Skip to main content
Top

2017 | OriginalPaper | Chapter

11. Calculations in Li-Ion Battery Materials

Authors : Michelle D. Johannes, Corey T. Love, Karen Swider-Lyons

Published in: Springer Handbook of Electrochemical Energy

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Density functional calculations, or first principles calculations, are emerging as a critical tool for the evaluation of new lithium-ion battery materials. Density functional theory (DFT) is ideal for battery materials because it can be used to calculate critical materials properties, such as electronic and ionic conductivity, phase stability with lithium intercalation, and the roles of defects and dopants. The methods are illustrated herein by the evaluation of charge/discharge properties of two Li-ion battery cathode materials, \(\mathrm{LiNi}_{1/3}\mathrm{Co}_{1/3}\mathrm{Mn}_{1/3}\mathrm{O}_{2}\) (NCM) and \(\mathrm{LiNi}_{1/3}\mathrm{Co}_{1/3}\mathrm{Al}_{1/3}\mathrm{O}_{2}\) (NCA\({}_{1/3}\)) and their comparison to a LiCoO2 standard. We investigate the effect of substituting Al for Mn on the structural and electronic properties of the compounds at various levels of Li deintercalation and correlate these to performance properties observed in the laboratory. We find a calculated and observable upward shift in the voltage with Al substitution due to a shift in the oxidation levels of the electrochemically active ions during cycling. The results are corroborated by experimental results, in which we observe much lower specific capacity for NCA (despite its higher theoretical value) that can be attributed to a restricted voltage window during deintercalation. There is also a strong increase in resistive losses for NCA. A comparison of our density functional calculations and measured data indicates that this loss is due mainly to disruptive Ni/Li cation disorder. The partial density of states of the materials can be used to calculate their propensity to evolve O2 when overcharged. DFT gives key insights into changes occurring at the atomistic level and can be used toward physical insights into both new and traditional materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang: Identification of cathode materials for lithium batteries guided by first-principles calculations, Nature 392(6677), 694–696 (1998)CrossRef G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang: Identification of cathode materials for lithium batteries guided by first-principles calculations, Nature 392(6677), 694–696 (1998)CrossRef
[2]
go back to reference Y.S. Meng, M.E. Arroyo-de Dompablo: First principles computational materials design for energy storage materials in lithium ion batteries, Energy Environ. Sci. 2(6), 589–609 (2009)CrossRef Y.S. Meng, M.E. Arroyo-de Dompablo: First principles computational materials design for energy storage materials in lithium ion batteries, Energy Environ. Sci. 2(6), 589–609 (2009)CrossRef
[3]
go back to reference J.B. Goodenough: Metallic oxides, Prog. Solid State Chem. 5, 145–399 (1971)CrossRef J.B. Goodenough: Metallic oxides, Prog. Solid State Chem. 5, 145–399 (1971)CrossRef
[4]
go back to reference J.B. Goodenough, K.S. Park: The li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167–1176 (2013)CrossRef J.B. Goodenough, K.S. Park: The li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167–1176 (2013)CrossRef
[5]
go back to reference M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, J. Joannopoulos: Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides, Phys. Rev. B 56(3), 1354–1365 (1997)CrossRef M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, J. Joannopoulos: Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides, Phys. Rev. B 56(3), 1354–1365 (1997)CrossRef
[6]
