Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2021

05-01-2021 | Research Article-Chemical Engineering

Butyric Acid Reactive Extraction Using Trioctylamine in 1-Decanol: Response Surface Methodology Parametric Optimization Technique

Authors: Victoria Inyang, David Lokhat

Published in: Arabian Journal for Science and Engineering | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The optimization of the reactive extraction of butyric acid from an aqueous stream was effectively carried out using response surface methodology. Three process parameters were studied, viz. initial butyric acid concentration, trioctylamine concentration and temperature, to examine the interactive effects on extraction efficiency and distribution coefficient. A Box-Behnken design comprising of seventeen experimental runs was utilized in the reactive extraction study of butyric acid. Analysis of a second-order polynomial model yielded the following optimal conditions: temperature 301.829 K, initial butyric acid concentration 0.493 kmol/m3, trioctylamine composition 26.417%v/v with the following responses: distribution coefficient = 28.795 and extraction efficiency of 96.666%. Experimental validation of the model was carried out with the predicted process variables, and the responses obtained (distribution coefficient = 27.171, extraction efficiency = 96.450%) were in close conformity to the predicted outcomes. Three-dimensional surface plots obtained from statistical analysis demonstrated that the butyric acid concentration and TOA composition had a more significant and interactive effect than the temperature on the response value in the reactive extraction process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kumar, A.; Jianzheng, J.; Li, Y.; Baral, Y.N.; Ai, B.: A review on bio-butyric acid production and its optimization. Int. J. Agric. Biol. 16(5), 1019–1024 (2014) Kumar, A.; Jianzheng, J.; Li, Y.; Baral, Y.N.; Ai, B.: A review on bio-butyric acid production and its optimization. Int. J. Agric. Biol. 16(5), 1019–1024 (2014)
2.
go back to reference Entin-Meer, M.; Rephaeli, A.; Yang, X.; Nudelman, A.; VandenBerg, S.R.; Haas-Kogan, D.A.: Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas. Mol. Cancer Ther. 4(12), 1952–1961 (2005)CrossRef Entin-Meer, M.; Rephaeli, A.; Yang, X.; Nudelman, A.; VandenBerg, S.R.; Haas-Kogan, D.A.: Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas. Mol. Cancer Ther. 4(12), 1952–1961 (2005)CrossRef
4.
go back to reference Baroi, G.N.; Gavala, H.N.; Westermann, P.S.; Skiadas, I.V.: Fermentative production of butyric acid from wheat straw: economic evaluation. Ind. Crops Prod. 104, 68–80 (2017)CrossRef Baroi, G.N.; Gavala, H.N.; Westermann, P.S.; Skiadas, I.V.: Fermentative production of butyric acid from wheat straw: economic evaluation. Ind. Crops Prod. 104, 68–80 (2017)CrossRef
5.
go back to reference Huh, Y.S.; Jun, Y.-S.; Hong, Y.K.; Song, H.; Lee, S.Y.; Hong, W.H.: Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochem. 41(6), 1461–1465 (2006)CrossRef Huh, Y.S.; Jun, Y.-S.; Hong, Y.K.; Song, H.; Lee, S.Y.; Hong, W.H.: Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochem. 41(6), 1461–1465 (2006)CrossRef
6.
go back to reference López-Garzón, C.S.; Straathof, A.J.J.: Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 32(5), 873–904 (2014)CrossRef López-Garzón, C.S.; Straathof, A.J.J.: Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 32(5), 873–904 (2014)CrossRef
7.
go back to reference Cheng, K.-K.; et al.: Downstream processing of biotechnological produced succinic acid. Appl. Microbiol. Biotechnol. 95(4), 841–850 (2012)CrossRef Cheng, K.-K.; et al.: Downstream processing of biotechnological produced succinic acid. Appl. Microbiol. Biotechnol. 95(4), 841–850 (2012)CrossRef
8.
go back to reference Straathof, A.: The proportion of downstream costs in fermentative production processes. Compr. Biotechnol. 2, 811–814 (2011) Straathof, A.: The proportion of downstream costs in fermentative production processes. Compr. Biotechnol. 2, 811–814 (2011)
9.
go back to reference Keshav, A.; Chand, S.; Wasewar, K.L.: Recovery of propionic acid from aqueous phase by reactive extraction using quarternary amine (Aliquat 336) in various diluents. Chem. Eng. J. 152(1), 95–102 (2009)CrossRef Keshav, A.; Chand, S.; Wasewar, K.L.: Recovery of propionic acid from aqueous phase by reactive extraction using quarternary amine (Aliquat 336) in various diluents. Chem. Eng. J. 152(1), 95–102 (2009)CrossRef
10.
