronautical Sciences, 7, 43–50.CrossRefMATHMathSciNet von Karman, T., & Tsien, H. S. (1939). The buckling of spherical shells by external pressure. Journal of the Aeronautical Sciences, 7, 43–50.CrossRefMATHMathSciNet
10.
go back to reference Kaplan, A. (1974). Buckling of spherical shells, thin-shell structures theory; experiment and design (pp. 247–288). Englewood Cliffs: Prentice-Hall. Kaplan, A. (1974). Buckling of spherical shells, thin-shell structures theory; experiment and design (pp. 247–288). Englewood Cliffs: Prentice-Hall.
11.
go back to reference Budiansky, B., & Roth, R. S. (1962). Axisymmetric dynamic buckling of clamped shallow spherical caps. Washington: NASA TN. Budiansky, B., & Roth, R. S. (1962). Axisymmetric dynamic buckling of clamped shallow spherical caps. Washington: NASA TN.
12.
go back to reference Weinitschke, H. J. (1962). Asymmetric Buckling of Clamped Shallow Spherical Shell, NASA TND-1510 (pp. 481–490). Weinitschke, H. J. (1962). Asymmetric Buckling of Clamped Shallow Spherical Shell, NASA TND-1510 (pp. 481–490).
13.
go back to reference Huang, N. C. (1964). Unsymmetrical buckling of thin shallow spherical shells. ASME Journal of Applied Mechanics, 31, 447–457.CrossRefMathSciNet Huang, N. C. (1964). Unsymmetrical buckling of thin shallow spherical shells. ASME Journal of Applied Mechanics, 31, 447–457.CrossRefMathSciNet
14.
15.
16.
go back to reference Anderson, M.S., Thermal Buckling of Cylinders, Collected Papers on Instability of Shell Structures NASA TN-D-1510, pp. 255-265, 1962. Anderson, M.S., Thermal Buckling of Cylinders, Collected Papers on Instability of Shell Structures NASA TN-D-1510, pp. 255-265, 1962.
17.
go back to reference Kovalenko, A. D., & Alblas, J. B. (1969). Thermoelasticity, basic theory and applications, appendix on thermoelastic stability. Groningen: Wolters-Noordhoff Publications. Kovalenko, A. D., & Alblas, J. B. (1969). Thermoelasticity, basic theory and applications, appendix on thermoelastic stability. Groningen: Wolters-Noordhoff Publications.
18.
go back to reference Muc, A. (1989). Transverse shear effects in stability problems of laminated shallow shells. Composite structures (Vol. 12, pp. 171–180). Amsterdam: Elsevier Science Publishers Ltd. Muc, A. (1989). Transverse shear effects in stability problems of laminated shallow shells. Composite structures (Vol. 12, pp. 171–180). Amsterdam: Elsevier Science Publishers Ltd.
19.
go back to reference Jahanbakhsh, J., Eslami, M. R., & Ghaedi, P. (2012). Thermal buckling of imperfect deep functionally graded spherical shell. Journal of Thermal Stresses, 35, 921–946.CrossRef Jahanbakhsh, J., Eslami, M. R., & Ghaedi, P. (2012). Thermal buckling of imperfect deep functionally graded spherical shell. Journal of Thermal Stresses, 35, 921–946.CrossRef
20.
go back to reference Ganapathi, M., & Varadan, T. K. (1982). Dynamic buckling of orthotropic shallow spherical shells. Computer and structures (Vol. 15, pp. 517–520). Ganapathi, M., & Varadan, T. K. (1982). Dynamic buckling of orthotropic shallow spherical shells. Computer and structures (Vol. 15, pp. 517–520).