go back to reference K.S. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder: Electrodes with high power and high capacity for rechargeable lithium batteries, Science 311(5763), 977–980 (2006)CrossRef K.S. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder: Electrodes with high power and high capacity for rechargeable lithium batteries, Science 311(5763), 977–980 (2006)CrossRef
[7]
go back to reference G. Kresse, J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169–11186 (1996)CrossRef G. Kresse, J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169–11186 (1996)CrossRef
[8]
go back to reference G. Kresse, D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758–1775 (1999)CrossRef G. Kresse, D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758–1775 (1999)CrossRef
[9]
go back to reference A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, A.K. Persson: Commentary: The materials project: A materials genome approach to accelerating materials innovation, Appl. Mater. 1(1), 011002 (2013)CrossRef A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, A.K. Persson: Commentary: The materials project: A materials genome approach to accelerating materials innovation, Appl. Mater. 1(1), 011002 (2013)CrossRef
[10]
go back to reference H.L. Chen, G. Hautier, A. Jain, C. Moore, B. Kang, R. Doe, L. Wu, Y. Zhu, Y. Tang: Carbonophosphates: A new family of cathode materials for li-ion batteries identified computationally, Chem. Mater. 24(11), 2009–2016 (2012)CrossRef H.L. Chen, G. Hautier, A. Jain, C. Moore, B. Kang, R. Doe, L. Wu, Y. Zhu, Y. Tang: Carbonophosphates: A new family of cathode materials for li-ion batteries identified computationally, Chem. Mater. 24(11), 2009–2016 (2012)CrossRef
[11]
go back to reference I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du: Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO(1−x)F(x), Phys. Rev. Lett. 101(5), 057003 (2008)CrossRef I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du: Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO(1−x)F(x), Phys. Rev. Lett. 101(5), 057003 (2008)CrossRef
[12]
go back to reference M.D. Johannes, I.I. Mazin, D.J. Singh, D.A. Papaconstantopoulos: Nesting, spin fluctuations, and odd-gap superconductivity in Na x CoO2 yH2O, Phys. Rev. Lett. 94, 169901 (2005)CrossRef M.D. Johannes, I.I. Mazin, D.J. Singh, D.A. Papaconstantopoulos: Nesting, spin fluctuations, and odd-gap superconductivity in Na x CoO2 yH2O, Phys. Rev. Lett. 94, 169901 (2005)CrossRef
[13]
go back to reference M.D. Johannes, I.I. Mazin, D.J. Singh, D.A. Papaconstantopoulos: Erratum: Nesting, spin fluctuations, and odd-gap superconductivity in Na x CoO2 y H2O, Phys. Rev. Lett. 93, 097005 (2004)CrossRef M.D. Johannes, I.I. Mazin, D.J. Singh, D.A. Papaconstantopoulos: Erratum: Nesting, spin fluctuations, and odd-gap superconductivity in Na x CoO2 y H2O, Phys. Rev. Lett. 93, 097005 (2004)CrossRef
[14]
go back to reference M.D. Johannes, I.I. Mazin, D.J. Singh, D.A. Papaconstantopoulos: Erratum: Nesting, spin fluctuations, and odd-gap superconductivity in Na x CoO2 y H2O, Phys. Rev. Lett. 94, 169901 (2005)CrossRef M.D. Johannes, I.I. Mazin, D.J. Singh, D.A. Papaconstantopoulos: Erratum: Nesting, spin fluctuations, and odd-gap superconductivity in Na x CoO2 y H2O, Phys. Rev. Lett. 94, 169901 (2005)CrossRef
[15]
go back to reference P.E. Blochl: Projector augmented-wave method, Phys. Rev. B 50(24), 17953–17979 (1994)CrossRef P.E. Blochl: Projector augmented-wave method, Phys. Rev. B 50(24), 17953–17979 (1994)CrossRef
[16]
go back to reference J. Heyd, G.E. Scuseria, M. Ernzerhof: Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118(18), 8207–8215 (2003)CrossRef J. Heyd, G.E. Scuseria, M. Ernzerhof: Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118(18), 8207–8215 (2003)CrossRef