go back to reference Wasewar, K.L.: Separation of lactic acid: recent advances. Chem. Biochem. Eng. Q. 19(2), 159–172 (2005) Wasewar, K.L.: Separation of lactic acid: recent advances. Chem. Biochem. Eng. Q. 19(2), 159–172 (2005)
11.
go back to reference De, B.S.; Wasewar, K.L.; Dhongde, V.R.; Ingle, A.A.; Mondal, H.: Experimental and modeling of reactive separation of protocatechuic acid. Chem. Eng. Res. Des. 132, 593–605 (2018)CrossRef De, B.S.; Wasewar, K.L.; Dhongde, V.R.; Ingle, A.A.; Mondal, H.: Experimental and modeling of reactive separation of protocatechuic acid. Chem. Eng. Res. Des. 132, 593–605 (2018)CrossRef
12.
go back to reference Kaur, G.; Elst, K.: Development of reactive extraction systems for itaconic acid: a step towards in situ product recovery for itaconic acid fermentation. RSC Adv. 4(85), 45029–45039 (2014)CrossRef Kaur, G.; Elst, K.: Development of reactive extraction systems for itaconic acid: a step towards in situ product recovery for itaconic acid fermentation. RSC Adv. 4(85), 45029–45039 (2014)CrossRef
13.
go back to reference Chemarin, F.; Moussa, M.; Allais, F.; Trelea, I.C.; Athès, V.: Recovery of 3-hydroxypropionic acid from organic phases after reactive extraction with amines in an alcohol-type solvent. Sep. Purif. Technol. 219, 260–267 (2019)CrossRef Chemarin, F.; Moussa, M.; Allais, F.; Trelea, I.C.; Athès, V.: Recovery of 3-hydroxypropionic acid from organic phases after reactive extraction with amines in an alcohol-type solvent. Sep. Purif. Technol. 219, 260–267 (2019)CrossRef
14.
go back to reference Eda, S.; Borra, A.; Parthasarathy, R.; Bankupalli, S.; Bhargava, S.; Thella, P.K.: Recovery of levulinic acid by reactive extraction using tri-n-octylamine in methyl isobutyl ketone: equilibrium and thermodynamic studies and optimization using Taguchi multivariate approach. Sep. Purif. Technol. 197, 314–324 (2018)CrossRef Eda, S.; Borra, A.; Parthasarathy, R.; Bankupalli, S.; Bhargava, S.; Thella, P.K.: Recovery of levulinic acid by reactive extraction using tri-n-octylamine in methyl isobutyl ketone: equilibrium and thermodynamic studies and optimization using Taguchi multivariate approach. Sep. Purif. Technol. 197, 314–324 (2018)CrossRef
15.
go back to reference Wasewar, K.L.; Shende, D.; Keshav, A.: Reactive extraction of itaconic acid using tri-n-butyl phosphate and aliquat 336 in sunflower oil as a non-toxic diluent. J. Chem. Technol. Biotechnol. 86(2), 319–323 (2011)CrossRef Wasewar, K.L.; Shende, D.; Keshav, A.: Reactive extraction of itaconic acid using tri-n-butyl phosphate and aliquat 336 in sunflower oil as a non-toxic diluent. J. Chem. Technol. Biotechnol. 86(2), 319–323 (2011)CrossRef
16.
go back to reference Wasewar, K.L. Yoo, C.K.: Intensifying the recovery of carboxylic acids by reactive extraction. In: Proc. 3rd International Conference on Chemistry and Chemical Engineering, pp. 29–30 Wasewar, K.L. Yoo, C.K.: Intensifying the recovery of carboxylic acids by reactive extraction. In: Proc. 3rd International Conference on Chemistry and Chemical Engineering, pp. 29–30
17.
go back to reference Keshav, A.; Wasewar, K.L.; Chand, S.: Extraction of propionic acid with tri-n-octyl amine in different diluents. Sep. Purif. Technol. 63(1), 179–183 (2008)CrossRef Keshav, A.; Wasewar, K.L.; Chand, S.: Extraction of propionic acid with tri-n-octyl amine in different diluents. Sep. Purif. Technol. 63(1), 179–183 (2008)CrossRef
18.
go back to reference Thakre, N.; Datta, D.; Prajapati, A.; Chaudhari, P.; Pal, D.: Reactive extraction of citric acid using different extractants: equilibrium, kinetics and modeling. Chem. Biochem. Eng. Q. 31(4), 437–446 (2018)CrossRef Thakre, N.; Datta, D.; Prajapati, A.; Chaudhari, P.; Pal, D.: Reactive extraction of citric acid using different extractants: equilibrium, kinetics and modeling. Chem. Biochem. Eng. Q. 31(4), 437–446 (2018)CrossRef
19.
