Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

04-02-2023 | Original Article

Building hierarchical class structures for extreme multi-class learning

Authors: Hongzhi Huang, Yu Wang, Qinghua Hu

Published in: International Journal of Machine Learning and Cybernetics

Login to get access
share
SHARE

Abstract

Class hierarchical structures play a significant role in large and complex tasks of machine learning. Existing studies on the construction of such structures follow a two-stage strategy. The category similarities are first computed with a certain assumption, and the group partition algorithm is then performed with some hyper-parameters to control the shape of class hierarchy. Despite their effectiveness in many cases, these methods suffer from two problems: (1) optimizing the two-stage objective to obtain the structure is sub-optimal; (2) hyper-parameters make the search space too large to find the optimal structure efficiently. In this paper, we propose a unified and dynamic framework to address these problems, which can: (1) jointly optimize the category similarity and group partition; (2) obtain the class hierarchical structure dynamically without any hyper-parameters. The framework replaces the traditional category similarity with the sample similarity, and constrains samples from the same atomic category partitioned to the same super-category. We theoretically prove that, within our framework, the sample similarity is equivalent to the category similarity and can balance the partitions in terms of the number of samples. Further, we design a modularity-based partition optimization algorithm that can automatically determine the number of partitions on each level. Extensive experimental results on multiple image classification datasets show that the hierarchical structure constructed by the proposed method achieves better accuracy and efficiency compared to existing methods. Additionally, the hierarchy obtained by the proposed method can benefit long-tail learning scenarios due to the balanced partition on samples.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Show more products
Literature
1.
go back to reference Zhai J, Zhang S, Wang C (2017) The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. Int J Mach Learn Cybern 8(3):1009–1017 CrossRef Zhai J, Zhang S, Wang C (2017) The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. Int J Mach Learn Cybern 8(3):1009–1017 CrossRef
2.
go back to reference Dabbu M, Karuppusamy L, Pulugu D, Vootla SR, Reddyvari VR (2022) Water atom search algorithm-based deep recurrent neural network for the big data classification based on spark architecture. Int J Mach Learn Cybern 13(8):2297–2312 Dabbu M, Karuppusamy L, Pulugu D, Vootla SR, Reddyvari VR (2022) Water atom search algorithm-based deep recurrent neural network for the big data classification based on spark architecture. Int J Mach Learn Cybern 13(8):2297–2312
3.
go back to reference Pan L, Wang S, Ding Y, Zhao L, Song A (2022) A universal emotion recognition method based on feature priority evaluation and classifier reinforcement. Int J Mach Learn Cybern 13(10):3225–3237 Pan L, Wang S, Ding Y, Zhao L, Song A (2022) A universal emotion recognition method based on feature priority evaluation and classifier reinforcement. Int J Mach Learn Cybern 13(10):3225–3237
4.
go back to reference Zheng Y, Fan J, Zhang J, Gao X (2017) Hierarchical learning of multi-task sparse metrics for large-scale image classification. Pattern Recogn 67:97–109 CrossRef Zheng Y, Fan J, Zhang J, Gao X (2017) Hierarchical learning of multi-task sparse metrics for large-scale image classification. Pattern Recogn 67:97–109 CrossRef
5.
go back to reference Zhou Y, Hu Q, Wang Y (2018) Deep super-class learning for long-tail distributed image classification. Pattern Recogn 80:118–128 CrossRef Zhou Y, Hu Q, Wang Y (2018) Deep super-class learning for long-tail distributed image classification. Pattern Recogn 80:118–128 CrossRef