[17]
go back to reference K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough: Li x CoO2 (Oless-Thanxless-Than-or-Equal-To1) – A new cathode material for batteries of high-energy density, Mater. Res. Bull. 15(6), 783–789 (1980)CrossRef K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough: Li x CoO2 (Oless-Thanxless-Than-or-Equal-To1) – A new cathode material for batteries of high-energy density, Mater. Res. Bull. 15(6), 783–789 (1980)CrossRef
[18]
go back to reference J.R. Dahn, U. VonSacken, M.W. Juzkow, H. Al-Janaby: Rechargeable LiNiO2 carbon cells, J. Electrochem. Soc. 138(8), 2207–2211 (1991)CrossRef J.R. Dahn, U. VonSacken, M.W. Juzkow, H. Al-Janaby: Rechargeable LiNiO2 carbon cells, J. Electrochem. Soc. 138(8), 2207–2211 (1991)CrossRef
[19]
go back to reference T. Ohzuku, A. Ueda, M. Nagayama: Electrochemistry and structural chemistry of LiNiO2 (\(R\bar{3}M\)) for 4 volt secondary lithium cells, J. Electrochem. Soc. 140(7), 1862–1870 (1993)CrossRef T. Ohzuku, A. Ueda, M. Nagayama: Electrochemistry and structural chemistry of LiNiO2 (\(R\bar{3}M\)) for 4 volt secondary lithium cells, J. Electrochem. Soc. 140(7), 1862–1870 (1993)CrossRef
[20]
go back to reference J.N. Reimers, J.R. Dahn, J.E. Greedan, C.V. Stager, G. Liu, I. Davidson, U. von Sacken: Spin-glass behavior in the frustrated antiferromagnetic LiNiO2, J. Solid State Chem. 102(2), 542–552 (1993)CrossRef J.N. Reimers, J.R. Dahn, J.E. Greedan, C.V. Stager, G. Liu, I. Davidson, U. von Sacken: Spin-glass behavior in the frustrated antiferromagnetic LiNiO2, J. Solid State Chem. 102(2), 542–552 (1993)CrossRef
[21]
go back to reference Y.I. Jang, B. Huang, H. Wang, G.R. Maskaly, G. Ceder, D.R. Sadoway, Y.-M. Chiang, H. Liu, H. Tamura: Synthesis and characterization of LiAl y Co1−y O2 and LiAl y Ni1−y O2, J. Power Sources 81, 589–593 (1999)CrossRef Y.I. Jang, B. Huang, H. Wang, G.R. Maskaly, G. Ceder, D.R. Sadoway, Y.-M. Chiang, H. Liu, H. Tamura: Synthesis and characterization of LiAl y Co1−y O2 and LiAl y Ni1−y O2, J. Power Sources 81, 589–593 (1999)CrossRef
[22]
go back to reference T.A. Ohzuku, A. Ueda, M. Kouguchi: Synthesis and characterization of LiAl1/4Ni3/4O2 (\(R\bar{3}m\)) for lithium-ion (shuttlecock) batteries, J. Electrochem. Soc. 142(12), 4033–4039 (1995)CrossRef T.A. Ohzuku, A. Ueda, M. Kouguchi: Synthesis and characterization of LiAl1/4Ni3/4O2 (\(R\bar{3}m\)) for lithium-ion (shuttlecock) batteries, J. Electrochem. Soc. 142(12), 4033–4039 (1995)CrossRef
[23]
go back to reference J. Reed, G. Ceder: Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation, Chem. Rev. 104(10), 4513–4533 (2004)CrossRef J. Reed, G. Ceder: Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation, Chem. Rev. 104(10), 4513–4533 (2004)CrossRef
[24]
go back to reference M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, S.A. Hackney: Comments on the structural complexity of lithium-rich Li1 + x M1−x O2 electrodes (M = Mn, Ni, Co) for lithium batteries, Electrochem. Commun. 8(9), 1531–1538 (2006)CrossRef M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, S.A. Hackney: Comments on the structural complexity of lithium-rich Li1 + x M1−x O2 electrodes (M = Mn, Ni, Co) for lithium batteries, Electrochem. Commun. 8(9), 1531–1538 (2006)CrossRef
[25]
go back to reference C.H. Chen, J. Liu, M.E. Stoll, G. Henriksen, D.R. Vissers, K. Amine: Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries, J. Power Sources 128(2), 278–285 (2004)CrossRef C.H. Chen, J. Liu, M.E. Stoll, G. Henriksen, D.R. Vissers, K. Amine: Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries, J. Power Sources 128(2), 278–285 (2004)CrossRef
[26]