go back to reference Tamada, J.A.; King, C.J.: Extraction of carboxylic acids with amine extractants. 3. Effect of temperature, water coextraction, and process considerations. Ind. Eng. Chem. Res. 29(7), 1333–1338 (1990)CrossRef Tamada, J.A.; King, C.J.: Extraction of carboxylic acids with amine extractants. 3. Effect of temperature, water coextraction, and process considerations. Ind. Eng. Chem. Res. 29(7), 1333–1338 (1990)CrossRef
20.
go back to reference Senol, A.: Liquid–liquid equilibria for mixtures of (water + pyruvic acid + alcohol/alamine). modeling and optimization of extraction. J. Chem. Eng. Data 58(3), 528–536 (2013)CrossRef Senol, A.: Liquid–liquid equilibria for mixtures of (water + pyruvic acid + alcohol/alamine). modeling and optimization of extraction. J. Chem. Eng. Data 58(3), 528–536 (2013)CrossRef
21.
go back to reference Senol, A.: Liquid–liquid equilibria for ternary systems of (water + carboxylic acid + 1-octanol) at 293.15 K: modeling phase equilibria using a solvatochromic approach. Fluid Phase Equilib. 227(1), 87–96 (2005)MathSciNetCrossRef Senol, A.: Liquid–liquid equilibria for ternary systems of (water + carboxylic acid + 1-octanol) at 293.15 K: modeling phase equilibria using a solvatochromic approach. Fluid Phase Equilib. 227(1), 87–96 (2005)MathSciNetCrossRef
22.
go back to reference Keshav, A.; Wasewar, K.L.; Chand, S.: Extraction of propionic acid from model solutions: effect of pH, salts, substrate, and temperature. AIChE J. 55(7), 1705–1711 (2009)CrossRef Keshav, A.; Wasewar, K.L.; Chand, S.: Extraction of propionic acid from model solutions: effect of pH, salts, substrate, and temperature. AIChE J. 55(7), 1705–1711 (2009)CrossRef
23.
go back to reference Prochaska, K.; et al.: Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth. Bioresour. Technol. 167, 219–225 (2014)CrossRef Prochaska, K.; et al.: Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth. Bioresour. Technol. 167, 219–225 (2014)CrossRef
24.
go back to reference Procházka, J.; Heyberger, A.; Volaufová, E.: Extraction equilibrium of dicarboxylic acids with tertiary amine in single and binary diluents. Sep. Sci. Technol. 39(5), 1073–1091 (2005)CrossRef Procházka, J.; Heyberger, A.; Volaufová, E.: Extraction equilibrium of dicarboxylic acids with tertiary amine in single and binary diluents. Sep. Sci. Technol. 39(5), 1073–1091 (2005)CrossRef
25.
go back to reference Senol, A.: Effect of diluent on amine extraction of acetic acid: modeling considerations. Ind. Eng. Chem. Res. 43(20), 6496–6506 (2004)CrossRef Senol, A.: Effect of diluent on amine extraction of acetic acid: modeling considerations. Ind. Eng. Chem. Res. 43(20), 6496–6506 (2004)CrossRef
26.
go back to reference Keshav, A.; Wasewar, K.L.; Chand, S.: Recovery of propionic acid by reactive extraction-1. Equilibrium, effect of pH and temperature, water coextraction. Desalin. Water Treat. 3(1–3), 91–98 (2009)CrossRef Keshav, A.; Wasewar, K.L.; Chand, S.: Recovery of propionic acid by reactive extraction-1. Equilibrium, effect of pH and temperature, water coextraction. Desalin. Water Treat. 3(1–3), 91–98 (2009)CrossRef
27.
go back to reference Senol, A.; Lalikoglu, M.; Bilgin, M.: Modeling extraction equilibria of butyric acid distributed between water and tri-n-butyl amine/diluent or tri-n-butyl phosphate/diluent system: extension of the LSER approach. Fluid Phase Equilib. 385, 153–165 (2015)CrossRef Senol, A.; Lalikoglu, M.; Bilgin, M.: Modeling extraction equilibria of butyric acid distributed between water and tri-n-butyl amine/diluent or tri-n-butyl phosphate/diluent system: extension of the LSER approach. Fluid Phase Equilib. 385, 153–165 (2015)CrossRef
28.