21.
go back to reference Ganapathi, M., & Varadan, T. K. (1995). Dynamic buckling of laminated anisotropic spherical caps. Journal of Applied Mechanics, 62(1), 13–19.CrossRefMATH Ganapathi, M., & Varadan, T. K. (1995). Dynamic buckling of laminated anisotropic spherical caps. Journal of Applied Mechanics, 62(1), 13–19.CrossRefMATH
22.
go back to reference Muc, Aleksander. (1992). On the buckling of composite shells of revolution under external pressure. Composite structures, 21, 107–119.CrossRef Muc, Aleksander. (1992). On the buckling of composite shells of revolution under external pressure. Composite structures, 21, 107–119.CrossRef
23.
go back to reference Love, A. E. H. (1888). On the small free vibration and deformation of elastic shells. Philosophical Transactions of the Royal Society (London), serie A(17), 491–549.CrossRefMATH Love, A. E. H. (1888). On the small free vibration and deformation of elastic shells. Philosophical Transactions of the Royal Society (London), serie A(17), 491–549.CrossRefMATH
24.
go back to reference Pandey, M. D., & Sherboune, A. N. (1991). Imperfection sensitivity of optimized laminated composite shells: A physical approach. International Journal of Solids and Structures, 27(12), 1575–1595.CrossRef Pandey, M. D., & Sherboune, A. N. (1991). Imperfection sensitivity of optimized laminated composite shells: A physical approach. International Journal of Solids and Structures, 27(12), 1575–1595.CrossRef
25.
go back to reference Palassopoulos, G. V. (1993). New approach to buckling of imperfection sensitive structures. Journal of the Engineering Mechanics, 119(4), 850–869.CrossRef Palassopoulos, G. V. (1993). New approach to buckling of imperfection sensitive structures. Journal of the Engineering Mechanics, 119(4), 850–869.CrossRef
26.
go back to reference Kasagi, A., & Sridharan, S. (1995). Imperfection sensitivity of layered composite cylinders. Journal of Engineering Mechanics, 121(7), 810–818.CrossRef Kasagi, A., & Sridharan, S. (1995). Imperfection sensitivity of layered composite cylinders. Journal of Engineering Mechanics, 121(7), 810–818.CrossRef
27.
go back to reference Mirzavand, B., & Eslami, M. R. (2008). Thermoelastic stability analysis of imperfect functionally graded cylindrical shells. Journal of Mechanics of Materials and Structures, 3(8), 1561–1572.CrossRef Mirzavand, B., & Eslami, M. R. (2008). Thermoelastic stability analysis of imperfect functionally graded cylindrical shells. Journal of Mechanics of Materials and Structures, 3(8), 1561–1572.CrossRef
28.
go back to reference Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability. New York: McGraw-Hill. Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability. New York: McGraw-Hill.
29.
go back to reference Incropera, F. P. (2007). Fundamental of heat and mass transfer. New York: Wiley. Incropera, F. P. (2007). Fundamental of heat and mass transfer. New York: Wiley.
30.
go back to reference Hetnarski, R. B., & Eslami, M. R. (2009). Thermal stresses-advanced theory and applications. New York: Springer.MATH Hetnarski, R. B., & Eslami, M. R. (2009). Thermal stresses-advanced theory and applications. New York: Springer.MATH
31.
go back to reference Prakash, T., Maloy, K. S., & Ganapathi, M. (2007). Nonlinear dynamic thermal buckling of functionally graded spherical caps. AIAA Journal, 45(2), 505–508.CrossRef Prakash, T., Maloy, K. S., & Ganapathi, M. (2007). Nonlinear dynamic thermal buckling of functionally graded spherical caps. AIAA Journal, 45(2), 505–508.CrossRef
32.
go back to reference Shahsiah, R., Eslami, M. R., & Sabzikar Boroujerdy, M. (2011). Thermal instability of functionally graded deep spherical shells. Archive of Applied Mechanics, 81(10), 1455–1471.CrossRefMATH Shahsiah, R., Eslami, M. R., & Sabzikar Boroujerdy, M. (2011). Thermal instability of functionally graded deep spherical shells. Archive of Applied Mechanics, 81(10), 1455–1471.CrossRefMATH
33.
go back to reference Hafezalkotob, A., & Eslami, M. R. (2011). Thermomechanical buckling of simply supported shallow fgm spherical shells with temperature-dependent material. Transactions of the ISME, 11(2), 39–65. Hafezalkotob, A., & Eslami, M. R. (2011). Thermomechanical buckling of simply supported shallow fgm spherical shells with temperature-dependent material. Transactions of the ISME, 11(2), 39–65.
