Skip to main content
Top
Published in: Journal of Materials Science 13/2020

28-01-2020 | Computation & theory

Calculation of tunneling distance in carbon nanotubes nanocomposites: effect of carbon nanotube properties, interphase and networks

Authors: Yasser Zare, Kyong Yop Rhee

Published in: Journal of Materials Science | Issue 13/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, two developed models for electrical conductivity of polymer nanocomposites are linked to express an equation for tunneling distance between adjacent carbon nanotubes (CNT) by the effective properties of polymer matrix, CNT, interphase and networks. The tunneling distance is calculated for some samples at different CNT concentrations. In addition, the suggested equation is applied to justify the impacts of all parameters on the tunneling distance. The tunneling distance decreases as CNT concentration increases, but its variation reduces at high CNT loading. The suggested equation demonstrates that a thick interphase, thin and short CNT, high filler concentration, poor percolation threshold, low surface energy of polymer and high CNT surface energy produce a short tunneling distance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
8.
go back to reference Zare Y, Rhee KY (2018) Expression of normal stress difference and relaxation modulus for ternary nanocomposites containing biodegradable polymers and carbon nanotubes by storage and loss modulus data. Compos Part B Eng 158:162–168CrossRef Zare Y, Rhee KY (2018) Expression of normal stress difference and relaxation modulus for ternary nanocomposites containing biodegradable polymers and carbon nanotubes by storage and loss modulus data. Compos Part B Eng 158:162–168CrossRef
9.
go back to reference Zare Y, Rhee KY (2019) Modeling of viscosity and complex modulus for poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming yield stress and network breaking time. Compos Part B Eng 156:100–107CrossRef Zare Y, Rhee KY (2019) Modeling of viscosity and complex modulus for poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming yield stress and network breaking time. Compos Part B Eng 156:100–107CrossRef
10.
go back to reference Zare Y, Park SP, Rhee KY (2019) Analysis of complex viscosity and shear thinning behavior in poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes biosensor based on Carreau–Yasuda model. Results Phys 13:1–8CrossRef Zare Y, Park SP, Rhee KY (2019) Analysis of complex viscosity and shear thinning behavior in poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes biosensor based on Carreau–Yasuda model. Results Phys 13:1–8CrossRef
11.
go back to reference Tanabi H, Erdal M (2018) Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites. Results Phys 12:486–503CrossRef Tanabi H, Erdal M (2018) Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites. Results Phys 12:486–503CrossRef
12.
go back to reference Bakhtiari SSE, Karbasi S, Tabrizi SAH, Ebrahimi-Kahrizsangi R (2018) Chitosan/MWCNTs composite as bone substitute: Physical, mechanical, bioactivity, and biodegradation evaluation. Polym Compos 40:E1622–E1632CrossRef Bakhtiari SSE, Karbasi S, Tabrizi SAH, Ebrahimi-Kahrizsangi R (2018) Chitosan/MWCNTs composite as bone substitute: Physical, mechanical, bioactivity, and biodegradation evaluation. Polym Compos 40:E1622–E1632CrossRef
13.
go back to reference Khoramishad H, Khakzad M, Fasihi M (2017) The effect of outer diameter of multi-walled carbon nanotubes on fracture behavior of epoxy adhesives. Sci Iran Trans B Mech Eng 24(6):2952–2962 Khoramishad H, Khakzad M, Fasihi M (2017) The effect of outer diameter of multi-walled carbon nanotubes on fracture behavior of epoxy adhesives. Sci Iran Trans B Mech Eng 24(6):2952–2962
14.
