Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Calibrated Bayesian Neural Networks to Estimate Gestational Age and Its Uncertainty on Fetal Brain Ultrasound Images

Authors : Lok Hin Lee, Elizabeth Bradburn, Aris T. Papageorghiou, J. Alison Noble

Published in: Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis

Publisher: Springer International Publishing

share
SHARE

Abstract

We present an original automated framework for estimating gestational age (GA) from fetal ultrasound head biometry plane images. A novelty of our approach is the use of a Bayesian Neural Network (BNN), which quantifies uncertainty of the estimated GA. Knowledge of estimated uncertainty is useful in clinical decision-making, and is especially important in ultrasound image analysis where image appearance and quality can naturally vary a lot. A further novelty of our approach is that the neural network is not provided with images pixel size, thus making it rely on anatomical appearance characteristics and not size.
We train the network using 9,299 scans from the INTERGROWTH-21st [22] dataset ranging from \(14+0\) weeks to \(42+6\) weeks GA. We achieve average RMSE and MAE of 9.6 and 12.5 days respectively over the GA range. We explore the robustness of the BNN architecture to invalid input images by testing with (i) a different dataset derived from routine anomaly scanning and (ii) scans of a different fetal anatomy .

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. Technical report (2016) Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. Technical report (2016)
2.
go back to reference Cai, Y., Sharma, H., Chatelain, P., Noble, J.A.: Multi-task SonoEyeNet: detection of fetal standardized planes assisted by generated sonographer attention maps. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 871–879. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-00928-1_​98 CrossRef Cai, Y., Sharma, H., Chatelain, P., Noble, J.A.: Multi-task SonoEyeNet: detection of fetal standardized planes assisted by generated sonographer attention maps. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 871–879. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-00928-1_​98 CrossRef
3.
go back to reference Ciurte, A., et al.: Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut. PLoS One 9(7), e100972 (2014) CrossRef Ciurte, A., et al.: Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut. PLoS One 9(7), e100972 (2014) CrossRef
4.
go back to reference Dillon, J.V., et al.: TensorFlow Distributions, November 2017 Dillon, J.V., et al.: TensorFlow Distributions, November 2017
5.
go back to reference Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing schedule: a simple approach to mitigating KL vanishing. In: NAACL, pp. 240–250. Association for Computational Linguistics, Minneapolis, June 2019 Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing schedule: a simple approach to mitigating KL vanishing. In: NAACL, pp. 240–250. Association for Computational Linguistics, Minneapolis, June 2019
7.
go back to reference Graves, A.: Practical variational inference for neural networks. In: NIPS (2011) Graves, A.: Practical variational inference for neural networks. In: NIPS (2011)
8.
go back to reference Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML, vol. 3, pp. 2130–2143 (2017) Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML, vol. 3, pp. 2130–2143 (2017)
9.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, vol. 2016, pp. 770–778. IEEE Computer Society, December 2016 He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, vol. 2016, pp. 770–778. IEEE Computer Society, December 2016
10.
go back to reference van den Heuvel, T.L.A., Petros, H., Santini, S., de Korte, C.L., van Ginneken, B.: Automated fetal head detection and circumference estimation from free-hand ultrasound sweeps using deep learning in resource-limited countries. Ultrasound Med. Biol. 45(3), 773–785 (2019) CrossRef van den Heuvel, T.L.A., Petros, H., Santini, S., de Korte, C.L., van Ginneken, B.: Automated fetal head detection and circumference estimation from free-hand ultrasound sweeps using deep learning in resource-limited countries. Ultrasound Med. Biol. 45(3), 773–785 (2019) CrossRef
11.
