Skip to main content
Top

2020 | OriginalPaper | Chapter

12. Burning Rate of PVC—Plastisol Composite Propellants and Correlation Between Closed Vessel and Strand Burner Tests Data

Authors : Abderrahmane Mezroua, Michel H. Lefebvre, Djalal Trache, Kamel Khimeche

Published in: Innovative Energetic Materials: Properties, Combustion Performance and Application

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this study is to assess two different methods used to determine the burning rates of solid rocket propellants and to find a convenient correlation of the measured data. The well-known strand burner test (Crawford test) and the closed vessel test were employed. In order to clarify the relation between the two techniques, a composite propellant containing polyvinyl chloride (PVC) as matrix and ammonium perchlorate (AP) as an oxidizer is used. It is prepared using normal AP (without heat treatment, nPoAP) or porous AP (after heat treatment, PoAP). Dioctyl phthalate (DOP) or dibutyl sebacate (DBS) was used as plasticizer. The PVC-Plastisol propellant burning rate behavior with respect to pressure, oxidizer nature, and propellant composition is analyzed. The obtained results show an acceptable correlation between the two techniques over the pressure range from 5 to 25 MPa.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sutton GP, Biblarz O (2016) Rocket propulsion elements. Wiley Sutton GP, Biblarz O (2016) Rocket propulsion elements. Wiley
2.
go back to reference Davenas A (2003) Development of modern solid propellants. J Propul Power 19:1108–1128CrossRef Davenas A (2003) Development of modern solid propellants. J Propul Power 19:1108–1128CrossRef
3.
go back to reference Fry RS (2001) Solid propellant test motor scaling, vol Ed^Eds: Editor. Chemical Ppropulsion Information Agency Columbia, MD, City Fry RS (2001) Solid propellant test motor scaling, vol Ed^Eds: Editor. Chemical Ppropulsion Information Agency Columbia, MD, City
4.
go back to reference Trache D, Maggi F, Palmucci I, DeLuca LT, Khimeche K, Fassina M, Dossi S, Colombo G (2015) Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab J Chem Trache D, Maggi F, Palmucci I, DeLuca LT, Khimeche K, Fassina M, Dossi S, Colombo G (2015) Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab J Chem
5.
go back to reference Kohga M, Togo S (2018) Influence of iron oxide on thermal decomposition behavior and burning characteristics of ammonium nitrate/ammonium perchlorate-based composite propellants. Combust Flame 192:10–24CrossRef Kohga M, Togo S (2018) Influence of iron oxide on thermal decomposition behavior and burning characteristics of ammonium nitrate/ammonium perchlorate-based composite propellants. Combust Flame 192:10–24CrossRef
6.
go back to reference Crawford B, Huggett C, Daniels F, Wilfong R (1947) Direct determination of burning rates of propellant powders. Anal Chem 19:630–633CrossRef Crawford B, Huggett C, Daniels F, Wilfong R (1947) Direct determination of burning rates of propellant powders. Anal Chem 19:630–633CrossRef
7.
go back to reference Gupta G, Jawale L, Mehilal D, Bhattacharya B (2015) Various methods for the determination of the burning rates of solid propellants: an overview. Cent Eur J Energy Mater 12 Gupta G, Jawale L, Mehilal D, Bhattacharya B (2015) Various methods for the determination of the burning rates of solid propellants: an overview. Cent Eur J Energy Mater 12
8.
go back to reference Jeunieau L, Lefebvre MH, Guillaume P (2007) Ballistic stability of a spherical propellant: comparison with a flattened spherical propellant. Cent Eur J Energy Mater 4:31–44 Jeunieau L, Lefebvre MH, Guillaume P (2007) Ballistic stability of a spherical propellant: comparison with a flattened spherical propellant. Cent Eur J Energy Mater 4:31–44