go back to reference J. Xiao, N.A. Chernova, M.S. Whittingham: Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries, Chem. Mater. 20(24), 7454–7464 (2008)CrossRef J. Xiao, N.A. Chernova, M.S. Whittingham: Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries, Chem. Mater. 20(24), 7454–7464 (2008)CrossRef
[27]
go back to reference Y.K. Lin, C.H. Lu: Preparation and electrochemical properties of layer-structured LiNi1/3Co1/3Mn1/3-yAl y O2, J. Power Sources 189(1), 353–358 (2009)CrossRef Y.K. Lin, C.H. Lu: Preparation and electrochemical properties of layer-structured LiNi1/3Co1/3Mn1/3-yAl y O2, J. Power Sources 189(1), 353–358 (2009)CrossRef
[28]
go back to reference B.J. Hwang, Y.W. Tsai, D. Carlier, G. Ceder: A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2, Chem. Mater. 15(19), 3676–3682 (2003)CrossRef B.J. Hwang, Y.W. Tsai, D. Carlier, G. Ceder: A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2, Chem. Mater. 15(19), 3676–3682 (2003)CrossRef
[29]
go back to reference Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, T. Ohzuku: Crystal and electronic structures of superstructural, Li1−x [Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1), J. Power Sources 119, 644–648 (2003)CrossRef Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, T. Ohzuku: Crystal and electronic structures of superstructural, Li1−x [Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1), J. Power Sources 119, 644–648 (2003)CrossRef
[30]
go back to reference V.I. Anisimov, J. Zaanen, O.K. Andersen: Band theory and mott insulators - hubbard-U instead of stoner-I, Phys. Rev. B 44(3), 943–954 (1991)CrossRef V.I. Anisimov, J. Zaanen, O.K. Andersen: Band theory and mott insulators - hubbard-U instead of stoner-I, Phys. Rev. B 44(3), 943–954 (1991)CrossRef
[31]
go back to reference V.I. Anisimov, O. Gunnarsson: Density-functional calculation of effective coulomb interactions in metals, Phys. Rev. B 43(10), 7570–7574 (1991)CrossRef V.I. Anisimov, O. Gunnarsson: Density-functional calculation of effective coulomb interactions in metals, Phys. Rev. B 43(10), 7570–7574 (1991)CrossRef
[32]
go back to reference M.D. Johannes, K. Hoang, J.L. Allen, K. Gaskell: Hole polaron formation and migration in olivine phosphate materials, Phys. Rev. B 85(11), 115106 (2012)CrossRef M.D. Johannes, K. Hoang, J.L. Allen, K. Gaskell: Hole polaron formation and migration in olivine phosphate materials, Phys. Rev. B 85(11), 115106 (2012)CrossRef
[33]
go back to reference C.T. Love, M.D. Johannes, K.E. Swider-Lyons: Thermal stability of delithiated Al-substituted LiNi1/3Co1/3Mn1/3O2 cathodes in rechargeable lithium-ion batteries, ECS Transactions 25(36), 231–240 (2012) C.T. Love, M.D. Johannes, K.E. Swider-Lyons: Thermal stability of delithiated Al-substituted LiNi1/3Co1/3Mn1/3O2 cathodes in rechargeable lithium-ion batteries, ECS Transactions 25(36), 231–240 (2012)
[34]
go back to reference S. Jouanneau, J.R. Dahn: Preparation, structure, and thermal stability of new Ni x Co1-2xMn x (OH)(2) (0 ≤ x ≤ 1/2) phases, Chem. Mater. 15(2), 495–499 (2003)CrossRef S. Jouanneau, J.R. Dahn: Preparation, structure, and thermal stability of new Ni x Co1-2xMn x (OH)(2) (0 ≤ x ≤ 1/2) phases, Chem. Mater. 15(2), 495–499 (2003)CrossRef
[35]
go back to reference W.B. Luo, J.R. Dahn: Preparation of Co1−z Al z (OH)(2)(NO3)(z) layered double hydroxides and Li(Co1−z Al z )O-2, Chem. Mater. 21(1), 56–62 (2009)CrossRef W.B. Luo, J.R. Dahn: Preparation of Co1−z Al z (OH)(2)(NO3)(z) layered double hydroxides and Li(Co1−z Al z )O-2, Chem. Mater. 21(1), 56–62 (2009)CrossRef
[36]
go back to reference J. Wilcox, S. Patoux, M. Doeff: Structure and electrochemistry of LiNi1/3Co1/3-yM y Mn1/3O2 (M = Ti, Al, Fe) positive electrode materials, J. Electrochem. Soc. 156(3), A192–A198 (2009)CrossRef J. Wilcox, S. Patoux, M. Doeff: Structure and electrochemistry of LiNi1/3Co1/3-yM y Mn1/3O2 (M = Ti, Al, Fe) positive electrode materials, J. Electrochem. Soc. 156(3), A192–A198 (2009)CrossRef