go back to reference Zare Y, Rhee KY (2018) A power model to predict the electrical conductivity of CNT reinforced nanocomposites by considering interphase, networks and tunneling condition. Compos Part B Eng 155:11–18CrossRef Zare Y, Rhee KY (2018) A power model to predict the electrical conductivity of CNT reinforced nanocomposites by considering interphase, networks and tunneling condition. Compos Part B Eng 155:11–18CrossRef
15.
go back to reference Zare Y, Rhee KY (2019) Simplification and development of McLachlan model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the networking of interphase regions. Compos Part B Eng 156:64–71CrossRef Zare Y, Rhee KY (2019) Simplification and development of McLachlan model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the networking of interphase regions. Compos Part B Eng 156:64–71CrossRef
16.
go back to reference Berhan L, Sastry A (2007) Modeling percolation in high-aspect-ratio fiber systems I Soft-core versus hard-core models. Phys Rev E 75(4):041128 Berhan L, Sastry A (2007) Modeling percolation in high-aspect-ratio fiber systems I Soft-core versus hard-core models. Phys Rev E 75(4):041128
17.
go back to reference Zare Y, Rhee KY (2019) A multistep methodology for effective conductivity of carbon nanotubes reinforced nanocomposites. J Alloy Compd 793:1–8CrossRef Zare Y, Rhee KY (2019) A multistep methodology for effective conductivity of carbon nanotubes reinforced nanocomposites. J Alloy Compd 793:1–8CrossRef
18.
go back to reference Shin H, Yang S, Choi J, Chang S, Cho M (2015) Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: a multiscale approach. Chem Phys Lett 635:80–85CrossRef Shin H, Yang S, Choi J, Chang S, Cho M (2015) Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: a multiscale approach. Chem Phys Lett 635:80–85CrossRef
19.
go back to reference Zappalorto M, Salviato M, Quaresimin M (2011) Influence of the interphase zone on the nanoparticle debonding stress. Compos Sci Technol 72(1):49–55CrossRef Zappalorto M, Salviato M, Quaresimin M (2011) Influence of the interphase zone on the nanoparticle debonding stress. Compos Sci Technol 72(1):49–55CrossRef
20.
go back to reference Zare Y, Rhim S, Garmabi H, Rhee KY (2018) A simple model for constant storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites at low frequencies assuming the properties of interphase regions and networks. J Mech Behav Biomed Mater 80:164–170CrossRef Zare Y, Rhim S, Garmabi H, Rhee KY (2018) A simple model for constant storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites at low frequencies assuming the properties of interphase regions and networks. J Mech Behav Biomed Mater 80:164–170CrossRef
21.
go back to reference Zare Y, Garmabi H, Rhee KY (2018) Prediction of complex modulus in phase-separated poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites. Polym Test 66:189–194CrossRef Zare Y, Garmabi H, Rhee KY (2018) Prediction of complex modulus in phase-separated poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites. Polym Test 66:189–194CrossRef
22.
go back to reference Zare Y, Rhee KY (2019) Tensile strength prediction of carbon nanotube reinforced composites by expansion of cross-orthogonal skeleton structure. Compos Part B Eng 161:601–607CrossRef Zare Y, Rhee KY (2019) Tensile strength prediction of carbon nanotube reinforced composites by expansion of cross-orthogonal skeleton structure. Compos Part B Eng 161:601–607CrossRef
23.
go back to reference Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R (2019) Creep performance of CNT polymer nanocomposites-An emphasis on viscoelastic interphase and CNT agglomeration. Compos Part B Eng 168:274–281CrossRef Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R (2019) Creep performance of CNT polymer nanocomposites-An emphasis on viscoelastic interphase and CNT agglomeration. Compos Part B Eng 168:274–281CrossRef
24.
go back to reference Amraei J, Jam JE, Arab B, Firouz-Abadi RD (2018) Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites. Polym Compos 40:E1219–E1234CrossRef Amraei J, Jam JE, Arab B, Firouz-Abadi RD (2018) Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites. Polym Compos 40:E1219–E1234CrossRef
