Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 1/2022

01-01-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Calculation of Surface Energy and Work Functions of Electrons and Positrons in a Metal with a Dielectric Coating

Author: V. V. Pogosov

Published in: Physics of Metals and Metallography | Issue 1/2022

Login to get access
share
SHARE

Abstract

The problem of finding the specific surface energy and work functions of electrons and positrons in a metal with a dielectric coating is solved analytically within the Ritz method and the quantum-statistical functional in the stable jelly model. The calculated values are sensitive to the gradient series of the kinetic energy of noninteracting electrons and are insensitive to the form of the monotonic electron profile. A comparison is made with calculations by the Kohn–Sham method of the surface energy and work functions for specific insulators. The simplest composite coatings are considered. The relationship between the theory of the Ritz method for composite coatings and calculations by the Kohn–Sham method of the surface energy and work function of electrons for metal–dielectric nanosandwiches is analytically established. It is proposed to take into account the effect of the composite coating on the characteristics of the metal surface by scaling the case of a homogeneous coating. The possibility of using the results obtained in various experimental situations is discussed.
Literature
1.
go back to reference S. Prada, U. Martinez, and G. Pacchioni, “Work function changes induced by deposition of ultrathin dielectric films on metals: A theoretical analysis,” Phys. Rev. B 78, No. 23, id. 235423-8 (2008). S. Prada, U. Martinez, and G. Pacchioni, “Work function changes induced by deposition of ultrathin dielectric films on metals: A theoretical analysis,” Phys. Rev. B 78, No. 23, id. 235423-8 (2008).
2.
go back to reference A. J. Chiquito, C. A. Amorim, O. M. Berengue, L. S. Araujo, E. P. Bernardo, and E. R. Leite, “Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices,” J. Phys.: Condens. Matter 24, 225303-7 (2012). A. J. Chiquito, C. A. Amorim, O. M. Berengue, L. S. Araujo, E. P. Bernardo, and E. R. Leite, “Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices,” J. Phys.: Condens. Matter 24, 225303-7 (2012).
3.
go back to reference R. T. Tung, “The physics and chemistry of the Schottky barrier height,” Appl. Phys. Rev. 1, 011304-54 (2014). CrossRef R. T. Tung, “The physics and chemistry of the Schottky barrier height,” Appl. Phys. Rev. 1, 011304-54 (2014). CrossRef
4.
go back to reference D. Comparat, “Reflection of Rydberg antihydrogen by surfaces,” Phys. Rev. A 102, No. 6. id. 062812-7 (2020). D. Comparat, “Reflection of Rydberg antihydrogen by surfaces,” Phys. Rev. A 102, No. 6. id. 062812-7 (2020).
5.
go back to reference P. M. Dinh, P. -G. Reinhard, and E. Suraud, “Dynamics of clusters and molecules in contact with an environment,” Phys. Rep. 485, 43–146 (2010). CrossRef P. M. Dinh, P. -G. Reinhard, and E. Suraud, “Dynamics of clusters and molecules in contact with an environment,” Phys. Rep. 485, 43–146 (2010). CrossRef
6.
go back to reference V. V. Pogosov, A. V. Babich, P. V. Vakula, and A. G. Kravtsova, “On the positron work function for a metal with a dielectric coating,” Tech. Phys. 56, No. 11, 1689–1690 (2011). CrossRef V. V. Pogosov, A. V. Babich, P. V. Vakula, and A. G. Kravtsova, “On the positron work function for a metal with a dielectric coating,” Tech. Phys. 56, No. 11, 1689–1690 (2011). CrossRef
7.
go back to reference A. V. Babich and V. V. Pogosov, “Quantum metal film in the dielectric environment,” Phys. Solid State 55, No. 1, 196–204 (2013). CrossRef A. V. Babich and V. V. Pogosov, “Quantum metal film in the dielectric environment,” Phys. Solid State 55, No. 1, 196–204 (2013). CrossRef
8.