go back to reference Datta, D.; Aşçı, Y.S.; Tuyun, A.F.: Extraction equilibria of glycolic acid using tertiary amines: experimental data and theoretical predictions. J. Chem. Eng. Data 60(11), 3262–3267 (2015)CrossRef Datta, D.; Aşçı, Y.S.; Tuyun, A.F.: Extraction equilibria of glycolic acid using tertiary amines: experimental data and theoretical predictions. J. Chem. Eng. Data 60(11), 3262–3267 (2015)CrossRef
29.
go back to reference Tuyun, A.F.; Uslu, H.; Gökmen, S.; Yorulmaz, Y.: Recovery of picolinic acid from aqueous streams using a tertiary amine extractant. J. Chem. Eng. Data 56(5), 2310–2315 (2011)CrossRef Tuyun, A.F.; Uslu, H.; Gökmen, S.; Yorulmaz, Y.: Recovery of picolinic acid from aqueous streams using a tertiary amine extractant. J. Chem. Eng. Data 56(5), 2310–2315 (2011)CrossRef
30.
go back to reference Tuyun, A.F.; Uslu, H.: Extraction equilibria of picolinic acid from aqueous solution by tridodecylamine (TDA). Desalination 268(1–3), 134–140 (2011)CrossRef Tuyun, A.F.; Uslu, H.: Extraction equilibria of picolinic acid from aqueous solution by tridodecylamine (TDA). Desalination 268(1–3), 134–140 (2011)CrossRef
31.
go back to reference Tuyun, A.F.; Uslu, H.: Reactive extraction of acrylic acid using trioctylamine (TOA) in versatile diluents. Desalin. Water Treat. 55(1), 193–198 (2015)CrossRef Tuyun, A.F.; Uslu, H.: Reactive extraction of acrylic acid using trioctylamine (TOA) in versatile diluents. Desalin. Water Treat. 55(1), 193–198 (2015)CrossRef
32.
go back to reference Tuyun, A.F.; Uslu, H.: Reactive extraction of cyclic polyhydroxy carboxylic acid using trioctylamine (TOA) in different diluents. J. Chem. Eng. Data 57(8), 2143–2146 (2012)CrossRef Tuyun, A.F.; Uslu, H.: Reactive extraction of cyclic polyhydroxy carboxylic acid using trioctylamine (TOA) in different diluents. J. Chem. Eng. Data 57(8), 2143–2146 (2012)CrossRef
33.
go back to reference Tuyun, A.F.; Uslu, H.: Extraction of d-(−)-quinic acid using an amine extractant in different diluents. J. Chem. Eng. Data 57(1), 190–194 (2012)CrossRef Tuyun, A.F.; Uslu, H.: Extraction of d-(−)-quinic acid using an amine extractant in different diluents. J. Chem. Eng. Data 57(1), 190–194 (2012)CrossRef
34.
go back to reference Han, D.; Hong, Y.; Hong, W.: Separation characteristics of lactic acid in reactive extraction and stripping, (in English). Korean J. Chem. Eng. 17(5), 528–533 (2000)CrossRef Han, D.; Hong, Y.; Hong, W.: Separation characteristics of lactic acid in reactive extraction and stripping, (in English). Korean J. Chem. Eng. 17(5), 528–533 (2000)CrossRef
35.
go back to reference Kumar, S.; Babu, B.: Reactive extraction of propionic acid with aliquat 336 dissolved in 1-decanol and n-dodecane. J. Future Eng. Technol 3, 21–27 (2008) Kumar, S.; Babu, B.: Reactive extraction of propionic acid with aliquat 336 dissolved in 1-decanol and n-dodecane. J. Future Eng. Technol 3, 21–27 (2008)
36.
go back to reference Wasewar, K.L.: Reactive extraction: an intensifying approach for carboxylic acid separation. Int. J. Chem. Eng. Appl. 3(4), 249 (2012) Wasewar, K.L.: Reactive extraction: an intensifying approach for carboxylic acid separation. Int. J. Chem. Eng. Appl. 3(4), 249 (2012)
37.
go back to reference Liu, Y.; Yang, C.; Zhang, M.; Dai, Y.; Yao, Y.: Development of adversarial transfer learning soft sensor for multigrade processes. Int. J. Chem. Eng. Appl. 59(37), 16330–16345 (2020) Liu, Y.; Yang, C.; Zhang, M.; Dai, Y.; Yao, Y.: Development of adversarial transfer learning soft sensor for multigrade processes. Int. J. Chem. Eng. Appl. 59(37), 16330–16345 (2020)
38.