25.
go back to reference Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055CrossRef Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055CrossRef
26.
go back to reference Li C, Thostenson ET, Chou T-W (2007) Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl Phys Lett 91(22):1–3 Li C, Thostenson ET, Chou T-W (2007) Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl Phys Lett 91(22):1–3
27.
go back to reference Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56(13):2929–2936CrossRef Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56(13):2929–2936CrossRef
28.
go back to reference Kim S, Zare Y, Garmabi H, Rhee KY (2018) Variations of tunneling properties in poly (lactic acid)(PLA)/poly (ethylene oxide)(PEO)/carbon nanotubes (CNT) nanocomposites during hydrolytic degradation. Sens Actuators A Phys 274:28–36CrossRef Kim S, Zare Y, Garmabi H, Rhee KY (2018) Variations of tunneling properties in poly (lactic acid)(PLA)/poly (ethylene oxide)(PEO)/carbon nanotubes (CNT) nanocomposites during hydrolytic degradation. Sens Actuators A Phys 274:28–36CrossRef
29.
go back to reference Razavi R, Zare Y, Rhee KY (2019) The roles of interphase and filler dimensions in the properties of tunneling spaces between CNT in polymer nanocomposites. Polym Compos 40:801–810CrossRef Razavi R, Zare Y, Rhee KY (2019) The roles of interphase and filler dimensions in the properties of tunneling spaces between CNT in polymer nanocomposites. Polym Compos 40:801–810CrossRef
30.
go back to reference Feng C, Jiang L (2013) Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos Part A Appl Sci Manuf 47:143–149CrossRef Feng C, Jiang L (2013) Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos Part A Appl Sci Manuf 47:143–149CrossRef
31.
go back to reference Deng F, Zheng Q-S (2008) An analytical model of effective electrical conductivity of carbon nanotube composites. Appl Phys Lett 92(7):1–7CrossRef Deng F, Zheng Q-S (2008) An analytical model of effective electrical conductivity of carbon nanotube composites. Appl Phys Lett 92(7):1–7CrossRef
32.
go back to reference Takeda T, Shindo Y, Kuronuma Y, Narita F (2011) Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer 52(17):3852–3856CrossRef Takeda T, Shindo Y, Kuronuma Y, Narita F (2011) Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer 52(17):3852–3856CrossRef
33.
go back to reference Zare Y, Garmabi H, Rhee KY (2018) Roles of filler dimensions, interphase thickness, waviness, network fraction, and tunneling distance in tunneling conductivity of polymer CNT nanocomposites. Mater Chem Phys 206:243–250CrossRef Zare Y, Garmabi H, Rhee KY (2018) Roles of filler dimensions, interphase thickness, waviness, network fraction, and tunneling distance in tunneling conductivity of polymer CNT nanocomposites. Mater Chem Phys 206:243–250CrossRef
34.
go back to reference Rafiee R (2013) Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites. Compos Struct 97:304–309CrossRef Rafiee R (2013) Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites. Compos Struct 97:304–309CrossRef
35.
go back to reference Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215CrossRef Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215CrossRef
36.
go back to reference Ji XL, Jiao KJ, Jiang W, Jiang BZ (2002) Tensile modulus of polymer nanocomposites. Polym Eng Sci 42(5):983–993CrossRef Ji XL, Jiao KJ, Jiang W, Jiang BZ (2002) Tensile modulus of polymer nanocomposites. Polym Eng Sci 42(5):983–993CrossRef
37.
go back to reference Taherian R (2016) Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos Sci Technol 123:17–31CrossRef Taherian R (2016) Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos Sci Technol 123:17–31CrossRef
38.