go back to reference A. V. Babich, P. V. Vakula, and V. V. Pogosov, “On the influence of the band structure of insulators and image forces on the spectral characteristics of metal-insulator film systems,” Phys. Solid State 55, 2120–2123 (2013). CrossRef A. V. Babich, P. V. Vakula, and V. V. Pogosov, “On the influence of the band structure of insulators and image forces on the spectral characteristics of metal-insulator film systems,” Phys. Solid State 55, 2120–2123 (2013). CrossRef
9.
go back to reference E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys. 111, 034307-9 (2012). CrossRef E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys. 111, 034307-9 (2012). CrossRef
10.
go back to reference M. Liu, Y. Han, L. Tang, J.-F. Jia, Q.-K. Xue, and F. Liu, “Interplay between quantum size effect and strain effect on growth of nanoscale metal thin films,” Phys. Rev. B 86, No. 12, 125427-5 (2012). CrossRef M. Liu, Y. Han, L. Tang, J.-F. Jia, Q.-K. Xue, and F. Liu, “Interplay between quantum size effect and strain effect on growth of nanoscale metal thin films,” Phys. Rev. B 86, No. 12, 125427-5 (2012). CrossRef
11.
go back to reference R. Y. Liu, Y. Han, C. C. Huang, C.-Y. Lee, C.-H. Lin, C.-M. Cheng, K.-D. Tsuei, H.-T. Jeng, I. Matsuda, and S.-J. Tang, “Deeper insight into phase relations in ultrathin Pb films,” Phys. Rev. B 92, No. 11, 115415-7 (2015). CrossRef R. Y. Liu, Y. Han, C. C. Huang, C.-Y. Lee, C.-H. Lin, C.-M. Cheng, K.-D. Tsuei, H.-T. Jeng, I. Matsuda, and S.-J. Tang, “Deeper insight into phase relations in ultrathin Pb films,” Phys. Rev. B 92, No. 11, 115415-7 (2015). CrossRef
12.
go back to reference N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), part 18 (Fig. 18.3). N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), part 18 (Fig. 18.3).
13.
go back to reference C. J. Fall, “Ab initio study of the work function of elemental crystals,” Ph.D. Dissertation (École Polytechnique Fédérale de Lausanne, 1999). C. J. Fall, “Ab initio study of the work function of elemental crystals,” Ph.D. Dissertation (École Polytechnique Fédérale de Lausanne, 1999).
14.
go back to reference V. V. Pogosov and V. P. Kurbatsky, “Density-functional theory of elastically deformed finite metallic sample: work function and surface stress,” J. Exp. Theor. Phys. 92, No. 2, 304–311 (2001). CrossRef V. V. Pogosov and V. P. Kurbatsky, “Density-functional theory of elastically deformed finite metallic sample: work function and surface stress,” J. Exp. Theor. Phys. 92, No. 2, 304–311 (2001). CrossRef
15.
go back to reference C. J. Fall, N. Binggeli, and A. Baldereschi, “Work functions at facet edges,” Phys. Rev. Lett. 88, No. 15, 156802-4 (2002). CrossRef C. J. Fall, N. Binggeli, and A. Baldereschi, “Work functions at facet edges,” Phys. Rev. Lett. 88, No. 15, 156802-4 (2002). CrossRef
16.
go back to reference A. V. Babich and V. V. Pogosov, “Electron work function and the surface tension of a metallic surface with an insulating coating,” Phys. Met. Metallogr. 106, No. 4, 332–340 (2008). CrossRef A. V. Babich and V. V. Pogosov, “Electron work function and the surface tension of a metallic surface with an insulating coating,” Phys. Met. Metallogr. 106, No. 4, 332–340 (2008). CrossRef
17.
go back to reference L. Gao, J. Souto-Casares, J. R. Chelikowsky, and A. A. Demkov, “Orientation dependence of the work function for metal nanocrystals,” J. Chem. Phys. 147, No. 21, 214301-8 (2017). CrossRef L. Gao, J. Souto-Casares, J. R. Chelikowsky, and A. A. Demkov, “Orientation dependence of the work function for metal nanocrystals,” J. Chem. Phys. 147, No. 21, 214301-8 (2017). CrossRef
18.
go back to reference A. V. Tin’kov, “The mean free path of slow electrons in a solid as a function of their energy,” Usp. Fiz. Met. 7, No. 2, 117–134 (2006). CrossRef A. V. Tin’kov, “The mean free path of slow electrons in a solid as a function of their energy,” Usp. Fiz. Met. 7, No. 2, 117–134 (2006). CrossRef
19.