34.
go back to reference Flugge, W. (1932). The stability of the cylindrical shells. Ingenieur Archiv, 3(5), 463–506.CrossRef Flugge, W. (1932). The stability of the cylindrical shells. Ingenieur Archiv, 3(5), 463–506.CrossRef
35.
go back to reference Lundquist, E. E. (1933). Strength tests of thin walled duraliumin cylinders in compression. NACA Report 473. Lundquist, E. E. (1933). Strength tests of thin walled duraliumin cylinders in compression. NACA Report 473.
36.
go back to reference Donnell, L. H. (1934). A new theory for the buckling of thin cylinders under axial compression and bending. Transactions of the ASME, 56, 795–806. Donnell, L. H. (1934). A new theory for the buckling of thin cylinders under axial compression and bending. Transactions of the ASME, 56, 795–806.
37.
go back to reference Donnell, L. H., & Wan, C. C. (1950). Effect of imperfections on buckling of thin cylinders and columns under axial compression. Journal of Applied Mechanics ASME, 17, 73–83.MATH Donnell, L. H., & Wan, C. C. (1950). Effect of imperfections on buckling of thin cylinders and columns under axial compression. Journal of Applied Mechanics ASME, 17, 73–83.MATH
38.
go back to reference Donnell, L. H. (1956). Effect of imperfections on buckling of thin cylinders under external pressure. Journal of Applied Mechanics ASME, 23, 569–575.MATHMathSciNet Donnell, L. H. (1956). Effect of imperfections on buckling of thin cylinders under external pressure. Journal of Applied Mechanics ASME, 23, 569–575.MATHMathSciNet
39.
go back to reference Wunderlich, W., & Albertin, U. (2002). Buckling behaviour of imperfect spherical shells. International Journal of Non-Linear Mechanics, 37, 589–604.CrossRefMATH Wunderlich, W., & Albertin, U. (2002). Buckling behaviour of imperfect spherical shells. International Journal of Non-Linear Mechanics, 37, 589–604.CrossRefMATH
40.
go back to reference Nie, G. H. (2003). On the buckling of imperfect squarely-reticulated shallow spherical shells supported by elastic media. Thin-Walled Structures, 41, 1–13.CrossRef Nie, G. H. (2003). On the buckling of imperfect squarely-reticulated shallow spherical shells supported by elastic media. Thin-Walled Structures, 41, 1–13.CrossRef
41.
go back to reference Nie, G. H. (2003). Analysis of non-linear behaviour of imperfect shallow spherical shells on Pasternak foundation by the asymptotic iteration method. International Journal of Pressure Vessels and Piping, 80, 229–235.CrossRef Nie, G. H. (2003). Analysis of non-linear behaviour of imperfect shallow spherical shells on Pasternak foundation by the asymptotic iteration method. International Journal of Pressure Vessels and Piping, 80, 229–235.CrossRef
42.
go back to reference Shahsiah, R., Eslami, M. R., & Naj, R. (2006). Thermal instability of functionally graded shallow spherical shell. Journal of Thermal Stresses, 29(8), 771–790.CrossRef Shahsiah, R., Eslami, M. R., & Naj, R. (2006). Thermal instability of functionally graded shallow spherical shell. Journal of Thermal Stresses, 29(8), 771–790.CrossRef
43.
go back to reference Kao, R. (1981). Nonlinear creep buckling analysis of initially imperfect shallow spherical shells. Computers and Structures, 14(1–2), 111–122.CrossRefMATH Kao, R. (1981). Nonlinear creep buckling analysis of initially imperfect shallow spherical shells. Computers and Structures, 14(1–2), 111–122.CrossRefMATH
44.
go back to reference Batista, M., & Kosel, F. (2006). Thermoelastic stability of a double-layered spherical shell. International Journal of Non-Linear Mechanics, 41, 1016–1027.CrossRefMATH Batista, M., & Kosel, F. (2006). Thermoelastic stability of a double-layered spherical shell. International Journal of Non-Linear Mechanics, 41, 1016–1027.CrossRefMATH
45.