6.
go back to reference Lin Y, Liu H, Zhao H, Hu Q, Zhu X, Wu X (2022) Hierarchical feature selection based on label distribution learning. IEEE Transact Knowledge Data Eng Lin Y, Liu H, Zhao H, Hu Q, Zhu X, Wu X (2022) Hierarchical feature selection based on label distribution learning. IEEE Transact Knowledge Data Eng
7.
go back to reference Han S, Mao H, Dally WJ (2016) Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. In: ICLR 2016 : International Conference on Learning Representations 2016 Han S, Mao H, Dally WJ (2016) Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. In: ICLR 2016 : International Conference on Learning Representations 2016
9.
go back to reference Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a mind: statistics, structure, and abstraction. Science 331(6022):1279–1285 MathSciNetCrossRefMATH Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a mind: statistics, structure, and abstraction. Science 331(6022):1279–1285 MathSciNetCrossRefMATH
10.
go back to reference Lin Y, Hu Q, Liu J, Zhu X, Wu X (2021) Mulfe: multi-label learning via label-specific feature space ensemble. ACM Transact Knowledge Discovery Data (TKDD) 16(1):1–24 Lin Y, Hu Q, Liu J, Zhu X, Wu X (2021) Mulfe: multi-label learning via label-specific feature space ensemble. ACM Transact Knowledge Discovery Data (TKDD) 16(1):1–24
11.
go back to reference Bellmund JL, Gärdenfors P, Moser EI, Doeller CF (2018) Navigating cognition: spatial codes for human thinking. Science 362(6415):6766 CrossRef Bellmund JL, Gärdenfors P, Moser EI, Doeller CF (2018) Navigating cognition: spatial codes for human thinking. Science 362(6415):6766 CrossRef
12.
go back to reference Ye Q, Shi W, Qu K, He H, Zhuang W, Shen X (2021) Joint ran slicing and computation offloading for autonomous vehicular networks: a learning-assisted hierarchical approach. IEEE Open J Vehicular Technol 2:272–288 CrossRef Ye Q, Shi W, Qu K, He H, Zhuang W, Shen X (2021) Joint ran slicing and computation offloading for autonomous vehicular networks: a learning-assisted hierarchical approach. IEEE Open J Vehicular Technol 2:272–288 CrossRef
13.
go back to reference Al-taezi M, Zhu P, Hu Q, Wang Y, Al-Badwi A (2021) Self-paced hierarchical metric learning (sphml). Int J Mach Learn Cybern 12(9):2529–2541 CrossRef Al-taezi M, Zhu P, Hu Q, Wang Y, Al-Badwi A (2021) Self-paced hierarchical metric learning (sphml). Int J Mach Learn Cybern 12(9):2529–2541 CrossRef
14.
go back to reference Xu Z, Zhang B, Li D, Yue X (2022) Hierarchical multilabel classification by exploiting label correlations. Int J Mach Learn Cybern 13(1):115–131 CrossRef Xu Z, Zhang B, Li D, Yue X (2022) Hierarchical multilabel classification by exploiting label correlations. Int J Mach Learn Cybern 13(1):115–131 CrossRef
15.
go back to reference Fu S, Wang G, Xu J (2021) hier2vec: interpretable multi-granular representation learning for hierarchy in social networks. Int J Mach Learn Cybern 12(9):2543–2557 CrossRef Fu S, Wang G, Xu J (2021) hier2vec: interpretable multi-granular representation learning for hierarchy in social networks. Int J Mach Learn Cybern 12(9):2543–2557 CrossRef
16.
go back to reference Zhang X, Zhou Y, Tang X, Fan Y (2022) Three-way improved neighborhood entropies based on three-level granular structures. Int J Mach Learn Cybern 13(7):1861–1890 Zhang X, Zhou Y, Tang X, Fan Y (2022) Three-way improved neighborhood entropies based on three-level granular structures. Int J Mach Learn Cybern 13(7):1861–1890
17.
go back to reference Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255
20.
go back to reference Bengio S, Weston J, Grangier D (2010) Label embedding trees for large multi-class tasks. In: Advances in Neural Information Processing Systems 23, pp. 163–171 Bengio S, Weston J, Grangier D (2010) Label embedding trees for large multi-class tasks. In: Advances in Neural Information Processing Systems 23, pp. 163–171
21.
