Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Calculation of Drag Coefficient of a Sphere and Heat Transfer from It to a Gaseous Flow

Author : Nikolay N. Simakov

Published in: Liquid Spray from Nozzles

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hypothesis about the influence of the early drag crisis of sphere on its heat exchange with gas was confirmed by mathematical modeling. First, the numerical simulation of the gas flow around the sphere in a cylindrical channel was carried out with the calculation of the drag coefficient of sphere and heat transfer from it to a gas. Second, the same was done for the case of flow around the sphere by a free gas stream, both laminar and strongly turbulent. In the latter case, it was found that the early crisis of drag for the sphere is accompanied by a crisis of its heat exchange with gas. In addition, the numerical simulation of the heat exchange of a drop of liquid with a gas stream was carried out without taking into account its evaporation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brounshtein, B. I., & Fishbein, G. A. (1977). Fluid dynamics, mass and heat transfer in dispersed systems. Leningrad: Khimiya. Brounshtein, B. I., & Fishbein, G. A. (1977). Fluid dynamics, mass and heat transfer in dispersed systems. Leningrad: Khimiya.
2.
go back to reference Torobin, L. B., & Gauvin, W. H. (1959). Canadian Journal of Chemical Engineering, 37(4), 129.CrossRef Torobin, L. B., & Gauvin, W. H. (1959). Canadian Journal of Chemical Engineering, 37(4), 129.CrossRef
3.
go back to reference Schlichting, H. (1955). Boundary-layer theory. New York: McGraw-Hill. Nauka, Moscow, 1974).MATH Schlichting, H. (1955). Boundary-layer theory. New York: McGraw-Hill. Nauka, Moscow, 1974).MATH
4.
go back to reference Simakov, N. N. (2004). Crisis of Hydrodynamic Drag of Drops in the Two-Phase Turbulent Flow of a Spray Produced by a Mechanical Nozzle at Transition Reynolds Numbers. Technical Physics, 49, 188.CrossRef Simakov, N. N. (2004). Crisis of Hydrodynamic Drag of Drops in the Two-Phase Turbulent Flow of a Spray Produced by a Mechanical Nozzle at Transition Reynolds Numbers. Technical Physics, 49, 188.CrossRef
5.
go back to reference Simakov, N. N., & Simakov, A. N. (2005). Anomaly of gas drag force on liquid droplets in a turbulent two-phase flow produced by a mechanical jet sprayer at intermediate Reynolds numbers. Journal of Applied Physics, 97, 114901.CrossRef Simakov, N. N., & Simakov, A. N. (2005). Anomaly of gas drag force on liquid droplets in a turbulent two-phase flow produced by a mechanical jet sprayer at intermediate Reynolds numbers. Journal of Applied Physics, 97, 114901.CrossRef
6.
go back to reference Simakov, N. N. (2010). Experimental Verification of the Early Crisis of Drag Using a Single Sphere. Technical Physics, 55, 913.CrossRef Simakov, N. N. (2010). Experimental Verification of the Early Crisis of Drag Using a Single Sphere. Technical Physics, 55, 913.CrossRef
7.
go back to reference Simakov, N. N. (2011). Effect of the gas flow geometry and turbulence on the hydrodynamic drag of a body in the flow, Technical Physics. Technical Physics, 56, 1562.CrossRef Simakov, N. N. (2011). Effect of the gas flow geometry and turbulence on the hydrodynamic drag of a body in the flow, Technical Physics. Technical Physics, 56, 1562.CrossRef
8.
go back to reference Simakov, N. N. (2013). Calculation of the flow about a sphere and the drag of the sphere under laminar and strongly turbulent conditions. Technical Physics, 58, 481.CrossRef Simakov, N. N. (2013). Calculation of the flow about a sphere and the drag of the sphere under laminar and strongly turbulent conditions. Technical Physics, 58, 481.CrossRef
9.
go back to reference Landau, L. D., & Lifshitz, E. M. (1988). Course of theoretical physics (Fluid mechanics) (Vol. 6). Moscow: Nauka. Pergamon, New York, 1987). Landau, L. D., & Lifshitz, E. M. (1988). Course of theoretical physics (Fluid mechanics) (Vol. 6). Moscow: Nauka. Pergamon, New York, 1987).
10.
go back to reference Loitsyanskii, L. G. (1978). Mechanics of liquids and gases. Moscow: Nauka. Pergamon, Oxford, 1966).MATH Loitsyanskii, L. G. (1978). Mechanics of liquids and gases. Moscow: Nauka. Pergamon, Oxford, 1966).MATH
11.
go back to reference Fedorenko, R. P. (1994). Introduction to computational physics. Moscow: Moscow Institute of Physics and Technology. Fedorenko, R. P. (1994). Introduction to computational physics. Moscow: Moscow Institute of Physics and Technology.
12.
go back to reference Simakov, N. N. (2016). Calculation of the Drag and Heat Transfer from a Sphere in the Gas Flow in a Cylindrical Channel. Technical Physics, 61, 1312.CrossRef Simakov, N. N. (2016). Calculation of the Drag and Heat Transfer from a Sphere in the Gas Flow in a Cylindrical Channel. Technical Physics, 61, 1312.CrossRef
13.
go back to reference Potter, D. (1973). Computational physics. New York: Wiley. Mir, Moscow, 1975.MATH Potter, D. (1973). Computational physics. New York: Wiley. Mir, Moscow, 1975.MATH
14.
go back to reference Ranz, W. E., & Marshall, W. R. (1952). Chemical Engineering Progress, 48(5), 173. Ranz, W. E., & Marshall, W. R. (1952). Chemical Engineering Progress, 48(5), 173.
15.
go back to reference Simakov, N. N. (2014). Early crisis of ball resistance in a highly turbulent flow and its effect on heat and mass transfer of a ball with a gas. In V. N. Blinichev (Ed.), Proceedings of the international scientific–technical conference on problems of resource-and energy-saving technologies in industry and agro-Industrial complex, Ivanovo, 2014 (Vol. 2, p. 389). Ivanovo: Ivanovo State University of Chemistry and Technology. Simakov, N. N. (2014). Early crisis of ball resistance in a highly turbulent flow and its effect on heat and mass transfer of a ball with a gas. In V. N. Blinichev (Ed.), Proceedings of the international scientific–technical conference on problems of resource-and energy-saving technologies in industry and agro-Industrial complex, Ivanovo, 2014 (Vol. 2, p. 389). Ivanovo: Ivanovo State University of Chemistry and Technology.
16.
go back to reference Simakov, N. N. (2016). Calculations of the Flow Resistance and Heat Emission of a Sphere in the Laminar and High-turbulent Gas Flows. Technical Physics, 61, 1806.CrossRef Simakov, N. N. (2016). Calculations of the Flow Resistance and Heat Emission of a Sphere in the Laminar and High-turbulent Gas Flows. Technical Physics, 61, 1806.CrossRef
Metadata
Title
Calculation of Drag Coefficient of a Sphere and Heat Transfer from It to a Gaseous Flow
Author
Nikolay N. Simakov
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-12446-5_6

Premium Partners