[37]
go back to reference R.D. Shannon, C.T. Prewitt: Effective ionic radii in oxides and fluorides, Acta Crystallographica Section B-Structural Crystallogr. Cryst. Chem. B 25, 925–946 (1969)CrossRef R.D. Shannon, C.T. Prewitt: Effective ionic radii in oxides and fluorides, Acta Crystallographica Section B-Structural Crystallogr. Cryst. Chem. B 25, 925–946 (1969)CrossRef
[38]
go back to reference X.M. Zhao, F. Zhou, J.R. Dahn: Phases formed in Al-doped Ni(1/3)Mn(1/3)Co(1/3)(OH)(2) prepared by coprecipitation: Formation of layered double hydroxide, J. Electrochem. Soc. 155(9), A642–A647 (2008)CrossRef X.M. Zhao, F. Zhou, J.R. Dahn: Phases formed in Al-doped Ni(1/3)Mn(1/3)Co(1/3)(OH)(2) prepared by coprecipitation: Formation of layered double hydroxide, J. Electrochem. Soc. 155(9), A642–A647 (2008)CrossRef
[39]
go back to reference H. Kobayashi, Y. Arachi, S. Emura, K. Tatsumi: Investigation on lithium de-intercalation mechanism for LiNi0.45Mn0.45Al0.1O2, Solid State Ionics 178(15–18), 1101–1105 (2007)CrossRef H. Kobayashi, Y. Arachi, S. Emura, K. Tatsumi: Investigation on lithium de-intercalation mechanism for LiNi0.45Mn0.45Al0.1O2, Solid State Ionics 178(15–18), 1101–1105 (2007)CrossRef
[40]
go back to reference J.R. Dahn, E.W. Fuller, M. Obrovac, U. von Sacken: Thermal-stability of Li x CoO2, Li x NiO2 and λ-MnO2 and consequences for the safety of Li-ion cells, Solid State Ionics 69(3–4), 265–270 (1994)CrossRef J.R. Dahn, E.W. Fuller, M. Obrovac, U. von Sacken: Thermal-stability of Li x CoO2, Li x NiO2 and λ-MnO2 and consequences for the safety of Li-ion cells, Solid State Ionics 69(3–4), 265–270 (1994)CrossRef
[41]
go back to reference R. Gupta, A. Manthiram: Chemical extraction of lithium from layered LiCoO2, J. Solid State Chem. 121(2), 483–491 (1996)CrossRef R. Gupta, A. Manthiram: Chemical extraction of lithium from layered LiCoO2, J. Solid State Chem. 121(2), 483–491 (1996)CrossRef
[42]
go back to reference A.R. Armstrong, M. Holzapfel, P. Novák, C.S. Johnson, S.H. Kang, M.M. Thackeray, P.G. Bruce: Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode, Li[Ni0.2Li0.2Mn0.6]O2, J. Am. Chem. Soc. 128(26), 8694–8698 (2006)CrossRef A.R. Armstrong, M. Holzapfel, P. Novák, C.S. Johnson, S.H. Kang, M.M. Thackeray, P.G. Bruce: Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode, Li[Ni0.2Li0.2Mn0.6]O2, J. Am. Chem. Soc. 128(26), 8694–8698 (2006)CrossRef
[43]
go back to reference M.D. Johannes, C.T. Love, K.E. Swider-Lyons: Oxygen character in the density of states as an indicator of the stability of Li-ion battery cathode materials, Solid State Ionics 286, 83–89 (2014)CrossRef M.D. Johannes, C.T. Love, K.E. Swider-Lyons: Oxygen character in the density of states as an indicator of the stability of Li-ion battery cathode materials, Solid State Ionics 286, 83–89 (2014)CrossRef
[44]
go back to reference N.V. Kosova, E.T. Devyatkina, V.V. Kaichev: LiNi1−x−y Co x Mn y O2 (x = y = 0.1, 0.2, 0.33) cathode materials prepared using mechanical activation: Structure, state of ions, and electrochemical performance, Inorg. Mater. 43(2), 185–193 (2007)CrossRef N.V. Kosova, E.T. Devyatkina, V.V. Kaichev: LiNi1−xy Co x Mn y O2 (x = y = 0.1, 0.2, 0.33) cathode materials prepared using mechanical activation: Structure, state of ions, and electrochemical performance, Inorg. Mater. 43(2), 185–193 (2007)CrossRef
[45]
go back to reference S.K. Hu, S.B. Tang, L. Lu, Y.S. Meng, G. Ceder: Effect of Co content on performance of LiAl1/3-xCo x Ni1/3Mn1/3O2 compounds for lithium-ion batteries, J. Power Sources 160(2), 1287–1293 (2006)CrossRef S.K. Hu, S.B. Tang, L. Lu, Y.S. Meng, G. Ceder: Effect of Co content on performance of LiAl1/3-xCo x Ni1/3Mn1/3O2 compounds for lithium-ion batteries, J. Power Sources 160(2), 1287–1293 (2006)CrossRef