go back to reference Dumir, P. C., Dube, G. P., & Mallick, A. (2005). Axisymmetric buckling of laminated thick annular spherical cap. Nonlinear Science and Numerical Simulation, 10(2), 191–204.CrossRefMATH Dumir, P. C., Dube, G. P., & Mallick, A. (2005). Axisymmetric buckling of laminated thick annular spherical cap. Nonlinear Science and Numerical Simulation, 10(2), 191–204.CrossRefMATH
46.
go back to reference Hamed, E., Bradford, M. A., & Ian Gilbert, R. (2010). Nonlinear long-term behaviour of spherical shallow thin-walled concrete shells of revolution. International Journal of Solids and Structures, 47(2), 204–215.CrossRefMATH Hamed, E., Bradford, M. A., & Ian Gilbert, R. (2010). Nonlinear long-term behaviour of spherical shallow thin-walled concrete shells of revolution. International Journal of Solids and Structures, 47(2), 204–215.CrossRefMATH
47.
go back to reference Krizhevsky, G., & Stavsky, Y. (1995). Refined theory for non-linear buckling of heated composite shallow spherical shells. Computers and Structures, 55(6), 1007–1014.CrossRefMATH Krizhevsky, G., & Stavsky, Y. (1995). Refined theory for non-linear buckling of heated composite shallow spherical shells. Computers and Structures, 55(6), 1007–1014.CrossRefMATH
48.
go back to reference Enclyclopedia of Thermal Stresses. (2013). Edit. R.B., Springer, The Netherlands: Hetnarski. Enclyclopedia of Thermal Stresses. (2013). Edit. R.B., Springer, The Netherlands: Hetnarski.
49.
go back to reference Liew, K. M., Yang, J., & Kitipornchai, S. (2003). Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. International Journal of Solids and Structures, 40, 3869–3892.CrossRefMATH Liew, K. M., Yang, J., & Kitipornchai, S. (2003). Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. International Journal of Solids and Structures, 40, 3869–3892.CrossRefMATH
50.
go back to reference Shen, H. S. (2005). Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings. International Journal of Solids and Structures, 42, 6101–6121.CrossRefMATH Shen, H. S. (2005). Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings. International Journal of Solids and Structures, 42, 6101–6121.CrossRefMATH
51.
go back to reference Shen, H. S. (2002). Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments. Composites Science and Technology, 65, 1675–1690.CrossRef Shen, H. S. (2002). Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments. Composites Science and Technology, 65, 1675–1690.CrossRef
52.
go back to reference Shen, H. S., & Noda, N. (2007). Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments. Composite Structures, 77(4), 546–560.CrossRef Shen, H. S., & Noda, N. (2007). Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments. Composite Structures, 77(4), 546–560.CrossRef
53.
go back to reference Mirzavand, B., & Eslami, M. R. (2007). Thermal buckling of simply supported piezoelectric FGM cylindrical shells. Journal of Thermal Stresses, 30(11), 1117–1135.CrossRef Mirzavand, B., & Eslami, M. R. (2007). Thermal buckling of simply supported piezoelectric FGM cylindrical shells. Journal of Thermal Stresses, 30(11), 1117–1135.CrossRef
54.
go back to reference Mirzavand, B., & Eslami, M. R. (2010). Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells. Journal of Thermal Stresses, 33(7), 646–660.CrossRef Mirzavand, B., & Eslami, M. R. (2010). Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells. Journal of Thermal Stresses, 33(7), 646–660.CrossRef
57.
go back to reference Ravikiran, K., & Ganesan, N. (2005). A theoretical analysis of linear thermoelastic buckling of composite hemispherical shell with a cut-out at apex. Composite Structures, 68(1), 87101. Ravikiran, K., & Ganesan, N. (2005). A theoretical analysis of linear thermoelastic buckling of composite hemispherical shell with a cut-out at apex. Composite Structures, 68(1), 87101.
59.
go back to reference Bich, D. H., & Tung, H. V. (2011). Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects. International Journal of Non-Linear Mechanics, 46, 1195–1204.CrossRef Bich, D. H., & Tung, H. V. (2011). Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects. International Journal of Non-Linear Mechanics, 46, 1195–1204.CrossRef
Metadata
Title
Buckling of Spherical Shells
Author
M. Reza Eslami
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-62368-9_7

Premium Partners