9.
go back to reference Leu AL, Yeh TF, Chang FM, Liu CS, Huang CC, Liu F, Shih YS (1989) Burning behavior of composite solid propellant containing porous ammonium perchlorate. Propellants Explos Pyrotech 14:108–112CrossRef Leu AL, Yeh TF, Chang FM, Liu CS, Huang CC, Liu F, Shih YS (1989) Burning behavior of composite solid propellant containing porous ammonium perchlorate. Propellants Explos Pyrotech 14:108–112CrossRef
10.
go back to reference Kohga M, Hagihara Y (1996) The preparation of fine porous ammonium perchlorate by the spray-drying method. J Soc Powder Technol Jpn 33:273–278CrossRef Kohga M, Hagihara Y (1996) The preparation of fine porous ammonium perchlorate by the spray-drying method. J Soc Powder Technol Jpn 33:273–278CrossRef
11.
go back to reference Kohga M (2008) Effect of voids inside AP particles on burning rate of AP/HTPB composite propellant. Propellants Explos Pyrotech: An Intl J Deal Sci Technol Asp Energy Mater 33:249–254CrossRef Kohga M (2008) Effect of voids inside AP particles on burning rate of AP/HTPB composite propellant. Propellants Explos Pyrotech: An Intl J Deal Sci Technol Asp Energy Mater 33:249–254CrossRef
12.
go back to reference Kohga M, Hagihara Y (1997) The spray-drying of ammonium perchlorate by ultrasonic comminution. J Soc Powder Technol Jpn 34:522–527CrossRef Kohga M, Hagihara Y (1997) The spray-drying of ammonium perchlorate by ultrasonic comminution. J Soc Powder Technol Jpn 34:522–527CrossRef
13.
go back to reference de Oliveira J, Platt G, Peixoto F (2005) Estimation of ballistic parameters of gun propellants through closed vessel experiment modeling. Revista de Engenharia Térmica. 4:50–55CrossRef de Oliveira J, Platt G, Peixoto F (2005) Estimation of ballistic parameters of gun propellants through closed vessel experiment modeling. Revista de Engenharia Térmica. 4:50–55CrossRef
14.
go back to reference Jeunieau L, Lefebvre M, Guillaume P, Wilker S, Chevalier S (2005) Stability analyses of rolled ball propellants, Part III–correlation between closed vessel tests, ballistic firing and deterrent migration, 36th Int, vol 14, Ed^Eds: Editor, City Jeunieau L, Lefebvre M, Guillaume P, Wilker S, Chevalier S (2005) Stability analyses of rolled ball propellants, Part III–correlation between closed vessel tests, ballistic firing and deterrent migration, 36th Int, vol 14, Ed^Eds: Editor, City
15.
go back to reference Jeunieau L, Lefebvre MH, Papy A, Pirlot MC, Guillaume P, Reynaud C (2002) Closed vessel test: influence of the ignition method on the combustion rate, vol Ed^Eds: Editor. Fraunhofer-Institut fur Chemische Technologie, Berghausen, 1999, City, pp V25–V25 Jeunieau L, Lefebvre MH, Papy A, Pirlot MC, Guillaume P, Reynaud C (2002) Closed vessel test: influence of the ignition method on the combustion rate, vol Ed^Eds: Editor. Fraunhofer-Institut fur Chemische Technologie, Berghausen, 1999, City, pp V25–V25
16.
go back to reference NATOS (1997) 4115 Definition and determination of ballistic properties of gun propellants, vol Ed^Eds: Editor, City NATOS (1997) 4115 Definition and determination of ballistic properties of gun propellants, vol Ed^Eds: Editor, City
17.
go back to reference Trache D, Klapötke TM, Maiz L, Abd-Elghany M, DeLuca LT (2017) Recent advances in new oxidizers for solid rocket propulsion. Green Chem 19:4711–4736CrossRef Trache D, Klapötke TM, Maiz L, Abd-Elghany M, DeLuca LT (2017) Recent advances in new oxidizers for solid rocket propulsion. Green Chem 19:4711–4736CrossRef