go back to reference Liu Y, Dou Y, Jin R, Li R (2018) Visual confusion label tree for image classification. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 Liu Y, Dou Y, Jin R, Li R (2018) Visual confusion label tree for image classification. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6
23.
25.
go back to reference Li L-J, Wang C, Lim Y, Blei DM, Fei-Fei L (2010) Building and using a semantivisual image hierarchy. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3336–3343 Li L-J, Wang C, Lim Y, Blei DM, Fei-Fei L (2010) Building and using a semantivisual image hierarchy. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3336–3343
26.
go back to reference Naphade M, Smith JR, Tesic J, Chang S-F, Hsu W, Kennedy L, Hauptmann A, Curtis J (2006) Large-scale concept ontology for multimedia. IEEE Multimedia 13(3):86–91 CrossRef Naphade M, Smith JR, Tesic J, Chang S-F, Hsu W, Kennedy L, Hauptmann A, Curtis J (2006) Large-scale concept ontology for multimedia. IEEE Multimedia 13(3):86–91 CrossRef
27.
go back to reference Sun M, Huang W, Savarese S (2013) Find the best path: An efficient and accurate classifier for image hierarchies. In: 2013 IEEE International Conference on Computer Vision, pp. 265–272 Sun M, Huang W, Savarese S (2013) Find the best path: An efficient and accurate classifier for image hierarchies. In: 2013 IEEE International Conference on Computer Vision, pp. 265–272
28.
go back to reference Lei H, Mei K, Zheng N, Dong P, Zhou N, Fan J (2014) Learning group-based dictionaries for discriminative image representation. Pattern Recogn 47(2):899–913 CrossRefMATH Lei H, Mei K, Zheng N, Dong P, Zhou N, Fan J (2014) Learning group-based dictionaries for discriminative image representation. Pattern Recogn 47(2):899–913 CrossRefMATH
29.
go back to reference Griffin G, Perona P (2008) Learning and using taxonomies for fast visual categorization. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 Griffin G, Perona P (2008) Learning and using taxonomies for fast visual categorization. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8
30.
go back to reference Yan Z, Zhang H, Piramuthu R, Jagadeesh V, DeCoste D, Di W, Yu Y (2015) Hd-cnn: Hierarchical deep convolutional neural networks for large scale visual recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2740–2748 Yan Z, Zhang H, Piramuthu R, Jagadeesh V, DeCoste D, Di W, Yu Y (2015) Hd-cnn: Hierarchical deep convolutional neural networks for large scale visual recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2740–2748
31.
go back to reference Deng J, Satheesh S, Berg AC, Li F (2011) Fast and balanced: Efficient label tree learning for large scale object recognition. In: Advances in Neural Information Processing Systems 24, pp. 567–575 Deng J, Satheesh S, Berg AC, Li F (2011) Fast and balanced: Efficient label tree learning for large scale object recognition. In: Advances in Neural Information Processing Systems 24, pp. 567–575
32.
go back to reference Liu B, Sadeghi F, Tappen M, Shamir O, Liu C (2013) Probabilistic label trees for efficient large scale image classification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 843–850 Liu B, Sadeghi F, Tappen M, Shamir O, Liu C (2013) Probabilistic label trees for efficient large scale image classification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 843–850
33.
go back to reference Fan J, Zhou N, Peng J, Gao L (2015) Hierarchical learning of tree classifiers for large-scale plant species identification. IEEE Trans Image Process 24(11):4172–4184 MathSciNetCrossRefMATH Fan J, Zhou N, Peng J, Gao L (2015) Hierarchical learning of tree classifiers for large-scale plant species identification. IEEE Trans Image Process 24(11):4172–4184 MathSciNetCrossRefMATH
34.
go back to reference Fan J, Zhao T, Kuang Z, Zheng Y, Zhang J, Yu J, Peng J (2017) Hd-mtl: hierarchical deep multi-task learning for large-scale visual recognition. IEEE Trans Image Process 26(4):1923–1938 MathSciNetCrossRefMATH Fan J, Zhao T, Kuang Z, Zheng Y, Zhang J, Yu J, Peng J (2017) Hd-mtl: hierarchical deep multi-task learning for large-scale visual recognition. IEEE Trans Image Process 26(4):1923–1938 MathSciNetCrossRefMATH