go back to reference Liu, Y.; Yang, C.; Liu, K.; Chen, B.; Yao, Y.: Domain adaptation transfer learning soft sensor for product quality prediction. Chemom. Intell. Lab. Syst. 192, 103813 (2019)CrossRef Liu, Y.; Yang, C.; Liu, K.; Chen, B.; Yao, Y.: Domain adaptation transfer learning soft sensor for product quality prediction. Chemom. Intell. Lab. Syst. 192, 103813 (2019)CrossRef
39.
go back to reference Liu, Y.; Yang, C.; Gao, Z.; Yao, Y.: Ensemble deep kernel learning with application to quality prediction in industrial polymerization processes. Chemom. Intell. Lab. Syst. 174, 15–21 (2018)CrossRef Liu, Y.; Yang, C.; Gao, Z.; Yao, Y.: Ensemble deep kernel learning with application to quality prediction in industrial polymerization processes. Chemom. Intell. Lab. Syst. 174, 15–21 (2018)CrossRef
40.
go back to reference Marchitan, N.; Cojocaru, C.; Mereuta, A.; Duca, G.; Cretescu, I.; Gonta, M.: Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: a comparison between response surface methodology and artificial neural network. Sep. Purif. Technol. 75(3), 273–285 (2010)CrossRef Marchitan, N.; Cojocaru, C.; Mereuta, A.; Duca, G.; Cretescu, I.; Gonta, M.: Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: a comparison between response surface methodology and artificial neural network. Sep. Purif. Technol. 75(3), 273–285 (2010)CrossRef
41.
go back to reference Kertes, A.S.; King, C.J.: Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng. 28(2), 269–282 (1986)CrossRef Kertes, A.S.; King, C.J.: Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng. 28(2), 269–282 (1986)CrossRef
42.
go back to reference Anderson, A.: Business Statistics for Dummies. Wiley, New York (2013) Anderson, A.: Business Statistics for Dummies. Wiley, New York (2013)
43.
go back to reference Liu, H.-L.; Lan, Y.-W.; Cheng, Y.-C.: Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology. Process Biochem. 39(12), 1953–1961 (2004)CrossRef Liu, H.-L.; Lan, Y.-W.; Cheng, Y.-C.: Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology. Process Biochem. 39(12), 1953–1961 (2004)CrossRef
44.
go back to reference Li, D.; Liu, X.; Cui, J.: Reactive extraction of o-aminophenol using trialkylphosphine oxide. Chin. J. Chem. Eng. 14(1), 46–50 (2006)CrossRef Li, D.; Liu, X.; Cui, J.: Reactive extraction of o-aminophenol using trialkylphosphine oxide. Chin. J. Chem. Eng. 14(1), 46–50 (2006)CrossRef
45.
go back to reference Inyang, V.; Lokhat, D.: Reactive extraction of malic acid using trioctylamine in 1–decanol: equilibrium studies by response surface methodology using Box Behnken optimization technique. Sci. Rep. 10(1), 1–10 (2020)CrossRef Inyang, V.; Lokhat, D.: Reactive extraction of malic acid using trioctylamine in 1–decanol: equilibrium studies by response surface methodology using Box Behnken optimization technique. Sci. Rep. 10(1), 1–10 (2020)CrossRef
46.
go back to reference Inyang, V.M.; Lokhat, D.: Reactive extraction of propionic acid using trioctylamine in 1–decanol by response surface methodology optimization technique. Int. J. Low-Carbon Technol. 15(2), 171–179 (2020)CrossRef Inyang, V.M.; Lokhat, D.: Reactive extraction of propionic acid using trioctylamine in 1–decanol by response surface methodology optimization technique. Int. J. Low-Carbon Technol. 15(2), 171–179 (2020)CrossRef
47.
go back to reference Joglekar, H.G.; Rahman, I.; Babu, S.; Kulkarni, B.D.; Joshi, A.: Comparative assessment of downstream processing options for lactic acid. Sep. Purif. Technol. 52(1), 1–17 (2006)CrossRef Joglekar, H.G.; Rahman, I.; Babu, S.; Kulkarni, B.D.; Joshi, A.: Comparative assessment of downstream processing options for lactic acid. Sep. Purif. Technol. 52(1), 1–17 (2006)CrossRef
Metadata
Title
Butyric Acid Reactive Extraction Using Trioctylamine in 1-Decanol: Response Surface Methodology Parametric Optimization Technique
Authors
Victoria Inyang
David Lokhat
Publication date
05-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05255-2

Other articles of this Issue 7/2021

Arabian Journal for Science and Engineering 7/2021 Go to the issue

Premium Partners