go back to reference Maiti S, Suin S, Shrivastava NK, Khatua B (2013) Low percolation threshold in polycarbonate/multiwalled carbon nanotubes nanocomposites through melt blending with poly (butylene terephthalate). J Appl Polym Sci 130(1):543–553CrossRef Maiti S, Suin S, Shrivastava NK, Khatua B (2013) Low percolation threshold in polycarbonate/multiwalled carbon nanotubes nanocomposites through melt blending with poly (butylene terephthalate). J Appl Polym Sci 130(1):543–553CrossRef
39.
go back to reference Mai F, Habibi Y, Raquez J-M, Dubois P, Feller J-F, Peijs T et al (2013) Poly (lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer 54(25):6818–6823CrossRef Mai F, Habibi Y, Raquez J-M, Dubois P, Feller J-F, Peijs T et al (2013) Poly (lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer 54(25):6818–6823CrossRef
40.
go back to reference Maiti S, Shrivastava NK, Khatua B (2013) Reduction of percolation threshold through double percolation in melt-blended polycarbonate/acrylonitrile butadiene styrene/multiwall carbon nanotubes elastomer nanocomposites. Polym Compos 34(4):570–579CrossRef Maiti S, Shrivastava NK, Khatua B (2013) Reduction of percolation threshold through double percolation in melt-blended polycarbonate/acrylonitrile butadiene styrene/multiwall carbon nanotubes elastomer nanocomposites. Polym Compos 34(4):570–579CrossRef
41.
go back to reference Li H-x, Zare Y, Rhee KY (2018) The percolation threshold for tensile strength of polymer/CNT nanocomposites assuming filler network and interphase regions. Mater Chem Phys 207:76–83CrossRef Li H-x, Zare Y, Rhee KY (2018) The percolation threshold for tensile strength of polymer/CNT nanocomposites assuming filler network and interphase regions. Mater Chem Phys 207:76–83CrossRef
42.
go back to reference Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69(3):491–499CrossRef Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69(3):491–499CrossRef
43.
go back to reference Mittal G, Rhee KY, Park SJ, Hui D (2017) Generation of the pores on graphene surface and their reinforcement effects on the thermal and mechanical properties of chitosan-based composites. Compos Part B Eng 114:348–355CrossRef Mittal G, Rhee KY, Park SJ, Hui D (2017) Generation of the pores on graphene surface and their reinforcement effects on the thermal and mechanical properties of chitosan-based composites. Compos Part B Eng 114:348–355CrossRef
44.
go back to reference Maiti S, Bera R, Karan SK, Paria S, De A, Khatua BB (2019) PVC bead assisted selective dispersion of MWCNT for designing efficient electromagnetic interference shielding PVC/MWCNT nanocomposite with very low percolation threshold. Compos Part B Eng 167:377–386CrossRef Maiti S, Bera R, Karan SK, Paria S, De A, Khatua BB (2019) PVC bead assisted selective dispersion of MWCNT for designing efficient electromagnetic interference shielding PVC/MWCNT nanocomposite with very low percolation threshold. Compos Part B Eng 167:377–386CrossRef
45.
go back to reference Zare Y, Rhee KY, Park S-J (2018) A modeling methodology to investigate the effect of interfacial adhesion on the yield strength of MMT reinforced nanocomposites. J Ind Eng Chem 69:331–337CrossRef Zare Y, Rhee KY, Park S-J (2018) A modeling methodology to investigate the effect of interfacial adhesion on the yield strength of MMT reinforced nanocomposites. J Ind Eng Chem 69:331–337CrossRef
46.
go back to reference Zare Y, Rhee KY (2019) Evaluation of the tensile strength in carbon nanotube-reinforced nanocomposites using the expanded Takayanagi model. JOM 71:3980–3988CrossRef Zare Y, Rhee KY (2019) Evaluation of the tensile strength in carbon nanotube-reinforced nanocomposites using the expanded Takayanagi model. JOM 71:3980–3988CrossRef
Metadata
Title
Calculation of tunneling distance in carbon nanotubes nanocomposites: effect of carbon nanotube properties, interphase and networks
Authors
Yasser Zare
Kyong Yop Rhee
Publication date
28-01-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 13/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04176-2

Other articles of this Issue 13/2020

Journal of Materials Science 13/2020 Go to the issue

Premium Partners