35.
go back to reference Qu Y, Lin L, Shen F, Lu C, Wu Y, Xie Y, Tao D (2017) Joint hierarchical category structure learning and large-scale image classification. IEEE Trans Image Process 26(9):4331–4346 MathSciNetCrossRefMATH Qu Y, Lin L, Shen F, Lu C, Wu Y, Xie Y, Tao D (2017) Joint hierarchical category structure learning and large-scale image classification. IEEE Trans Image Process 26(9):4331–4346 MathSciNetCrossRefMATH
37.
go back to reference Zheng Y, Chen Q, Fan J, Gao X (2020) Hierarchical convolutional neural network via hierarchical cluster validity based visual tree learning. Neurocomputing 409:408–419 CrossRef Zheng Y, Chen Q, Fan J, Gao X (2020) Hierarchical convolutional neural network via hierarchical cluster validity based visual tree learning. Neurocomputing 409:408–419 CrossRef
38.
go back to reference Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 2008(10):10008 CrossRefMATH Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 2008(10):10008 CrossRefMATH
39.
go back to reference Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133 CrossRef Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133 CrossRef
40.
go back to reference Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):66111 CrossRef Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):66111 CrossRef
42.
go back to reference Wang S, Siskind JM (2003) Image segmentation with ratio cut. IEEE Trans Pattern Anal Mach Intell 25(6):675–690 CrossRef Wang S, Siskind JM (2003) Image segmentation with ratio cut. IEEE Trans Pattern Anal Mach Intell 25(6):675–690 CrossRef
43.
go back to reference Krizhevsky A (2009) Learning Multiple Layers of Features from Tiny Images. Master thesis Krizhevsky A (2009) Learning Multiple Layers of Features from Tiny Images. Master thesis
44.
go back to reference Xiao J, Hays J, Ehinger KA, Oliva A, Torralba A (2010) Sun database: Large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492 Xiao J, Hays J, Ehinger KA, Oliva A, Torralba A (2010) Sun database: Large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492
45.
go back to reference Pouransari H, Ghili S (2014) Tiny imagenet visual recognition challenge. CS 231N Pouransari H, Ghili S (2014) Tiny imagenet visual recognition challenge. CS 231N
46.
go back to reference Cui Y, Jia M, Lin T-Y, Song Y, Belongie S (2019) Class-balanced loss based on effective number of samples. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9268–9277 Cui Y, Jia M, Lin T-Y, Song Y, Belongie S (2019) Class-balanced loss based on effective number of samples. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9268–9277
47.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
48.
go back to reference Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453(7191):98–101 CrossRef Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453(7191):98–101 CrossRef
50.
go back to reference Wu A, Han Y, Zhu L, Yang Y (2021) Instance-invariant domain adaptive object detection via progressive disentanglement. IEEE Trans Pattern Anal Mach Intell 44(8):4178–4193 Wu A, Han Y, Zhu L, Yang Y (2021) Instance-invariant domain adaptive object detection via progressive disentanglement. IEEE Trans Pattern Anal Mach Intell 44(8):4178–4193
51.
go back to reference Wu A, Zhao S, Deng C, Liu W (2021) Generalized and discriminative few-shot object detection via svd-dictionary enhancement. Adv Neural Inf Process Syst 34:6353–6364 Wu A, Zhao S, Deng C, Liu W (2021) Generalized and discriminative few-shot object detection via svd-dictionary enhancement. Adv Neural Inf Process Syst 34:6353–6364
Metadata
Title
Building hierarchical class structures for extreme multi-class learning
Authors
Hongzhi Huang
Yu Wang
Qinghua Hu
Publication date
04-02-2023
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01783-z