[46]
go back to reference K. Hoang, M.D. Johannes: Defect chemistry in layered transition-metal oxides from screened hybrid density functional calculations, J. Mater. Chem. A 2(15), 5224–5235 (2014)CrossRef K. Hoang, M.D. Johannes: Defect chemistry in layered transition-metal oxides from screened hybrid density functional calculations, J. Mater. Chem. A 2(15), 5224–5235 (2014)CrossRef
[47]
go back to reference G. Dutta, A. Manthiram, J.B. Goodenough, J.-C. Grenier: Chemical Synthesis and Properties of, Li1−δ−x Ni1 + δO2 and Li[Ni2]O4, J. Solid State Chem. 96(1), 123–131 (1992)CrossRef G. Dutta, A. Manthiram, J.B. Goodenough, J.-C. Grenier: Chemical Synthesis and Properties of, Li1−δ−x Ni1 + δO2 and Li[Ni2]O4, J. Solid State Chem. 96(1), 123–131 (1992)CrossRef
[48]
go back to reference Q.S. Wan, P. Ping, X.J. Zhao, G.Q. Chu, J.H. Sun, C.H. Chen: Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources 208, 210–224 (2012)CrossRef Q.S. Wan, P. Ping, X.J. Zhao, G.Q. Chu, J.H. Sun, C.H. Chen: Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources 208, 210–224 (2012)CrossRef
[49]
go back to reference Z.Q. Deng, A. Manthiram: Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes, J. Phys. Chem. C. 115(14), 7097–7103 (2011)CrossRef Z.Q. Deng, A. Manthiram: Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes, J. Phys. Chem. C. 115(14), 7097–7103 (2011)CrossRef
[50]
go back to reference S. Laubach, S. Laubach, P.C. Schmidt, D. Ensling, S. Schmid, W. Jaegermann, A. Thißen, K. Nikolowski, H. Ehrenberg: Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation, Phys. Chem. Chem. Phys. 11(17), 3278–3289 (2009)CrossRef S. Laubach, S. Laubach, P.C. Schmidt, D. Ensling, S. Schmid, W. Jaegermann, A. Thißen, K. Nikolowski, H. Ehrenberg: Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation, Phys. Chem. Chem. Phys. 11(17), 3278–3289 (2009)CrossRef
[51]
go back to reference C.T. Love, W. Dmowski, M.D. Johannes, K.E. Swider-Lyons: Structural originations of irreversible capacity loss from highly lithiated copper oxides, J. Solid State Chem. 184(9), 2412–2419 (2011)CrossRef C.T. Love, W. Dmowski, M.D. Johannes, K.E. Swider-Lyons: Structural originations of irreversible capacity loss from highly lithiated copper oxides, J. Solid State Chem. 184(9), 2412–2419 (2011)CrossRef
[52]
go back to reference L.X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J.B. Goodenough: Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energy Environ. Sci. 4(2), 269–284 (2011)CrossRef L.X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J.B. Goodenough: Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energy Environ. Sci. 4(2), 269–284 (2011)CrossRef
[53]
go back to reference K. Zaghib, A. Guerfi, P. Hovington, A. Vijh, M. Trudeau, A. Mauger, J.B. Goodenough, C.M. Julien: Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends, J. Power Sources 232, 357–369 (2013)CrossRef K. Zaghib, A. Guerfi, P. Hovington, A. Vijh, M. Trudeau, A. Mauger, J.B. Goodenough, C.M. Julien: Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends, J. Power Sources 232, 357–369 (2013)CrossRef
[54]
go back to reference C.J. Patridge, C.T. Love, K.E.S. Lyons, M.E. Twigg, D.E. Ramaker: In-situ x-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO2, J. Solid State Chem. 203, 134–144 (2013)CrossRef C.J. Patridge, C.T. Love, K.E.S. Lyons, M.E. Twigg, D.E. Ramaker: In-situ x-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO2, J. Solid State Chem. 203, 134–144 (2013)CrossRef
Metadata
Title
Calculations in Li-Ion Battery Materials
Authors
Michelle D. Johannes
Corey T. Love
Karen Swider-Lyons
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_11