go back to reference C. H. Hodges, “Quantum corrections to the Thomas–Fermi approximation. The Kirzhnits method,” Can. J. Phys. 51, No. 13, 1428–1439 (1973). CrossRef C. H. Hodges, “Quantum corrections to the Thomas–Fermi approximation. The Kirzhnits method,” Can. J. Phys. 51, No. 13, 1428–1439 (1973). CrossRef
20.
go back to reference J. P. Perdew, H. Q. Tran, and E. D. Smith, “Stabilized jellium: Structureless pseudopotential model for the cohesive and surface properties of metals,” Phys. Rev. B 42, No. 18, 11627–11636 (1990). CrossRef J. P. Perdew, H. Q. Tran, and E. D. Smith, “Stabilized jellium: Structureless pseudopotential model for the cohesive and surface properties of metals,” Phys. Rev. B 42, No. 18, 11627–11636 (1990). CrossRef
21.
go back to reference V. V. Pogosov, “More on the effect of vacancies on metal characteristics. Work function and surface energy,” Phys. Solid State 61, No. 2, 84–89 (2019). CrossRef V. V. Pogosov, “More on the effect of vacancies on metal characteristics. Work function and surface energy,” Phys. Solid State 61, No. 2, 84–89 (2019). CrossRef
22.
go back to reference N. D. Drummond, P. Lopez Rios, R. J. Needs, and C. J. Pickard, “Quantum Monte Carlo study of a positron in an electron gas,” Phys. Rev. Lett. 107, No. 11, 207402-5 (2011). CrossRef N. D. Drummond, P. Lopez Rios, R. J. Needs, and C. J. Pickard, “Quantum Monte Carlo study of a positron in an electron gas,” Phys. Rev. Lett. 107, No. 11, 207402-5 (2011). CrossRef
23.
go back to reference R. M. Nieminen and J. Oliva, “Theory of positronium formation and positron emission at metal surfaces,” Phys. Rev. B 22, No. 5, 2226–2247 (1980). CrossRef R. M. Nieminen and J. Oliva, “Theory of positronium formation and positron emission at metal surfaces,” Phys. Rev. B 22, No. 5, 2226–2247 (1980). CrossRef
24.
go back to reference K. Hirabayashi, “Dielectric theory of the barrier height at metal-semiconductor and metal-insulator interfaces,” Phys. Rev. B 3, No. 12, 4023–4032 (1971). CrossRef K. Hirabayashi, “Dielectric theory of the barrier height at metal-semiconductor and metal-insulator interfaces,” Phys. Rev. B 3, No. 12, 4023–4032 (1971). CrossRef
25.
go back to reference V. V. Batygin and I. N. Toptygin, Collection of Problems on Electrodynamics and Special Theory of Relativity (Lan’, St. Petersburg–Moscow–Krasnodar, 2010). V. V. Batygin and I. N. Toptygin, Collection of Problems on Electrodynamics and Special Theory of Relativity (Lan’, St. Petersburg–Moscow–Krasnodar, 2010).
26.
go back to reference V. V. Pogosov, “Curvature correction to the surface tension of metal droplet,” Chem. Phys. Lett. 193, No. 6. 473–477 (1992). CrossRef V. V. Pogosov, “Curvature correction to the surface tension of metal droplet,” Chem. Phys. Lett. 193, No. 6. 473–477 (1992). CrossRef
27.
go back to reference P. J. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys. 60, No. 3, 701–784 (1988). CrossRef P. J. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys. 60, No. 3, 701–784 (1988). CrossRef
28.
go back to reference V. G. Zavodinsky and I. A. Kuyanov, “Schottky barrier at Al/Si(111) dopped and double-dopped interfaces: a local-density cluster study,” Superlattice Microstruct. 24, No. 6. 55–60 (1998). CrossRef V. G. Zavodinsky and I. A. Kuyanov, “Schottky barrier at Al/Si(111) dopped and double-dopped interfaces: a local-density cluster study,” Superlattice Microstruct. 24, No. 6. 55–60 (1998). CrossRef
29.
go back to reference E. E. Shpil’rain, K. A. Yakimovich, E. E. Totskiy, D. L. Timport, and V. A. Fomin, Thermophysical Properties of Alkali Metals (Izd. St-tov, Moscow, 1970). E. E. Shpil’rain, K. A. Yakimovich, E. E. Totskiy, D. L. Timport, and V. A. Fomin, Thermophysical Properties of Alkali Metals (Izd. St-tov, Moscow, 1970).
Metadata
Title
Calculation of Surface Energy and Work Functions of Electrons and Positrons in a Metal with a Dielectric Coating
Author
V. V. Pogosov
Publication date
01-01-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 1/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010094