Skip to main content
Top
Published in:

01-06-2024 | STRENGTH AND PLASTICITY

Calculation of the Yield Strength of Polycrystalline Materials with a Hexagonal Close-Packed Lattice at a Given Texture

Author: A. G. Kesarev

Published in: Physics of Metals and Metallography | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For a polycrystalline material with a hexagonal close-packed lattice, a model is proposed that allows estimating the yield strength at a given texture. The plasticity properties of an individual grain are described by the generalized von Mises criterion. The most widespread averaging approaches are considered to determine the yield strength of a polycrystal. An original averaging method for a heterogeneous medium under plastic deformation conditions is proposed that takes into account the presence of undeformed grains whose share is determined by means of the percolation theory. Using each approach, the problem about tension/compression of a homogeneous rod of square cross-section is solved for two limiting cases: no texture and rigid basis texture. The calculation results are juxtaposed with the available literature data. The effect of the texture on the yield strength is considered. A qualitative explanation of generating a texture is given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
3.
go back to reference E. W. Kelly and W. F. Hosford, “Plane-strain compression of magnesium and magnesium alloy crystals,” Trans. Met. Soc. AIME 242, 5–15 (1968). E. W. Kelly and W. F. Hosford, “Plane-strain compression of magnesium and magnesium alloy crystals,” Trans. Met. Soc. AIME 242, 5–15 (1968).
4.
go back to reference P. V. Trusov, P. S. Volegov, and N. S. Kondrat’ev, Physical Theories of Plasticity (Izd-vo Permskogo Nats. Issled. Politekh. Univ., Perm, 2013). P. V. Trusov, P. S. Volegov, and N. S. Kondrat’ev, Physical Theories of Plasticity (Izd-vo Permskogo Nats. Issled. Politekh. Univ., Perm, 2013).
7.
go back to reference A. Sarkar and J. K. Chakravartty, “Modeling of deformation behaviour of HCP metals using crystal placticity approach,” BARC Newsl. 319, 31–35 (2011). A. Sarkar and J. K. Chakravartty, “Modeling of deformation behaviour of HCP metals using crystal placticity approach,” BARC Newsl. 319, 31–35 (2011).
13.
go back to reference L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1994), Vol. 2. L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1994), Vol. 2.
14.
go back to reference R. Hill, The Mathematical Theory of Plasticity (Clarendon Press, Oxford, 1950). R. Hill, The Mathematical Theory of Plasticity (Clarendon Press, Oxford, 1950).
15.
go back to reference Yu. M. Lakhtin and V. P. Leont’eva, Materials Science (Mashinostroenie, Moscow, 1990). Yu. M. Lakhtin and V. P. Leont’eva, Materials Science (Mashinostroenie, Moscow, 1990).
16.
go back to reference W. F. Shelly and R. R. Nash, “Mechanical properties of magnesium monocrystals,” Trans. Met. Soc. AIME 218, 416–423 (1960). W. F. Shelly and R. R. Nash, “Mechanical properties of magnesium monocrystals,” Trans. Met. Soc. AIME 218, 416–423 (1960).
19.
go back to reference A. L. Efros, The Physics and Geometry of Disorder (Nauka. Glavnaya Redaktsiya Fiz.-Mat. Literatury, Moscow, 1982). A. L. Efros, The Physics and Geometry of Disorder (Nauka. Glavnaya Redaktsiya Fiz.-Mat. Literatury, Moscow, 1982).
20.
go back to reference Yu. Yu. Tarasevich, Percolation: Theory, Applications, Algorithms (URSS, Moscow, 2012). Yu. Yu. Tarasevich, Percolation: Theory, Applications, Algorithms (URSS, Moscow, 2012).
21.
go back to reference V. A. Emelichev, O. I. Mel’nikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on Graph Theory (Nauka. Glavnaya Redaktsiya Fiz.-Mat. Literatury, Moscow, 1990). V. A. Emelichev, O. I. Mel’nikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on Graph Theory (Nauka. Glavnaya Redaktsiya Fiz.-Mat. Literatury, Moscow, 1990).
22.
go back to reference N. I. Kabanov, Elementary Introduction to the Calculus of Variations (Izd-vo Saratovskogo Universiteta, 1978). N. I. Kabanov, Elementary Introduction to the Calculus of Variations (Izd-vo Saratovskogo Universiteta, 1978).
23.
go back to reference L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1994), Vol. 1. L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1994), Vol. 1.
24.
go back to reference N. A. Kruglikov, Yu. N. Loginov, B. I. Kamenetskii, R. A. Savrai, A. V. Dolmatov, I. V. Klyukin, and A. Yu. Volkov, “Microstructure and mechanical properties of cast magnesium,” Liteishchik Ross., No. 8, 17–21 (2013). N. A. Kruglikov, Yu. N. Loginov, B. I. Kamenetskii, R. A. Savrai, A. V. Dolmatov, I. V. Klyukin, and A. Yu. Volkov, “Microstructure and mechanical properties of cast magnesium,” Liteishchik Ross., No. 8, 17–21 (2013).
25.
go back to reference N. N. Kalitkin, Numerical Methods (BKhV-Peterburg, St. Petersburg, 2011). N. N. Kalitkin, Numerical Methods (BKhV-Peterburg, St. Petersburg, 2011).
Metadata
Title
Calculation of the Yield Strength of Polycrystalline Materials with a Hexagonal Close-Packed Lattice at a Given Texture
Author
A. G. Kesarev
Publication date
01-06-2024
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 6/2024
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X24600386