Skip to main content
Top

2020 | OriginalPaper | Chapter

Building a Competitive Associative Classifier

Authors : Nitakshi Sood, Osmar Zaiane

Published in: Big Data Analytics and Knowledge Discovery

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the huge success of deep learning, other machine learning paradigms have had to take back seat. Yet other models, particularly rule-based, are more readable and explainable and can even be competitive when labelled data is not abundant. However, most of the existing rule-based classifiers suffer from the production of a large number of classification rules, affecting the model readability. This hampers the classification accuracy as noisy rules might not add any useful information for classification and also lead to longer classification time. In this study, we propose SigD2 which uses a novel, two-stage pruning strategy which prunes most of the noisy, redundant and uninteresting rules and makes the classification model more accurate and readable. To make SigDirect more competitive with the most prevalent but uninterpretable machine learning-based classifiers like neural networks and support vector machines, we propose bagging and boosting on the ensemble of the SigDirect classifier. The results of the proposed algorithms are quite promising and we are able to obtain a minimal set of statistically significant rules for classification without jeopardizing the classification accuracy. We use 15 UCI datasets and compare our approach with eight existing systems. The SigD2 and boosted SigDirect (ACboost) ensemble model outperform various state-of-the-art classifiers not only in terms of classification accuracy but also in terms of the number of rules.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Cohen, W.: Fast effective rule induction. In: International Conference on Machine Learning, pp. 115–123. Elsevier (1995) Cohen, W.: Fast effective rule induction. In: International Conference on Machine Learning, pp. 115–123. Elsevier (1995)
5.
go back to reference Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATH Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATH
7.
go back to reference Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning, vol. 96, pp. 148–156 (1996) Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning, vol. 96, pp. 148–156 (1996)
9.
go back to reference Li, J., Zaiane, O.R.: Exploiting statistically significant dependent rules for associative classification. Intell. Data Anal. 21(5), 1155–1172 (2017)CrossRef Li, J., Zaiane, O.R.: Exploiting statistically significant dependent rules for associative classification. Intell. Data Anal. 21(5), 1155–1172 (2017)CrossRef
10.
go back to reference Li, W., Han, J. and Pei, J.: CMAR: accurate and efficient classification based on multiple class-association rules. In: International Conference on Data Mining, pp. 369–376 (2001) Li, W., Han, J. and Pei, J.: CMAR: accurate and efficient classification based on multiple class-association rules. In: International Conference on Data Mining, pp. 369–376 (2001)
11.
go back to reference Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: International Conference on Knowledge Discovery and Data Mining (1998) Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: International Conference on Knowledge Discovery and Data Mining (1998)
12.
go back to reference Quinlan, J.R.: C4.5: programs for machine learning. Mach. Learn. 16(3), 235–240 (1994) Quinlan, J.R.: C4.5: programs for machine learning. Mach. Learn. 16(3), 235–240 (1994)
13.
go back to reference Sood, N., Bindra, L., Zaiane, O.: Bi-level associative classifier using automatic learning on rules. In: International Conference on Database and Expert Systems Applications (2020) Sood, N., Bindra, L., Zaiane, O.: Bi-level associative classifier using automatic learning on rules. In: International Conference on Database and Expert Systems Applications (2020)
14.
go back to reference Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: SIAM International Conference on Data Mining, pp. 331–335 (2003) Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: SIAM International Conference on Data Mining, pp. 331–335 (2003)
15.
go back to reference Zaïane, O.R., Antonie, M.L.: On pruning and tuning rules for associative classifiers. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 966–973 (2005) Zaïane, O.R., Antonie, M.L.: On pruning and tuning rules for associative classifiers. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 966–973 (2005)
Metadata
Title
Building a Competitive Associative Classifier
Authors
Nitakshi Sood
Osmar Zaiane
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_18

Premium Partner