go back to reference Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NIPS 2017, pp. 5580–5590. Curran Associates Inc., Long Beach, December 2017 Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NIPS 2017, pp. 5580–5590. Curran Associates Inc., Long Beach, December 2017
13.
go back to reference Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated regression. In: ICML, vol. 6, pp. 4369–4377 (2018) Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated regression. In: ICML, vol. 6, pp. 4369–4377 (2018)
14.
go back to reference Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS, vol. 2017, pp. 6403–6414, December 2017 Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS, vol. 2017, pp. 6403–6414, December 2017
15.
go back to reference Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 1–14 (2017) CrossRef Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 1–14 (2017) CrossRef
16.
go back to reference MacKay, D.J.C.: A practical Bayesian framework for backpropagation networks. Neural Comput. 4(3), 448–472 (1992) CrossRef MacKay, D.J.C.: A practical Bayesian framework for backpropagation networks. Neural Comput. 4(3), 448–472 (1992) CrossRef
17.
go back to reference McClure, P., et al.: Knowing what you know in brain segmentation using Bayesian deep neural networks. Front. Neuroinform. 13, 67 (2019) CrossRef McClure, P., et al.: Knowing what you know in brain segmentation using Bayesian deep neural networks. Front. Neuroinform. 13, 67 (2019) CrossRef
18.
go back to reference Namburete, A.I., Stebbing, R.V., Kemp, B., Yaqub, M., Papageorghiou, A.T., Noble, J.A.: Learning-based prediction of gestational age from ultrasound images of the fetal brain. Med. Image Anal. 21(1), 72–86 (2015) CrossRef Namburete, A.I., Stebbing, R.V., Kemp, B., Yaqub, M., Papageorghiou, A.T., Noble, J.A.: Learning-based prediction of gestational age from ultrasound images of the fetal brain. Med. Image Anal. 21(1), 72–86 (2015) CrossRef
20.
go back to reference Paladini, D., Malinger, G., Monteagudo, A., Pilu, G., Timor-Tritsch, I., Toi, A.: Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’, January 2007 Paladini, D., Malinger, G., Monteagudo, A., Pilu, G., Timor-Tritsch, I., Toi, A.: Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’, January 2007
22.
go back to reference Papageorghiou, A.T., et al.: The INTERGROWTH-21 st fetal growth standards: toward the global integration of pregnancy and pediatric care. Am. J. Obstet. Gynecol. 218(2), S630–S640 (2018) CrossRef Papageorghiou, A.T., et al.: The INTERGROWTH-21 st fetal growth standards: toward the global integration of pregnancy and pediatric care. Am. J. Obstet. Gynecol. 218(2), S630–S640 (2018) CrossRef
24.
go back to reference Salomon, L.J., et al.: ISUOG practice guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 53(6), 715–723 (2019) CrossRef Salomon, L.J., et al.: ISUOG practice guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 53(6), 715–723 (2019) CrossRef
26.
go back to reference Sobhaninia, Z., et al.: Fetal ultrasound image segmentation for measuring biometric parameters using multi-task deep learning. In: EMBC, pp. 6545–6548. IEEE, Berlin, July 2019 Sobhaninia, Z., et al.: Fetal ultrasound image segmentation for measuring biometric parameters using multi-task deep learning. In: EMBC, pp. 6545–6548. IEEE, Berlin, July 2019
27.
go back to reference Wen, Y., Vicol, P., Ba, J., Tran, D., Grosse, R.: Flipout: efficient pseudo-independent weight perturbations on mini-batches. In: ICLR (2018) Wen, Y., Vicol, P., Ba, J., Tran, D., Grosse, R.: Flipout: efficient pseudo-independent weight perturbations on mini-batches. In: ICLR (2018)
28.
go back to reference Zador, I.E., Salari, V., Chik, L., Sokol, R.J.: Ultrasound measurement of the fetal head: computer versus operator. Ultrasound Obstetr. Gynecol. Offic. J. Int. Soc. Ultrasound Obstetr. Gynecol. 1(3), 208–211 (1991) CrossRef Zador, I.E., Salari, V., Chik, L., Sokol, R.J.: Ultrasound measurement of the fetal head: computer versus operator. Ultrasound Obstetr. Gynecol. Offic. J. Int. Soc. Ultrasound Obstetr. Gynecol. 1(3), 208–211 (1991) CrossRef
Metadata
Title
Calibrated Bayesian Neural Networks to Estimate Gestational Age and Its Uncertainty on Fetal Brain Ultrasound Images
Authors
Lok Hin Lee
Elizabeth Bradburn
Aris T. Papageorghiou
J. Alison Noble
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-60334-2_2

Premium Partner