18.
go back to reference Kohga M (2006) Burning characteristics of AP/HTPB composite propellants prepared with fine porous or fine hollow ammonium perchlorate. Propellants Explos Pyrotech 31:50–55CrossRef Kohga M (2006) Burning characteristics of AP/HTPB composite propellants prepared with fine porous or fine hollow ammonium perchlorate. Propellants Explos Pyrotech 31:50–55CrossRef
19.
go back to reference George W (2004) Handbook of plasticizers. ChemTech Publishing, Toronto, Ontario M1E 1C6, Canada George W (2004) Handbook of plasticizers. ChemTech Publishing, Toronto, Ontario M1E 1C6, Canada
20.
go back to reference Kishore K, Sridhara K (1996) Influence of structure of polymeric fuels on the combustion behaviour of composite solid propellants. Fuel 75:912–918CrossRef Kishore K, Sridhara K (1996) Influence of structure of polymeric fuels on the combustion behaviour of composite solid propellants. Fuel 75:912–918CrossRef
21.
go back to reference McClain M, Gunduz I, Son S (2019) Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings. Proc Combust Inst 37:3135–3142CrossRef McClain M, Gunduz I, Son S (2019) Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings. Proc Combust Inst 37:3135–3142CrossRef
22.
go back to reference Dillier CA, Petersen ED, Sammet T, Rodriguez FA, Thomas JC, Petersen EL (2019) Very-High-Pressure burning rates of AP/HTPB-Composite propellants with varying AP particle sizes and distributions, vol Ed^Eds: Editor, City, pp 43–68 Dillier CA, Petersen ED, Sammet T, Rodriguez FA, Thomas JC, Petersen EL (2019) Very-High-Pressure burning rates of AP/HTPB-Composite propellants with varying AP particle sizes and distributions, vol Ed^Eds: Editor, City, pp 43–68
23.
go back to reference Mezroua A, Khimeche K, Lefebvre MH, Benziane M, Trache D (2014) The influence of porosity of ammonium perchlorate (AP) on the thermomechanical and thermal properties of the AP/polyvinylchloride (PVC) composite propellants. J Therm Anal Calorim 116:279–286CrossRef Mezroua A, Khimeche K, Lefebvre MH, Benziane M, Trache D (2014) The influence of porosity of ammonium perchlorate (AP) on the thermomechanical and thermal properties of the AP/polyvinylchloride (PVC) composite propellants. J Therm Anal Calorim 116:279–286CrossRef
24.
go back to reference Trache D, Maggi F, Palmucci I, DeLuca LT (2018) Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim 132:1601–1615CrossRef Trache D, Maggi F, Palmucci I, DeLuca LT (2018) Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim 132:1601–1615CrossRef
25.
go back to reference Boulkadid KM, Trache D, Kari S, Lefebvre MH, Jeunieau L, Dejeaifve A (2020) Estimation of the ballistic parameters of double base gun propellants. Propellants Explos Pyrotech Boulkadid KM, Trache D, Kari S, Lefebvre MH, Jeunieau L, Dejeaifve A (2020) Estimation of the ballistic parameters of double base gun propellants. Propellants Explos Pyrotech
26.
go back to reference Ahmed Maraden PS, Matyaš R, Zigmund J (2017) Ballistic testing and thermal behavior of cast double-base propellant containing BuNENA. Chin J Explos Propellants 40:23–28 Ahmed Maraden PS, Matyaš R, Zigmund J (2017) Ballistic testing and thermal behavior of cast double-base propellant containing BuNENA. Chin J Explos Propellants 40:23–28
Metadata
Title
Burning Rate of PVC—Plastisol Composite Propellants and Correlation Between Closed Vessel and Strand Burner Tests Data
Authors
Abderrahmane Mezroua
Michel H. Lefebvre
Djalal Trache
Kamel Khimeche
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4831-4_12